![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpgt0d | Structured version Visualization version GIF version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpgt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | rpgt0 11844 | . 2 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 class class class wbr 4653 0cc0 9936 < clt 10074 ℝ+crp 11832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-rp 11833 |
This theorem is referenced by: rpregt0d 11878 ltmulgt11d 11907 ltmulgt12d 11908 gt0divd 11909 ge0divd 11910 lediv12ad 11931 expgt0 12893 nnesq 12988 bccl2 13110 sqrlem7 13989 sqrtgt0d 14151 iseralt 14415 fsumlt 14532 geomulcvg 14607 eirrlem 14932 sqrt2irrlem 14977 sqrt2irrlemOLD 14978 prmind2 15398 4sqlem11 15659 4sqlem12 15660 ssblex 22233 nrginvrcn 22496 mulc1cncf 22708 nmoleub2lem2 22916 itg2mulclem 23513 itggt0 23608 dvgt0 23767 ftc1lem5 23803 aaliou3lem2 24098 abelthlem8 24193 tanord 24284 tanregt0 24285 logccv 24409 cxpcn3lem 24488 jensenlem2 24714 dmlogdmgm 24750 basellem1 24807 sgmnncl 24873 chpdifbndlem2 25243 pntibndlem1 25278 pntibnd 25282 pntlemc 25284 abvcxp 25304 ostth2lem1 25307 ostth2lem3 25324 ostth2 25326 xrge0iifhom 29983 omssubadd 30362 sgnmulrp2 30605 signsply0 30628 sinccvglem 31566 unblimceq0lem 32497 unbdqndv2lem2 32501 knoppndvlem14 32516 taupilem1 33167 poimirlem29 33438 heicant 33444 itggt0cn 33482 ftc1cnnc 33484 bfplem1 33621 rrncmslem 33631 irrapxlem4 37389 irrapxlem5 37390 imo72b2lem1 38471 dvdivbd 40138 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 stoweidlem1 40218 stoweidlem7 40224 stoweidlem11 40228 stoweidlem25 40242 stoweidlem26 40243 stoweidlem34 40251 stoweidlem49 40266 stoweidlem52 40269 stoweidlem60 40277 wallispi 40287 stirlinglem6 40296 stirlinglem11 40301 fourierdlem30 40354 qndenserrnbl 40515 ovnsubaddlem1 40784 hoiqssbllem2 40837 pimrecltpos 40919 smfmullem1 40998 smfmullem2 40999 smfmullem3 41000 |
Copyright terms: Public domain | W3C validator |