MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcoval2 Structured version   Visualization version   GIF version

Theorem pcoval2 22816
Description: Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
pcoval.2 (𝜑𝐹 ∈ (II Cn 𝐽))
pcoval.3 (𝜑𝐺 ∈ (II Cn 𝐽))
pcoval2.4 (𝜑 → (𝐹‘1) = (𝐺‘0))
Assertion
Ref Expression
pcoval2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))

Proof of Theorem pcoval2
StepHypRef Expression
1 0re 10040 . . . . 5 0 ∈ ℝ
2 1re 10039 . . . . 5 1 ∈ ℝ
3 halfre 11246 . . . . . 6 (1 / 2) ∈ ℝ
4 halfgt0 11248 . . . . . 6 0 < (1 / 2)
51, 3, 4ltleii 10160 . . . . 5 0 ≤ (1 / 2)
6 1le1 10655 . . . . 5 1 ≤ 1
7 iccss 12241 . . . . 5 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (1 / 2) ∧ 1 ≤ 1)) → ((1 / 2)[,]1) ⊆ (0[,]1))
81, 2, 5, 6, 7mp4an 709 . . . 4 ((1 / 2)[,]1) ⊆ (0[,]1)
98sseli 3599 . . 3 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ (0[,]1))
10 pcoval.2 . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
11 pcoval.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
1210, 11pcovalg 22812 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
139, 12sylan2 491 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))))
14 pcoval2.4 . . . . . . . 8 (𝜑 → (𝐹‘1) = (𝐺‘0))
1514adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘1) = (𝐺‘0))
16 simprr 796 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ≤ (1 / 2))
173, 2elicc2i 12239 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) ↔ (𝑋 ∈ ℝ ∧ (1 / 2) ≤ 𝑋𝑋 ≤ 1))
1817simp2bi 1077 . . . . . . . . . . . 12 (𝑋 ∈ ((1 / 2)[,]1) → (1 / 2) ≤ 𝑋)
1918ad2antrl 764 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (1 / 2) ≤ 𝑋)
2017simp1bi 1076 . . . . . . . . . . . . 13 (𝑋 ∈ ((1 / 2)[,]1) → 𝑋 ∈ ℝ)
2120ad2antrl 764 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 ∈ ℝ)
22 letri3 10123 . . . . . . . . . . . 12 ((𝑋 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2321, 3, 22sylancl 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝑋 = (1 / 2) ↔ (𝑋 ≤ (1 / 2) ∧ (1 / 2) ≤ 𝑋)))
2416, 19, 23mpbir2and 957 . . . . . . . . . 10 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → 𝑋 = (1 / 2))
2524oveq2d 6666 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = (2 · (1 / 2)))
26 2cn 11091 . . . . . . . . . 10 2 ∈ ℂ
27 2ne0 11113 . . . . . . . . . 10 2 ≠ 0
2826, 27recidi 10756 . . . . . . . . 9 (2 · (1 / 2)) = 1
2925, 28syl6eq 2672 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (2 · 𝑋) = 1)
3029fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐹‘1))
3129oveq1d 6665 . . . . . . . . 9 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = (1 − 1))
32 1m1e0 11089 . . . . . . . . 9 (1 − 1) = 0
3331, 32syl6eq 2672 . . . . . . . 8 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → ((2 · 𝑋) − 1) = 0)
3433fveq2d 6195 . . . . . . 7 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐺‘((2 · 𝑋) − 1)) = (𝐺‘0))
3515, 30, 343eqtr4d 2666 . . . . . 6 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → (𝐹‘(2 · 𝑋)) = (𝐺‘((2 · 𝑋) − 1)))
3635ifeq1d 4104 . . . . 5 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))))
37 ifid 4125 . . . . 5 if(𝑋 ≤ (1 / 2), (𝐺‘((2 · 𝑋) − 1)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))
3836, 37syl6eq 2672 . . . 4 ((𝜑 ∧ (𝑋 ∈ ((1 / 2)[,]1) ∧ 𝑋 ≤ (1 / 2))) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
3938expr 643 . . 3 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → (𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1))))
40 iffalse 4095 . . 3 𝑋 ≤ (1 / 2) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4139, 40pm2.61d1 171 . 2 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1))) = (𝐺‘((2 · 𝑋) − 1)))
4213, 41eqtrd 2656 1 ((𝜑𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wss 3574  ifcif 4086   class class class wbr 4653  cfv 5888  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cle 10075  cmin 10266   / cdiv 10684  2c2 11070  [,]cicc 12178   Cn ccn 21028  IIcii 22678  *𝑝cpco 22800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-icc 12182  df-top 20699  df-topon 20716  df-cn 21031  df-pco 22805
This theorem is referenced by:  pcoass  22824  pcorevlem  22826
  Copyright terms: Public domain W3C validator