MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolshftlem2 Structured version   Visualization version   GIF version

Theorem ovolshftlem2 23278
Description: Lemma for ovolshft 23279. (Contributed by Mario Carneiro, 22-Mar-2014.)
Hypotheses
Ref Expression
ovolshft.1 (𝜑𝐴 ⊆ ℝ)
ovolshft.2 (𝜑𝐶 ∈ ℝ)
ovolshft.3 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
ovolshft.4 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
Assertion
Ref Expression
ovolshftlem2 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐴   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑦,𝑧   𝑔,𝑀,𝑧   𝜑,𝑓,𝑔,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑀(𝑥,𝑦,𝑓)

Proof of Theorem ovolshftlem2
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovolshft.1 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
21ad3antrrr 766 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ⊆ ℝ)
3 ovolshft.2 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
43ad3antrrr 766 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐶 ∈ ℝ)
5 ovolshft.3 . . . . . . . 8 (𝜑𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
65ad3antrrr 766 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐵 = {𝑥 ∈ ℝ ∣ (𝑥𝐶) ∈ 𝐴})
7 ovolshft.4 . . . . . . 7 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐵 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
8 eqid 2622 . . . . . . 7 seq1( + , ((abs ∘ − ) ∘ 𝑔)) = seq1( + , ((abs ∘ − ) ∘ 𝑔))
9 fveq2 6191 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
109fveq2d 6195 . . . . . . . . . 10 (𝑚 = 𝑛 → (1st ‘(𝑔𝑚)) = (1st ‘(𝑔𝑛)))
1110oveq1d 6665 . . . . . . . . 9 (𝑚 = 𝑛 → ((1st ‘(𝑔𝑚)) + 𝐶) = ((1st ‘(𝑔𝑛)) + 𝐶))
129fveq2d 6195 . . . . . . . . . 10 (𝑚 = 𝑛 → (2nd ‘(𝑔𝑚)) = (2nd ‘(𝑔𝑛)))
1312oveq1d 6665 . . . . . . . . 9 (𝑚 = 𝑛 → ((2nd ‘(𝑔𝑚)) + 𝐶) = ((2nd ‘(𝑔𝑛)) + 𝐶))
1411, 13opeq12d 4410 . . . . . . . 8 (𝑚 = 𝑛 → ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩ = ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
1514cbvmptv 4750 . . . . . . 7 (𝑚 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑚)) + 𝐶), ((2nd ‘(𝑔𝑚)) + 𝐶)⟩) = (𝑛 ∈ ℕ ↦ ⟨((1st ‘(𝑔𝑛)) + 𝐶), ((2nd ‘(𝑔𝑛)) + 𝐶)⟩)
16 simplr 792 . . . . . . . 8 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
17 reex 10027 . . . . . . . . . . 11 ℝ ∈ V
1817, 17xpex 6962 . . . . . . . . . 10 (ℝ × ℝ) ∈ V
1918inex2 4800 . . . . . . . . 9 ( ≤ ∩ (ℝ × ℝ)) ∈ V
20 nnex 11026 . . . . . . . . 9 ℕ ∈ V
2119, 20elmap 7886 . . . . . . . 8 (𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2216, 21sylib 208 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝑔:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
23 simpr 477 . . . . . . 7 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → 𝐴 ran ((,) ∘ 𝑔))
242, 4, 6, 7, 8, 15, 22, 23ovolshftlem1 23277 . . . . . 6 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀)
25 eleq1a 2696 . . . . . 6 (sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) ∈ 𝑀 → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2624, 25syl 17 . . . . 5 ((((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) ∧ 𝐴 ran ((,) ∘ 𝑔)) → (𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ) → 𝑧𝑀))
2726expimpd 629 . . . 4 (((𝜑𝑧 ∈ ℝ*) ∧ 𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)) → ((𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2827rexlimdva 3031 . . 3 ((𝜑𝑧 ∈ ℝ*) → (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
2928ralrimiva 2966 . 2 (𝜑 → ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
30 rabss 3679 . 2 ({𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀 ↔ ∀𝑧 ∈ ℝ* (∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < )) → 𝑧𝑀))
3129, 30sylibr 224 1 (𝜑 → {𝑧 ∈ ℝ* ∣ ∃𝑔 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝐴 ran ((,) ∘ 𝑔) ∧ 𝑧 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑔)), ℝ*, < ))} ⊆ 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  cin 3573  wss 3574  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ran crn 5115  ccom 5118  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  supcsup 8346  cr 9935  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  cmin 10266  cn 11020  (,)cioo 12175  seqcseq 12801  abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  ovolshft  23279
  Copyright terms: Public domain W3C validator