![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pntsval | Structured version Visualization version GIF version |
Description: Define the "Selberg function", whose asymptotic behavior is the content of selberg 25237. (Contributed by Mario Carneiro, 31-May-2016.) |
Ref | Expression |
---|---|
pntsval.1 | ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) |
Ref | Expression |
---|---|
pntsval | ⊢ (𝐴 ∈ ℝ → (𝑆‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6191 | . . . . 5 ⊢ (𝑖 = 𝑛 → (Λ‘𝑖) = (Λ‘𝑛)) | |
2 | fveq2 6191 | . . . . . 6 ⊢ (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛)) | |
3 | oveq2 6658 | . . . . . . 7 ⊢ (𝑖 = 𝑛 → (𝑎 / 𝑖) = (𝑎 / 𝑛)) | |
4 | 3 | fveq2d 6195 | . . . . . 6 ⊢ (𝑖 = 𝑛 → (ψ‘(𝑎 / 𝑖)) = (ψ‘(𝑎 / 𝑛))) |
5 | 2, 4 | oveq12d 6668 | . . . . 5 ⊢ (𝑖 = 𝑛 → ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))) = ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) |
6 | 1, 5 | oveq12d 6668 | . . . 4 ⊢ (𝑖 = 𝑛 → ((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))))) |
7 | 6 | cbvsumv 14426 | . . 3 ⊢ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) |
8 | fveq2 6191 | . . . . 5 ⊢ (𝑎 = 𝐴 → (⌊‘𝑎) = (⌊‘𝐴)) | |
9 | 8 | oveq2d 6666 | . . . 4 ⊢ (𝑎 = 𝐴 → (1...(⌊‘𝑎)) = (1...(⌊‘𝐴))) |
10 | oveq1 6657 | . . . . . . . 8 ⊢ (𝑎 = 𝐴 → (𝑎 / 𝑛) = (𝐴 / 𝑛)) | |
11 | 10 | fveq2d 6195 | . . . . . . 7 ⊢ (𝑎 = 𝐴 → (ψ‘(𝑎 / 𝑛)) = (ψ‘(𝐴 / 𝑛))) |
12 | 11 | oveq2d 6666 | . . . . . 6 ⊢ (𝑎 = 𝐴 → ((log‘𝑛) + (ψ‘(𝑎 / 𝑛))) = ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) |
13 | 12 | oveq2d 6666 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
14 | 13 | adantr 481 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑛 ∈ (1...(⌊‘𝑎))) → ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = ((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
15 | 9, 14 | sumeq12dv 14437 | . . 3 ⊢ (𝑎 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑎))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝑎 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
16 | 7, 15 | syl5eq 2668 | . 2 ⊢ (𝑎 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖)))) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
17 | pntsval.1 | . 2 ⊢ 𝑆 = (𝑎 ∈ ℝ ↦ Σ𝑖 ∈ (1...(⌊‘𝑎))((Λ‘𝑖) · ((log‘𝑖) + (ψ‘(𝑎 / 𝑖))))) | |
18 | sumex 14418 | . 2 ⊢ Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛)))) ∈ V | |
19 | 16, 17, 18 | fvmpt 6282 | 1 ⊢ (𝐴 ∈ ℝ → (𝑆‘𝐴) = Σ𝑛 ∈ (1...(⌊‘𝐴))((Λ‘𝑛) · ((log‘𝑛) + (ψ‘(𝐴 / 𝑛))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ℝcr 9935 1c1 9937 + caddc 9939 · cmul 9941 / cdiv 10684 ...cfz 12326 ⌊cfl 12591 Σcsu 14416 logclog 24301 Λcvma 24818 ψcchp 24819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-seq 12802 df-sum 14417 |
This theorem is referenced by: selbergs 25263 selbergsb 25264 pntsval2 25265 |
Copyright terms: Public domain | W3C validator |