![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > quoremnn0 | Structured version Visualization version GIF version |
Description: Quotient and remainder of a nonnegative integer divided by a positive integer. (Contributed by NM, 14-Aug-2008.) |
Ref | Expression |
---|---|
quorem.1 | ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) |
quorem.2 | ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) |
Ref | Expression |
---|---|
quoremnn0 | ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quorem.1 | . . 3 ⊢ 𝑄 = (⌊‘(𝐴 / 𝐵)) | |
2 | fldivnn0 12623 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0) | |
3 | 1, 2 | syl5eqel 2705 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0) |
4 | nn0z 11400 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ) | |
5 | quorem.2 | . . . 4 ⊢ 𝑅 = (𝐴 − (𝐵 · 𝑄)) | |
6 | 1, 5 | quoremz 12654 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
7 | 4, 6 | sylan 488 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
8 | simpl 473 | . . . . . 6 ⊢ ((𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℤ) → 𝑄 ∈ ℕ0) | |
9 | 8 | anim1i 592 | . . . . 5 ⊢ (((𝑄 ∈ ℕ0 ∧ 𝑄 ∈ ℤ) ∧ 𝑅 ∈ ℕ0) → (𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0)) |
10 | 9 | anasss 679 | . . . 4 ⊢ ((𝑄 ∈ ℕ0 ∧ (𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0)) → (𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0)) |
11 | 10 | anim1i 592 | . . 3 ⊢ (((𝑄 ∈ ℕ0 ∧ (𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0)) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅))) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
12 | 11 | anasss 679 | . 2 ⊢ ((𝑄 ∈ ℕ0 ∧ ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
13 | 3, 7, 12 | syl2anc 693 | 1 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0 ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵 ∧ 𝐴 = ((𝐵 · 𝑄) + 𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 + caddc 9939 · cmul 9941 < clt 10074 − cmin 10266 / cdiv 10684 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ⌊cfl 12591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fl 12593 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |