MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremnn0ALT Structured version   Visualization version   GIF version

Theorem quoremnn0ALT 12656
Description: Alternate proof of quoremnn0 12655 not using quoremz 12654. TODO - Keep either quoremnn0ALT 12656 (if we don't keep quoremz 12654) or quoremnn0 12655. (Contributed by NM, 14-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremnn0ALT ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremnn0ALT
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 fldivnn0 12623 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℕ0)
31, 2syl5eqel 2705 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℕ0)
4 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
5 nnnn0 11299 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
65adantl 482 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℕ0)
76, 3nn0mulcld 11356 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℕ0)
8 simpl 473 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℕ0)
93nn0cnd 11353 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
10 nncn 11028 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1110adantl 482 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
12 nnne0 11053 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
1312adantl 482 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ≠ 0)
149, 11, 13divcan3d 10806 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
15 nn0nndivcl 11362 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
16 flle 12600 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
1715, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17syl5eqbr 4688 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1914, 18eqbrtrd 4675 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
207nn0red 11352 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
21 nn0re 11301 . . . . . . 7 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
2221adantr 481 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
23 nnre 11027 . . . . . . 7 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2423adantl 482 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
25 nngt0 11049 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2625adantl 482 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 0 < 𝐵)
27 lediv1 10888 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2820, 22, 24, 26, 27syl112anc 1330 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2919, 28mpbird 247 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
30 nn0sub2 11438 . . . 4 (((𝐵 · 𝑄) ∈ ℕ0𝐴 ∈ ℕ0 ∧ (𝐵 · 𝑄) ≤ 𝐴) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
317, 8, 29, 30syl3anc 1326 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
324, 31syl5eqel 2705 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
331oveq2i 6661 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
34 fraclt1 12603 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3515, 34syl 17 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3633, 35syl5eqbr 4688 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
374oveq1i 6660 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
38 nn0cn 11302 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
3938adantr 481 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
407nn0cnd 11353 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4110, 12jca 554 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4241adantl 482 . . . . . . . 8 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
43 divsubdir 10721 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4439, 40, 42, 43syl3anc 1326 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4514oveq2d 6666 . . . . . . 7 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4644, 45eqtrd 2656 . . . . . 6 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4737, 46syl5eq 2668 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4810, 12dividd 10799 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
4948adantl 482 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5036, 47, 493brtr4d 4685 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5132nn0red 11352 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
52 ltdiv1 10887 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5351, 24, 24, 26, 52syl112anc 1330 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5450, 53mpbird 247 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝑅 < 𝐵)
554oveq2i 6661 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5640, 39pncan3d 10395 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5755, 56syl5req 2669 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5854, 57jca 554 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
593, 32, 58jca31 557 1 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ) → ((𝑄 ∈ ℕ0𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266   / cdiv 10684  cn 11020  0cn0 11292  cfl 12591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator