![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reprval | Structured version Visualization version GIF version |
Description: Value of the representations of 𝑀 as the sum of 𝑆 nonnegative integers in a given set 𝐴 (Contributed by Thierry Arnoux, 1-Dec-2021.) |
Ref | Expression |
---|---|
reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
Ref | Expression |
---|---|
reprval | ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-repr 30687 | . . . 4 ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}))) |
3 | oveq2 6658 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (0..^𝑠) = (0..^𝑆)) | |
4 | 3 | oveq2d 6666 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑏 ↑𝑚 (0..^𝑠)) = (𝑏 ↑𝑚 (0..^𝑆))) |
5 | 3 | sumeq1d 14431 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎)) |
6 | 5 | eqeq1d 2624 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚)) |
7 | 4, 6 | rabeqbidv 3195 | . . . . 5 ⊢ (𝑠 = 𝑆 → {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) |
8 | 7 | mpt2eq3dv 6721 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = 𝑆) → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚}) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
10 | reprval.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ ℕ0) | |
11 | nnex 11026 | . . . . . 6 ⊢ ℕ ∈ V | |
12 | 11 | pwex 4848 | . . . . 5 ⊢ 𝒫 ℕ ∈ V |
13 | zex 11386 | . . . . 5 ⊢ ℤ ∈ V | |
14 | 12, 13 | mpt2ex 7247 | . . . 4 ⊢ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚}) ∈ V) |
16 | 2, 9, 10, 15 | fvmptd 6288 | . 2 ⊢ (𝜑 → (repr‘𝑆) = (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚})) |
17 | simprl 794 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑏 = 𝐴) | |
18 | 17 | oveq1d 6665 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (𝑏 ↑𝑚 (0..^𝑆)) = (𝐴 ↑𝑚 (0..^𝑆))) |
19 | simprr 796 | . . . 4 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → 𝑚 = 𝑀) | |
20 | 19 | eqeq2d 2632 | . . 3 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → (Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚 ↔ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀)) |
21 | 18, 20 | rabeqbidv 3195 | . 2 ⊢ ((𝜑 ∧ (𝑏 = 𝐴 ∧ 𝑚 = 𝑀)) → {𝑐 ∈ (𝑏 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑚} = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
22 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ ∈ V) |
23 | reprval.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
24 | 22, 23 | ssexd 4805 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
25 | 24, 23 | elpwd 4167 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 ℕ) |
26 | reprval.m | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
27 | ovex 6678 | . . . 4 ⊢ (𝐴 ↑𝑚 (0..^𝑆)) ∈ V | |
28 | 27 | rabex 4813 | . . 3 ⊢ {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V |
29 | 28 | a1i 11 | . 2 ⊢ (𝜑 → {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀} ∈ V) |
30 | 16, 21, 25, 26, 29 | ovmpt2d 6788 | 1 ⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐‘𝑎) = 𝑀}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ↑𝑚 cmap 7857 0cc0 9936 ℕcn 11020 ℕ0cn0 11292 ℤcz 11377 ..^cfzo 12465 Σcsu 14416 reprcrepr 30686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-neg 10269 df-nn 11021 df-z 11378 df-seq 12802 df-sum 14417 df-repr 30687 |
This theorem is referenced by: repr0 30689 reprf 30690 reprsum 30691 reprsuc 30693 reprfi 30694 reprss 30695 reprinrn 30696 reprlt 30697 reprgt 30699 reprinfz1 30700 reprpmtf1o 30704 reprdifc 30705 breprexplema 30708 |
Copyright terms: Public domain | W3C validator |