| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1843 |
. . 3
⊢
Ⅎ𝑑𝜑 |
| 2 | | nfrab1 3122 |
. . 3
⊢
Ⅎ𝑑{𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
| 3 | | nfcv 2764 |
. . 3
⊢
Ⅎ𝑑∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
| 4 | | reprdifc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 5 | | reprdifc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 6 | 5 | nn0zd 11480 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | | reprdifc.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 8 | 4, 6, 7 | reprval 30688 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 9 | 8 | eleq2d 2687 |
. . . . . . . . 9
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
| 10 | | rabid 3116 |
. . . . . . . . 9
⊢ (𝑑 ∈ {𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 11 | 9, 10 | syl6bb 276 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
| 12 | 11 | anbi1d 741 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))))) |
| 13 | | eldif 3584 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
| 14 | 13 | anbi1i 731 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 15 | | an32 839 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
| 16 | 14, 15 | bitri 264 |
. . . . . . . 8
⊢ ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)))) |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))))) |
| 18 | 12, 17 | bitr4d 271 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
| 19 | | nnex 11026 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ∈
V) |
| 21 | | reprdifc.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 22 | 20, 21 | ssexd 4805 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ V) |
| 23 | | ovexd 6680 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^𝑆) ∈ V) |
| 24 | | elmapg 7870 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 25 | 22, 23, 24 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 26 | 25 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 27 | 4 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
| 28 | 6 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
| 29 | 7 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
| 30 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
| 31 | 27, 28, 29, 30 | reprf 30690 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴) |
| 32 | | ffn 6045 |
. . . . . . . . . . . . 13
⊢ (𝑑:(0..^𝑆)⟶𝐴 → 𝑑 Fn (0..^𝑆)) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆)) |
| 34 | 33 | biantrurd 529 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵))) |
| 35 | | ffnfv 6388 |
. . . . . . . . . . 11
⊢ (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 36 | 34, 35 | syl6rbbr 279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 37 | 26, 36 | bitrd 268 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 38 | 37 | notbid 308 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 39 | | rexnal 2995 |
. . . . . . . 8
⊢
(∃𝑥 ∈
(0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵) |
| 40 | 38, 39 | syl6bbr 278 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 41 | 40 | pm5.32da 673 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
| 42 | 18, 41 | bitr3d 270 |
. . . . 5
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
| 43 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘𝑥) = (𝑑‘𝑥)) |
| 44 | 43 | eleq1d 2686 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑥) ∈ 𝐵 ↔ (𝑑‘𝑥) ∈ 𝐵)) |
| 45 | 44 | notbid 308 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘𝑥) ∈ 𝐵 ↔ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 46 | 45 | elrab 3363 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 47 | 46 | rexbii 3041 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 48 | | r19.42v 3092 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 49 | 47, 48 | bitri 264 |
. . . . 5
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 50 | 42, 49 | syl6bbr 278 |
. . . 4
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
| 51 | | rabid 3116 |
. . . 4
⊢ (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 52 | | eliun 4524 |
. . . 4
⊢ (𝑑 ∈ ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 53 | 50, 51, 52 | 3bitr4g 303 |
. . 3
⊢ (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ 𝑑 ∈ ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
| 54 | 1, 2, 3, 53 | eqrd 3622 |
. 2
⊢ (𝜑 → {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} = ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 55 | 21, 6, 7 | reprval 30688 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 56 | 8, 55 | difeq12d 3729 |
. . 3
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
| 57 | | difrab2 29339 |
. . 3
⊢ ({𝑑 ∈ (𝐴 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
| 58 | 56, 57 | syl6eq 2672 |
. 2
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴 ↑𝑚 (0..^𝑆)) ∖ (𝐵 ↑𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 59 | | reprdifc.c |
. . . 4
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
| 60 | 59 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 61 | 60 | iuneq2d 4547 |
. 2
⊢ (𝜑 → ∪ 𝑥 ∈ (0..^𝑆)𝐶 = ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 62 | 54, 58, 61 | 3eqtr4d 2666 |
1
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪
𝑥 ∈ (0..^𝑆)𝐶) |