![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > polidi | Structured version Visualization version GIF version |
Description: Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27941. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polid.1 | ⊢ 𝐴 ∈ ℋ |
polid.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
polidi | ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | polid.1 | . . 3 ⊢ 𝐴 ∈ ℋ | |
2 | polid.2 | . . 3 ⊢ 𝐵 ∈ ℋ | |
3 | 1, 2, 2, 1 | polid2i 28014 | . 2 ⊢ (𝐴 ·ih 𝐵) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
4 | 1, 2 | hvaddcli 27875 | . . . . . 6 ⊢ (𝐴 +ℎ 𝐵) ∈ ℋ |
5 | 4 | normsqi 27989 | . . . . 5 ⊢ ((normℎ‘(𝐴 +ℎ 𝐵))↑2) = ((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) |
6 | 1, 2 | hvsubcli 27878 | . . . . . 6 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
7 | 6 | normsqi 27989 | . . . . 5 ⊢ ((normℎ‘(𝐴 −ℎ 𝐵))↑2) = ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵)) |
8 | 5, 7 | oveq12i 6662 | . . . 4 ⊢ (((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) = (((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) |
9 | ax-icn 9995 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
10 | 9, 2 | hvmulcli 27871 | . . . . . . . 8 ⊢ (i ·ℎ 𝐵) ∈ ℋ |
11 | 1, 10 | hvaddcli 27875 | . . . . . . 7 ⊢ (𝐴 +ℎ (i ·ℎ 𝐵)) ∈ ℋ |
12 | 11 | normsqi 27989 | . . . . . 6 ⊢ ((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) |
13 | 1, 10 | hvsubcli 27878 | . . . . . . 7 ⊢ (𝐴 −ℎ (i ·ℎ 𝐵)) ∈ ℋ |
14 | 13 | normsqi 27989 | . . . . . 6 ⊢ ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2) = ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))) |
15 | 12, 14 | oveq12i 6662 | . . . . 5 ⊢ (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)) = (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))) |
16 | 15 | oveq2i 6661 | . . . 4 ⊢ (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2))) = (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵))))) |
17 | 8, 16 | oveq12i 6662 | . . 3 ⊢ ((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) = ((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) |
18 | 17 | oveq1i 6660 | . 2 ⊢ (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) = (((((𝐴 +ℎ 𝐵) ·ih (𝐴 +ℎ 𝐵)) − ((𝐴 −ℎ 𝐵) ·ih (𝐴 −ℎ 𝐵))) + (i · (((𝐴 +ℎ (i ·ℎ 𝐵)) ·ih (𝐴 +ℎ (i ·ℎ 𝐵))) − ((𝐴 −ℎ (i ·ℎ 𝐵)) ·ih (𝐴 −ℎ (i ·ℎ 𝐵)))))) / 4) |
19 | 3, 18 | eqtr4i 2647 | 1 ⊢ (𝐴 ·ih 𝐵) = (((((normℎ‘(𝐴 +ℎ 𝐵))↑2) − ((normℎ‘(𝐴 −ℎ 𝐵))↑2)) + (i · (((normℎ‘(𝐴 +ℎ (i ·ℎ 𝐵)))↑2) − ((normℎ‘(𝐴 −ℎ (i ·ℎ 𝐵)))↑2)))) / 4) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ‘cfv 5888 (class class class)co 6650 ici 9938 + caddc 9939 · cmul 9941 − cmin 10266 / cdiv 10684 2c2 11070 4c4 11072 ↑cexp 12860 ℋchil 27776 +ℎ cva 27777 ·ℎ csm 27778 ·ih csp 27779 normℎcno 27780 −ℎ cmv 27782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-hfvadd 27857 ax-hv0cl 27860 ax-hfvmul 27862 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-hnorm 27825 df-hvsub 27828 |
This theorem is referenced by: polid 28016 |
Copyright terms: Public domain | W3C validator |