| Step | Hyp | Ref
| Expression |
| 1 | | 2re 11090 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 2 | 1 | a1i 11 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℝ) |
| 3 | | elioore 12205 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (1(,)+∞) →
𝑥 ∈
ℝ) |
| 4 | 3 | adantl 482 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ) |
| 5 | | 1rp 11836 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℝ+ |
| 6 | 5 | a1i 11 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ+) |
| 7 | | 1red 10055 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ∈ ℝ) |
| 8 | | eliooord 12233 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1(,)+∞) → (1
< 𝑥 ∧ 𝑥 <
+∞)) |
| 9 | 8 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 < 𝑥 ∧ 𝑥 < +∞)) |
| 10 | 9 | simpld 475 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 < 𝑥) |
| 11 | 7, 4, 10 | ltled 10185 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 1 ≤ 𝑥) |
| 12 | 4, 6, 11 | rpgecld 11911 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℝ+) |
| 13 | | pntrval.r |
. . . . . . . . . . . . 13
⊢ 𝑅 = (𝑎 ∈ ℝ+ ↦
((ψ‘𝑎) −
𝑎)) |
| 14 | 13 | pntrf 25252 |
. . . . . . . . . . . 12
⊢ 𝑅:ℝ+⟶ℝ |
| 15 | 14 | ffvelrni 6358 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ℝ+
→ (𝑅‘𝑥) ∈
ℝ) |
| 16 | 12, 15 | syl 17 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (𝑅‘𝑥) ∈ ℝ) |
| 17 | 12 | relogcld 24369 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℝ) |
| 18 | 16, 17 | remulcld 10070 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((𝑅‘𝑥) · (log‘𝑥)) ∈ ℝ) |
| 19 | 2, 18 | remulcld 10070 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) ∈ ℝ) |
| 20 | 19 | recnd 10068 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) ∈ ℂ) |
| 21 | 4, 10 | rplogcld 24375 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈
ℝ+) |
| 22 | 2, 21 | rerpdivcld 11903 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℝ) |
| 23 | 22 | recnd 10068 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 / (log‘𝑥)) ∈ ℂ) |
| 24 | | fzfid 12772 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1...(⌊‘𝑥)) ∈ Fin) |
| 25 | 12 | adantr 481 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+) |
| 26 | | elfznn 12370 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
| 27 | 26 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ) |
| 28 | 27 | nnrpd 11870 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+) |
| 29 | 25, 28 | rpdivcld 11889 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈
ℝ+) |
| 30 | 14 | ffvelrni 6358 |
. . . . . . . . . . . 12
⊢ ((𝑥 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 32 | | fzfid 12772 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...𝑛) ∈ Fin) |
| 33 | | dvdsssfz1 15040 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
| 34 | 27, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) |
| 35 | | ssfi 8180 |
. . . . . . . . . . . . . 14
⊢
(((1...𝑛) ∈ Fin
∧ {𝑦 ∈ ℕ
∣ 𝑦 ∥ 𝑛} ⊆ (1...𝑛)) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ∈ Fin) |
| 36 | 32, 34, 35 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ∈ Fin) |
| 37 | | ssrab2 3687 |
. . . . . . . . . . . . . . . 16
⊢ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ⊆ ℕ |
| 38 | | simpr 477 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 39 | 37, 38 | sseldi 3601 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → 𝑚 ∈ ℕ) |
| 40 | | vmacl 24844 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ ℕ →
(Λ‘𝑚) ∈
ℝ) |
| 41 | 39, 40 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘𝑚) ∈ ℝ) |
| 42 | | dvdsdivcl 15038 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 43 | 27, 42 | sylan 488 |
. . . . . . . . . . . . . . . 16
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) |
| 44 | 37, 43 | sseldi 3601 |
. . . . . . . . . . . . . . 15
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (𝑛 / 𝑚) ∈ ℕ) |
| 45 | | vmacl 24844 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 / 𝑚) ∈ ℕ →
(Λ‘(𝑛 / 𝑚)) ∈
ℝ) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ) |
| 47 | 41, 46 | remulcld 10070 |
. . . . . . . . . . . . 13
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ) |
| 48 | 36, 47 | fsumrecl 14465 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℝ) |
| 49 | | vmacl 24844 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ →
(Λ‘𝑛) ∈
ℝ) |
| 50 | 27, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℝ) |
| 51 | 28 | relogcld 24369 |
. . . . . . . . . . . . 13
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈
ℝ) |
| 52 | 50, 51 | remulcld 10070 |
. . . . . . . . . . . 12
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (log‘𝑛))
∈ ℝ) |
| 53 | 48, 52 | resubcld 10458 |
. . . . . . . . . . 11
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))) ∈
ℝ) |
| 54 | 31, 53 | remulcld 10070 |
. . . . . . . . . 10
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℝ) |
| 55 | 24, 54 | fsumrecl 14465 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℝ) |
| 56 | 55 | recnd 10068 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) ∈
ℂ) |
| 57 | 23, 56 | mulcld 10060 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈
ℂ) |
| 58 | 20, 57 | subcld 10392 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈
ℂ) |
| 59 | 4 | recnd 10068 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ∈ ℂ) |
| 60 | | 2cnd 11093 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ∈ ℂ) |
| 61 | 12 | rpne0d 11877 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 𝑥 ≠ 0) |
| 62 | | 2ne0 11113 |
. . . . . . 7
⊢ 2 ≠
0 |
| 63 | 62 | a1i 11 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → 2 ≠ 0) |
| 64 | 58, 59, 60, 61, 63 | divdiv32d 10826 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥)) |
| 65 | 58, 59, 61 | divcld 10801 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℂ) |
| 66 | 65, 60, 63 | divrecd 10804 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) / 2) = ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) |
| 67 | 20, 57, 60, 63 | divsubdird 10840 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((2 ·
((𝑅‘𝑥) · (log‘𝑥))) / 2) − (((2 /
(log‘𝑥)) ·
Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2))) |
| 68 | 18 | recnd 10068 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((𝑅‘𝑥) · (log‘𝑥)) ∈ ℂ) |
| 69 | 68, 60, 63 | divcan3d 10806 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) / 2) = ((𝑅‘𝑥) · (log‘𝑥))) |
| 70 | 21 | rpcnd 11874 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ∈ ℂ) |
| 71 | 21 | rpne0d 11877 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (log‘𝑥) ≠ 0) |
| 72 | 60, 70, 56, 71 | div32d 10824 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (2 ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 73 | 72 | oveq1d 6665 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = ((2 ·
(Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2)) |
| 74 | 55, 21 | rerpdivcld 11903 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈
ℝ) |
| 75 | 74 | recnd 10068 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)) ∈
ℂ) |
| 76 | 75, 60, 63 | divcan3d 10806 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 2) = (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) |
| 77 | 73, 76 | eqtrd 2656 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2) = (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) |
| 78 | 69, 77 | oveq12d 6668 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) / 2) − (((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) / 2)) = (((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 79 | 67, 78 | eqtrd 2656 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) = (((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥)))) |
| 80 | 79 | oveq1d 6665 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 2) / 𝑥) = ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) |
| 81 | 64, 66, 80 | 3eqtr3d 2664 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2)) = ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) |
| 82 | 81 | mpteq2dva 4744 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) = (𝑥 ∈ (1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥))) |
| 83 | 22, 55 | remulcld 10070 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) ∈
ℝ) |
| 84 | 19, 83 | resubcld 10458 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) ∈
ℝ) |
| 85 | 84, 12 | rerpdivcld 11903 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) ∈ ℝ) |
| 86 | 7 | rehalfcld 11279 |
. . . 4
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (1 / 2) ∈ ℝ) |
| 87 | 31 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑅‘(𝑥 / 𝑛)) ∈ ℂ) |
| 88 | 48 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ) |
| 89 | 50 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑛) ∈
ℂ) |
| 90 | 51 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘𝑛) ∈
ℂ) |
| 91 | 89, 90 | mulcld 10060 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (log‘𝑛))
∈ ℂ) |
| 92 | 87, 88, 91 | subdid 10486 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))))) |
| 93 | 87, 89, 90 | mul12d 10245 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 94 | 89, 87, 90 | mulassd 10063 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) = ((Λ‘𝑛) · ((𝑅‘(𝑥 / 𝑛)) · (log‘𝑛)))) |
| 95 | 93, 94 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛))) = (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) |
| 96 | 95 | oveq2d 6666 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 97 | 92, 96 | eqtrd 2656 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 98 | 97 | sumeq2dv 14433 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 99 | 87, 88 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) ∈ ℂ) |
| 100 | 89, 87 | mulcld 10060 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) ∈ ℂ) |
| 101 | 100, 90 | mulcld 10060 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 102 | 24, 99, 101 | fsumsub 14520 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − (((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 103 | 47 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛}) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) ∈ ℂ) |
| 104 | 36, 87, 103 | fsummulc2 14516 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))))) |
| 105 | 104 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))))) |
| 106 | | oveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑚 · 𝑘) → (𝑥 / 𝑛) = (𝑥 / (𝑚 · 𝑘))) |
| 107 | 106 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 · 𝑘) → (𝑅‘(𝑥 / 𝑛)) = (𝑅‘(𝑥 / (𝑚 · 𝑘)))) |
| 108 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = (𝑚 · 𝑘) → (𝑛 / 𝑚) = ((𝑚 · 𝑘) / 𝑚)) |
| 109 | 108 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (𝑚 · 𝑘) → (Λ‘(𝑛 / 𝑚)) = (Λ‘((𝑚 · 𝑘) / 𝑚))) |
| 110 | 109 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (𝑚 · 𝑘) → ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) = ((Λ‘𝑚) · (Λ‘((𝑚 · 𝑘) / 𝑚)))) |
| 111 | 107, 110 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (𝑚 · 𝑘) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) = ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))))) |
| 112 | 31 | adantrr 753 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (𝑅‘(𝑥 / 𝑛)) ∈ ℝ) |
| 113 | 41 | anasss 679 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (Λ‘𝑚) ∈ ℝ) |
| 114 | 46 | anasss 679 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → (Λ‘(𝑛 / 𝑚)) ∈ ℝ) |
| 115 | 113, 114 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚))) ∈
ℝ) |
| 116 | 112, 115 | remulcld 10070 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) ∈
ℝ) |
| 117 | 116 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ (𝑛 ∈ (1...(⌊‘𝑥)) ∧ 𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛})) → ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) ∈
ℂ) |
| 118 | 111, 4, 117 | dvdsflsumcom 24914 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((𝑅‘(𝑥 / 𝑛)) · ((Λ‘𝑚) ·
(Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))))) |
| 119 | 59 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℂ) |
| 120 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑚 ∈
(1...(⌊‘𝑥))
→ 𝑚 ∈
ℕ) |
| 121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℕ) |
| 122 | 121 | nnrpd 11870 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → 𝑚 ∈ ℝ+) |
| 123 | 122 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℝ+) |
| 124 | 123 | rpcnd 11874 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ∈ ℂ) |
| 125 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚))) → 𝑘 ∈
ℕ) |
| 126 | 125 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℕ) |
| 127 | 126 | nncnd 11036 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℂ) |
| 128 | 123 | rpne0d 11877 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑚 ≠ 0) |
| 129 | 126 | nnne0d 11065 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ≠ 0) |
| 130 | 119, 124,
127, 128, 129 | divdiv1d 10832 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) = (𝑥 / (𝑚 · 𝑘))) |
| 131 | 130 | eqcomd 2628 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / (𝑚 · 𝑘)) = ((𝑥 / 𝑚) / 𝑘)) |
| 132 | 131 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘(𝑥 / (𝑚 · 𝑘))) = (𝑅‘((𝑥 / 𝑚) / 𝑘))) |
| 133 | 127, 124,
128 | divcan3d 10806 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑚 · 𝑘) / 𝑚) = 𝑘) |
| 134 | 133 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘((𝑚 · 𝑘) / 𝑚)) = (Λ‘𝑘)) |
| 135 | 134 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚))) = ((Λ‘𝑚) · (Λ‘𝑘))) |
| 136 | 132, 135 | oveq12d 6668 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘)))) |
| 137 | 12 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑥 ∈ ℝ+) |
| 138 | 137, 123 | rpdivcld 11889 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑥 / 𝑚) ∈
ℝ+) |
| 139 | 126 | nnrpd 11870 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → 𝑘 ∈ ℝ+) |
| 140 | 138, 139 | rpdivcld 11889 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑥 / 𝑚) / 𝑘) ∈
ℝ+) |
| 141 | 14 | ffvelrni 6358 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 / 𝑚) / 𝑘) ∈ ℝ+ → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ) |
| 142 | 140, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℝ) |
| 143 | 142 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (𝑅‘((𝑥 / 𝑚) / 𝑘)) ∈ ℂ) |
| 144 | 121, 40 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℝ) |
| 145 | 144 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → (Λ‘𝑚) ∈
ℂ) |
| 146 | 145 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑚) ∈
ℂ) |
| 147 | | vmacl 24844 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℕ →
(Λ‘𝑘) ∈
ℝ) |
| 148 | 126, 147 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈
ℝ) |
| 149 | 148 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (Λ‘𝑘) ∈
ℂ) |
| 150 | 146, 149 | mulcld 10060 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑚) · (Λ‘𝑘)) ∈
ℂ) |
| 151 | 143, 150 | mulcomd 10061 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘((𝑥 / 𝑚) / 𝑘)) · ((Λ‘𝑚) · (Λ‘𝑘))) = (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) |
| 152 | 146, 149,
143 | mulassd 10063 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → (((Λ‘𝑚) · (Λ‘𝑘)) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) = ((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 153 | 136, 151,
152 | 3eqtrd 2660 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((Λ‘𝑚) ·
((Λ‘𝑘)
· (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 154 | 153 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 155 | | fzfid 12772 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
(1...(⌊‘(𝑥 /
𝑚))) ∈
Fin) |
| 156 | 148, 142 | remulcld 10070 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ) |
| 157 | 156 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) ∧ 𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))) → ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℂ) |
| 158 | 155, 145,
157 | fsummulc2 14516 |
. . . . . . . . . . . . . . . . . 18
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) = Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑚) · ((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 159 | 154, 158 | eqtr4d 2659 |
. . . . . . . . . . . . . . . . 17
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = ((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 160 | 159 | sumeq2dv 14433 |
. . . . . . . . . . . . . . . 16
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((𝑅‘(𝑥 / (𝑚 · 𝑘))) · ((Λ‘𝑚) ·
(Λ‘((𝑚
· 𝑘) / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 161 | 105, 118,
160 | 3eqtrd 2660 |
. . . . . . . . . . . . . . 15
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) = Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) |
| 162 | 161 | oveq1d 6665 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) = (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 163 | 98, 102, 162 | 3eqtrd 2660 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) = (Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) |
| 164 | 163 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = ((2 / (log‘𝑥)) · (Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 165 | 155, 156 | fsumrecl 14465 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) → Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))) ∈ ℝ) |
| 166 | 144, 165 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑚 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑚)
· Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ) |
| 167 | 24, 166 | fsumrecl 14465 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℝ) |
| 168 | 167 | recnd 10068 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) ∈ ℂ) |
| 169 | 50, 31 | remulcld 10070 |
. . . . . . . . . . . . . . . 16
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) ∈ ℝ) |
| 170 | 169, 51 | remulcld 10070 |
. . . . . . . . . . . . . . 15
⊢
(((⊤ ∧ 𝑥
∈ (1(,)+∞)) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) →
(((Λ‘𝑛)
· (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 171 | 24, 170 | fsumrecl 14465 |
. . . . . . . . . . . . . 14
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℝ) |
| 172 | 171 | recnd 10068 |
. . . . . . . . . . . . 13
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)) ∈ ℂ) |
| 173 | 23, 168, 172 | subdid 10486 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · (Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 174 | 164, 173 | eqtrd 2656 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛))))) = (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 175 | 174 | oveq2d 6666 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))))) |
| 176 | 23, 168 | mulcld 10060 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℂ) |
| 177 | 22, 171 | remulcld 10070 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℝ) |
| 178 | 177 | recnd 10068 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))) ∈ ℂ) |
| 179 | 20, 176, 178 | subsub3d 10422 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − (((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) = (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 180 | 175, 179 | eqtrd 2656 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 181 | 68 | 2timesd 11275 |
. . . . . . . . . . . 12
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (2 · ((𝑅‘𝑥) · (log‘𝑥))) = (((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥)))) |
| 182 | 181 | oveq1d 6665 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 183 | 68, 178, 68 | add32d 10263 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛))))) |
| 184 | 182, 183 | eqtr4d 2659 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥)))) |
| 185 | 184 | oveq1d 6665 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) |
| 186 | 18, 177 | readdcld 10069 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℝ) |
| 187 | 186 | recnd 10068 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) ∈ ℂ) |
| 188 | 187, 68, 176 | addsubassd 10412 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))) |
| 189 | 180, 185,
188 | 3eqtrd 2660 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) = ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))))) |
| 190 | 189 | oveq1d 6665 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥)) |
| 191 | 68, 176 | subcld 10392 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℂ) |
| 192 | 187, 191,
59, 61 | divdird 10839 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) + (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) |
| 193 | 190, 192 | eqtrd 2656 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) = (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) |
| 194 | 193 | mpteq2dva 4744 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) = (𝑥 ∈ (1(,)+∞) ↦ (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)))) |
| 195 | 186, 12 | rerpdivcld 11903 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) ∈ ℝ) |
| 196 | 22, 167 | remulcld 10070 |
. . . . . . . 8
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((2 / (log‘𝑥)) · Σ𝑚 ∈ (1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈
(1...(⌊‘(𝑥 /
𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘))))) ∈ ℝ) |
| 197 | 18, 196 | resubcld 10458 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → (((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) ∈ ℝ) |
| 198 | 197, 12 | rerpdivcld 11903 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ (1(,)+∞)) → ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥) ∈ ℝ) |
| 199 | 13 | selberg3r 25258 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1) |
| 200 | 199 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥)) ∈ 𝑂(1)) |
| 201 | 13 | selberg4r 25259 |
. . . . . . 7
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) − ((2 /
(log‘𝑥)) ·
Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1) |
| 202 | 201 | a1i 11 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥)) ∈ 𝑂(1)) |
| 203 | 195, 198,
200, 202 | o1add2 14354 |
. . . . 5
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((((𝑅‘𝑥) · (log‘𝑥)) + ((2 / (log‘𝑥)) · Σ𝑛 ∈ (1...(⌊‘𝑥))(((Λ‘𝑛) · (𝑅‘(𝑥 / 𝑛))) · (log‘𝑛)))) / 𝑥) + ((((𝑅‘𝑥) · (log‘𝑥)) − ((2 / (log‘𝑥)) · Σ𝑚 ∈
(1...(⌊‘𝑥))((Λ‘𝑚) · Σ𝑘 ∈ (1...(⌊‘(𝑥 / 𝑚)))((Λ‘𝑘) · (𝑅‘((𝑥 / 𝑚) / 𝑘)))))) / 𝑥))) ∈ 𝑂(1)) |
| 204 | 194, 203 | eqeltrd 2701 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥)) ∈ 𝑂(1)) |
| 205 | | ioossre 12235 |
. . . . 5
⊢
(1(,)+∞) ⊆ ℝ |
| 206 | | 1cnd 10056 |
. . . . . 6
⊢ (⊤
→ 1 ∈ ℂ) |
| 207 | 206 | halfcld 11277 |
. . . . 5
⊢ (⊤
→ (1 / 2) ∈ ℂ) |
| 208 | | o1const 14350 |
. . . . 5
⊢
(((1(,)+∞) ⊆ ℝ ∧ (1 / 2) ∈ ℂ) →
(𝑥 ∈ (1(,)+∞)
↦ (1 / 2)) ∈ 𝑂(1)) |
| 209 | 205, 207,
208 | sylancr 695 |
. . . 4
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ (1 / 2)) ∈ 𝑂(1)) |
| 210 | 85, 86, 204, 209 | o1mul2 14355 |
. . 3
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((2 · ((𝑅‘𝑥) · (log‘𝑥))) − ((2 / (log‘𝑥)) · Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))))) / 𝑥) · (1 / 2))) ∈
𝑂(1)) |
| 211 | 82, 210 | eqeltrrd 2702 |
. 2
⊢ (⊤
→ (𝑥 ∈
(1(,)+∞) ↦ ((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1)) |
| 212 | 211 | trud 1493 |
1
⊢ (𝑥 ∈ (1(,)+∞) ↦
((((𝑅‘𝑥) · (log‘𝑥)) − (Σ𝑛 ∈
(1...(⌊‘𝑥))((𝑅‘(𝑥 / 𝑛)) · (Σ𝑚 ∈ {𝑦 ∈ ℕ ∣ 𝑦 ∥ 𝑛} ((Λ‘𝑚) · (Λ‘(𝑛 / 𝑚))) − ((Λ‘𝑛) · (log‘𝑛)))) / (log‘𝑥))) / 𝑥)) ∈ 𝑂(1) |