Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprlt Structured version   Visualization version   GIF version

Theorem reprlt 30697
Description: There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123 (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprlt.1 (𝜑𝑀 < 𝑆)
Assertion
Ref Expression
reprlt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprlt
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
41, 2, 3reprval 30688 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
52zred 11482 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
65adantr 481 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 ∈ ℝ)
73nn0red 11352 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
87adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑆 ∈ ℝ)
9 fzofi 12773 . . . . . . . . . 10 (0..^𝑆) ∈ Fin
109a1i 11 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ Fin)
11 nnssre 11024 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
1211a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ⊆ ℝ)
131, 12sstrd 3613 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 nnex 11026 . . . . . . . . . . . . . . . 16 ℕ ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ ∈ V)
1716, 1ssexd 4805 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
1817adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝐴 ∈ V)
199elexi 3213 . . . . . . . . . . . . . 14 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐 ∈ (𝐴𝑚 (0..^𝑆)))
22 elmapg 7870 . . . . . . . . . . . . . 14 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 501 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 1325 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 481 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 477 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelrnd 6360 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3604 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
2910, 28fsumrecl 14465 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
30 reprlt.1 . . . . . . . . 9 (𝜑𝑀 < 𝑆)
3130adantr 481 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 < 𝑆)
32 ax-1cn 9994 . . . . . . . . . . . . 13 1 ∈ ℂ
33 fsumconst 14522 . . . . . . . . . . . . 13 (((0..^𝑆) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)1 = ((#‘(0..^𝑆)) · 1))
349, 32, 33mp2an 708 . . . . . . . . . . . 12 Σ𝑎 ∈ (0..^𝑆)1 = ((#‘(0..^𝑆)) · 1)
35 hashcl 13147 . . . . . . . . . . . . . . 15 ((0..^𝑆) ∈ Fin → (#‘(0..^𝑆)) ∈ ℕ0)
369, 35ax-mp 5 . . . . . . . . . . . . . 14 (#‘(0..^𝑆)) ∈ ℕ0
3736nn0cni 11304 . . . . . . . . . . . . 13 (#‘(0..^𝑆)) ∈ ℂ
3837mulid1i 10042 . . . . . . . . . . . 12 ((#‘(0..^𝑆)) · 1) = (#‘(0..^𝑆))
3934, 38eqtri 2644 . . . . . . . . . . 11 Σ𝑎 ∈ (0..^𝑆)1 = (#‘(0..^𝑆))
40 hashfzo0 13217 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (#‘(0..^𝑆)) = 𝑆)
413, 40syl 17 . . . . . . . . . . 11 (𝜑 → (#‘(0..^𝑆)) = 𝑆)
4239, 41syl5eq 2668 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
4342adantr 481 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
44 1red 10055 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ∈ ℝ)
451ad2antrr 762 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
4645, 27sseldd 3604 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
47 nnge1 11046 . . . . . . . . . . 11 ((𝑐𝑎) ∈ ℕ → 1 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ≤ (𝑐𝑎))
4910, 44, 28, 48fsumle 14531 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5043, 49eqbrtrrd 4677 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑆 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
516, 8, 29, 31, 50ltletrd 10197 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
526, 51ltned 10173 . . . . . 6 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → 𝑀 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5352necomd 2849 . . . . 5 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5453neneqd 2799 . . . 4 ((𝜑𝑐 ∈ (𝐴𝑚 (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5554ralrimiva 2966 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
56 rabeq0 3957 . . 3 ({𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5755, 56sylibr 224 . 2 (𝜑 → {𝑐 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
584, 57eqtrd 2656 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574  c0 3915   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075  cn 11020  0cn0 11292  cz 11377  ..^cfzo 12465  #chash 13117  Σcsu 14416  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-repr 30687
This theorem is referenced by:  breprexplemc  30710
  Copyright terms: Public domain W3C validator