| Step | Hyp | Ref
| Expression |
| 1 | | simpr2 1068 |
. . 3
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑃 ∈ 𝑉) |
| 2 | | simpr3 1069 |
. . 3
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑁 ∈
ℕ0) |
| 3 | | rusgrnumwwlk.v |
. . . . 5
⊢ 𝑉 = (Vtx‘𝐺) |
| 4 | | rusgrnumwwlk.l |
. . . . 5
⊢ 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦
(#‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) |
| 5 | 3, 4 | rusgrnumwwlklem 26865 |
. . . 4
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃𝐿𝑁) = (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| 6 | 5 | eqeq1d 2624 |
. . 3
⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁))) |
| 7 | 1, 2, 6 | syl2anc 693 |
. 2
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) ↔ (#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁))) |
| 8 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 9 | 8 | wwlksnredwwlkn0 26791 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)))) |
| 10 | 9 | ex 450 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))))) |
| 11 | 10 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))))) |
| 12 | 11 | adantl 482 |
. . . . . . . . 9
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))))) |
| 13 | 12 | imp 445 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → ((𝑤‘0) = 𝑃 ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)))) |
| 14 | 13 | rabbidva 3188 |
. . . . . . 7
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 15 | 14 | adantr 481 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 16 | 15 | fveq2d 6195 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 17 | | simp2 1062 |
. . . . . . . . . . . . 13
⊢ (((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) → (𝑦‘0) = 𝑃) |
| 18 | 17 | pm4.71ri 665 |
. . . . . . . . . . . 12
⊢ (((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)))) |
| 19 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) ∧ 𝑦 ∈ (𝑁 WWalksN 𝐺)) → (((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) ↔ ((𝑦‘0) = 𝑃 ∧ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))))) |
| 20 | 19 | rexbidva 3049 |
. . . . . . . . . 10
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))))) |
| 21 | | fveq1 6190 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥‘0) = (𝑦‘0)) |
| 22 | 21 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) |
| 23 | 22 | rexrab 3370 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑦‘0) = 𝑃 ∧ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)))) |
| 24 | 20, 23 | syl6bbr 278 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧ 𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺)) → (∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)) ↔ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺)))) |
| 25 | 24 | rabbidva 3188 |
. . . . . . . 8
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 26 | 25 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 27 | 26 | fveq2d 6195 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 28 | | simplr1 1103 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → 𝑉 ∈ Fin) |
| 29 | 3 | eleq1i 2692 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin ↔
(Vtx‘𝐺) ∈
Fin) |
| 30 | 29 | biimpi 206 |
. . . . . . 7
⊢ (𝑉 ∈ Fin →
(Vtx‘𝐺) ∈
Fin) |
| 31 | | eqid 2622 |
. . . . . . . 8
⊢ ((𝑁 + 1) WWalksN 𝐺) = ((𝑁 + 1) WWalksN 𝐺) |
| 32 | | eqid 2622 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} |
| 33 | 31, 8, 32 | hashwwlksnext 26809 |
. . . . . . 7
⊢
((Vtx‘𝐺)
∈ Fin → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 34 | 28, 30, 33 | 3syl 18 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 35 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0)) |
| 36 | 35 | eqeq1d 2624 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑥‘0) = 𝑃 ↔ (𝑤‘0) = 𝑃)) |
| 37 | 36 | cbvrabv 3199 |
. . . . . . . 8
⊢ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} |
| 38 | 37 | sumeq1i 14428 |
. . . . . . 7
⊢
Σ𝑦 ∈
{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 39 | 38 | a1i 11 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑥‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 40 | 27, 34, 39 | 3eqtrd 2660 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ∃𝑦 ∈ (𝑁 WWalksN 𝐺)((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 41 | | rusgrnumwwlkslem 26864 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 42 | 41 | eqcomd 2628 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))} = {𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) |
| 43 | 42 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 44 | 43 | adantl 482 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))})) |
| 45 | | elrabi 3359 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → 𝑦 ∈ (𝑁 WWalksN 𝐺)) |
| 46 | 45 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → 𝑦 ∈ (𝑁 WWalksN 𝐺)) |
| 47 | 3, 8 | wwlksnexthasheq 26798 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑁 WWalksN 𝐺) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)})) |
| 48 | 46, 47 | syl 17 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)})) |
| 49 | 3 | rusgrpropadjvtx 26481 |
. . . . . . . . . 10
⊢ (𝐺 RegUSGraph 𝐾 → (𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0*
∧ ∀𝑝 ∈
𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 50 | | fveq1 6190 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0)) |
| 51 | 50 | eqeq1d 2624 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 = 𝑦 → ((𝑤‘0) = 𝑃 ↔ (𝑦‘0) = 𝑃)) |
| 52 | 51 | elrab 3363 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ↔ (𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃)) |
| 53 | 3, 8 | wwlknp 26734 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∈ (𝑁 WWalksN 𝐺) → (𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 54 | 53 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → (𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺))) |
| 55 | | simpll 790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑦 ∈ Word 𝑉) |
| 56 | | nn0p1gt0 11322 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ0
→ 0 < (𝑁 +
1)) |
| 57 | 56 | 3ad2ant3 1084 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 0 <
(𝑁 + 1)) |
| 58 | 57 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 0 <
(𝑁 + 1)) |
| 59 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((#‘𝑦) =
(𝑁 + 1) → (0 <
(#‘𝑦) ↔ 0 <
(𝑁 + 1))) |
| 60 | 59 | ad2antlr 763 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (0 <
(#‘𝑦) ↔ 0 <
(𝑁 + 1))) |
| 61 | 58, 60 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 0 <
(#‘𝑦)) |
| 62 | | hashle00 13188 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → ((#‘𝑦) ≤ 0 ↔ 𝑦 = ∅)) |
| 63 | | lencl 13324 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑦 ∈ Word 𝑉 → (#‘𝑦) ∈
ℕ0) |
| 64 | 63 | nn0red 11352 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑦 ∈ Word 𝑉 → (#‘𝑦) ∈ ℝ) |
| 65 | | 0re 10040 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 0 ∈
ℝ |
| 66 | | lenlt 10116 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((#‘𝑦) ∈
ℝ ∧ 0 ∈ ℝ) → ((#‘𝑦) ≤ 0 ↔ ¬ 0 < (#‘𝑦))) |
| 67 | 66 | bicomd 213 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((#‘𝑦) ∈
ℝ ∧ 0 ∈ ℝ) → (¬ 0 < (#‘𝑦) ↔ (#‘𝑦) ≤ 0)) |
| 68 | 64, 65, 67 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → (¬ 0 < (#‘𝑦) ↔ (#‘𝑦) ≤ 0)) |
| 69 | | nne 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (¬
𝑦 ≠ ∅ ↔ 𝑦 = ∅) |
| 70 | 69 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ 𝑦 = ∅)) |
| 71 | 62, 68, 70 | 3bitr4rd 301 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈ Word 𝑉 → (¬ 𝑦 ≠ ∅ ↔ ¬ 0 <
(#‘𝑦))) |
| 72 | 71 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (¬
𝑦 ≠ ∅ ↔ ¬
0 < (#‘𝑦))) |
| 73 | 72 | con4bid 307 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ≠ ∅ ↔ 0 <
(#‘𝑦))) |
| 74 | 61, 73 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑦 ≠ ∅) |
| 75 | 55, 74 | jca 554 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅)) |
| 76 | 75 | ex 450 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1)) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
| 77 | 76 | 3adant3 1081 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
| 78 | 54, 77 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑦 ∈ (𝑁 WWalksN 𝐺) ∧ (𝑦‘0) = 𝑃) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
| 79 | 52, 78 | sylbi 207 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅))) |
| 80 | 79 | imp 445 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅)) |
| 81 | | lswcl 13355 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ Word 𝑉 ∧ 𝑦 ≠ ∅) → ( lastS ‘𝑦) ∈ 𝑉) |
| 82 | 80, 81 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ( lastS
‘𝑦) ∈ 𝑉) |
| 83 | 82 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢ ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ ∀𝑝 ∈ 𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → ( lastS ‘𝑦) ∈ 𝑉) |
| 84 | | preq1 4268 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = ( lastS ‘𝑦) → {𝑝, 𝑛} = {( lastS ‘𝑦), 𝑛}) |
| 85 | 84 | eleq1d 2686 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = ( lastS ‘𝑦) → ({𝑝, 𝑛} ∈ (Edg‘𝐺) ↔ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺))) |
| 86 | 85 | rabbidv 3189 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = ( lastS ‘𝑦) → {𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)} = {𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) |
| 87 | 86 | fveq2d 6195 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = ( lastS ‘𝑦) → (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)})) |
| 88 | 87 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 = ( lastS ‘𝑦) → ((#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 ↔ (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)) |
| 89 | 88 | rspcva 3307 |
. . . . . . . . . . . . . 14
⊢ ((( lastS
‘𝑦) ∈ 𝑉 ∧ ∀𝑝 ∈ 𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
| 90 | 83, 89 | sylancom 701 |
. . . . . . . . . . . . 13
⊢ ((((𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ ∀𝑝 ∈ 𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
| 91 | 90 | exp41 638 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (∀𝑝 ∈ 𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
| 92 | 91 | com14 96 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
| 93 | 92 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ USGraph ∧ 𝐾 ∈
ℕ0* ∧ ∀𝑝 ∈ 𝑉 (#‘{𝑛 ∈ 𝑉 ∣ {𝑝, 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
| 94 | 49, 93 | syl 17 |
. . . . . . . . 9
⊢ (𝐺 RegUSGraph 𝐾 → ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) →
((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾)))) |
| 95 | 94 | imp41 619 |
. . . . . . . 8
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (#‘{𝑛 ∈ 𝑉 ∣ {( lastS ‘𝑦), 𝑛} ∈ (Edg‘𝐺)}) = 𝐾) |
| 96 | 44, 48, 95 | 3eqtrd 2660 |
. . . . . . 7
⊢ ((((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) ∧ 𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = 𝐾) |
| 97 | 96 | sumeq2dv 14433 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾) |
| 98 | | oveq1 6657 |
. . . . . . . 8
⊢
((#‘{𝑤 ∈
(𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → ((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾↑𝑁) · 𝐾)) |
| 99 | 98 | adantl 482 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → ((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾) = ((𝐾↑𝑁) · 𝐾)) |
| 100 | | wwlksnfi 26801 |
. . . . . . . . . . . 12
⊢
((Vtx‘𝐺)
∈ Fin → (𝑁
WWalksN 𝐺) ∈
Fin) |
| 101 | 29, 100 | sylbi 207 |
. . . . . . . . . . 11
⊢ (𝑉 ∈ Fin → (𝑁 WWalksN 𝐺) ∈ Fin) |
| 102 | 101 | 3ad2ant1 1082 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 WWalksN 𝐺) ∈ Fin) |
| 103 | 102 | ad2antlr 763 |
. . . . . . . . 9
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝑁 WWalksN 𝐺) ∈ Fin) |
| 104 | | rabfi 8185 |
. . . . . . . . 9
⊢ ((𝑁 WWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
| 105 | 103, 104 | syl 17 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin) |
| 106 | | rusgrusgr 26460 |
. . . . . . . . . . . . 13
⊢ (𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph ) |
| 107 | | simp1 1061 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑉 ∈ Fin) |
| 108 | 106, 107 | anim12i 590 |
. . . . . . . . . . . 12
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 109 | 3 | isfusgr 26210 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 110 | 108, 109 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 ∈ FinUSGraph
) |
| 111 | | simpl 473 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐺 RegUSGraph 𝐾) |
| 112 | | ne0i 3921 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ 𝑉 → 𝑉 ≠ ∅) |
| 113 | 112 | 3ad2ant2 1083 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → 𝑉 ≠ ∅) |
| 114 | 113 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝑉 ≠ ∅) |
| 115 | 3 | frusgrnn0 26467 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ FinUSGraph ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ≠ ∅) → 𝐾 ∈
ℕ0) |
| 116 | 110, 111,
114, 115 | syl3anc 1326 |
. . . . . . . . . 10
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐾 ∈
ℕ0) |
| 117 | 116 | nn0cnd 11353 |
. . . . . . . . 9
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → 𝐾 ∈
ℂ) |
| 118 | 117 | adantr 481 |
. . . . . . . 8
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → 𝐾 ∈ ℂ) |
| 119 | | fsumconst 14522 |
. . . . . . . 8
⊢ (({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} ∈ Fin ∧ 𝐾 ∈ ℂ) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾)) |
| 120 | 105, 118,
119 | syl2anc 693 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = ((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) · 𝐾)) |
| 121 | 117, 2 | expp1d 13009 |
. . . . . . . 8
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) · 𝐾)) |
| 122 | 121 | adantr 481 |
. . . . . . 7
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝐾↑(𝑁 + 1)) = ((𝐾↑𝑁) · 𝐾)) |
| 123 | 99, 120, 122 | 3eqtr4d 2666 |
. . . . . 6
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}𝐾 = (𝐾↑(𝑁 + 1))) |
| 124 | 97, 123 | eqtrd 2656 |
. . . . 5
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → Σ𝑦 ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ ((𝑤 substr 〈0, (𝑁 + 1)〉) = 𝑦 ∧ (𝑦‘0) = 𝑃 ∧ {( lastS ‘𝑦), ( lastS ‘𝑤)} ∈ (Edg‘𝐺))}) = (𝐾↑(𝑁 + 1))) |
| 125 | 16, 40, 124 | 3eqtrd 2660 |
. . . 4
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1))) |
| 126 | | peano2nn0 11333 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 127 | 126 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈
ℕ0) |
| 128 | 127 | adantl 482 |
. . . . . 6
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑁 + 1) ∈
ℕ0) |
| 129 | 3, 4 | rusgrnumwwlklem 26865 |
. . . . . . 7
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ ℕ0) →
(𝑃𝐿(𝑁 + 1)) = (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
| 130 | 129 | eqeq1d 2624 |
. . . . . 6
⊢ ((𝑃 ∈ 𝑉 ∧ (𝑁 + 1) ∈ ℕ0) →
((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
| 131 | 1, 128, 130 | syl2anc 693 |
. . . . 5
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
| 132 | 131 | adantr 481 |
. . . 4
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → ((𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)) ↔ (#‘{𝑤 ∈ ((𝑁 + 1) WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑(𝑁 + 1)))) |
| 133 | 125, 132 | mpbird 247 |
. . 3
⊢ (((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) ∧
(#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1))) |
| 134 | 133 | ex 450 |
. 2
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) →
((#‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))) |
| 135 | 7, 134 | sylbid 230 |
1
⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → ((𝑃𝐿𝑁) = (𝐾↑𝑁) → (𝑃𝐿(𝑁 + 1)) = (𝐾↑(𝑁 + 1)))) |