Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprval Structured version   Visualization version   Unicode version

Theorem reprval 30688
Description: Value of the representations of  M as the sum of  S nonnegative integers in a given set  A (Contributed by Thierry Arnoux, 1-Dec-2021.)
Hypotheses
Ref Expression
reprval.a  |-  ( ph  ->  A  C_  NN )
reprval.m  |-  ( ph  ->  M  e.  ZZ )
reprval.s  |-  ( ph  ->  S  e.  NN0 )
Assertion
Ref Expression
reprval  |-  ( ph  ->  ( A (repr `  S ) M )  =  { c  e.  ( A  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M } )
Distinct variable groups:    A, c    M, c    S, a, c    ph, c
Allowed substitution hints:    ph( a)    A( a)    M( a)

Proof of Theorem reprval
Dummy variables  b  m  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-repr 30687 . . . 4  |- repr  =  ( s  e.  NN0  |->  ( b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  ( 0..^ s ) )  |  sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m } ) )
21a1i 11 . . 3  |-  ( ph  -> repr  =  ( s  e. 
NN0  |->  ( b  e. 
~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ s ) )  |  sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m } ) ) )
3 oveq2 6658 . . . . . . 7  |-  ( s  =  S  ->  (
0..^ s )  =  ( 0..^ S ) )
43oveq2d 6666 . . . . . 6  |-  ( s  =  S  ->  (
b  ^m  ( 0..^ s ) )  =  ( b  ^m  (
0..^ S ) ) )
53sumeq1d 14431 . . . . . . 7  |-  ( s  =  S  ->  sum_ a  e.  ( 0..^ s ) ( c `  a
)  =  sum_ a  e.  ( 0..^ S ) ( c `  a
) )
65eqeq1d 2624 . . . . . 6  |-  ( s  =  S  ->  ( sum_ a  e.  ( 0..^ s ) ( c `
 a )  =  m  <->  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m ) )
74, 6rabeqbidv 3195 . . . . 5  |-  ( s  =  S  ->  { c  e.  ( b  ^m  ( 0..^ s ) )  |  sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m }  =  { c  e.  ( b  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } )
87mpt2eq3dv 6721 . . . 4  |-  ( s  =  S  ->  (
b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  ( 0..^ s ) )  | 
sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m } )  =  ( b  e. 
~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } ) )
98adantl 482 . . 3  |-  ( (
ph  /\  s  =  S )  ->  (
b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  ( 0..^ s ) )  | 
sum_ a  e.  ( 0..^ s ) ( c `  a )  =  m } )  =  ( b  e. 
~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } ) )
10 reprval.s . . 3  |-  ( ph  ->  S  e.  NN0 )
11 nnex 11026 . . . . . 6  |-  NN  e.  _V
1211pwex 4848 . . . . 5  |-  ~P NN  e.  _V
13 zex 11386 . . . . 5  |-  ZZ  e.  _V
1412, 13mpt2ex 7247 . . . 4  |-  ( b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  ( 0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } )  e.  _V
1514a1i 11 . . 3  |-  ( ph  ->  ( b  e.  ~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } )  e.  _V )
162, 9, 10, 15fvmptd 6288 . 2  |-  ( ph  ->  (repr `  S )  =  ( b  e. 
~P NN ,  m  e.  ZZ  |->  { c  e.  ( b  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m } ) )
17 simprl 794 . . . 4  |-  ( (
ph  /\  ( b  =  A  /\  m  =  M ) )  -> 
b  =  A )
1817oveq1d 6665 . . 3  |-  ( (
ph  /\  ( b  =  A  /\  m  =  M ) )  -> 
( b  ^m  (
0..^ S ) )  =  ( A  ^m  ( 0..^ S ) ) )
19 simprr 796 . . . 4  |-  ( (
ph  /\  ( b  =  A  /\  m  =  M ) )  ->  m  =  M )
2019eqeq2d 2632 . . 3  |-  ( (
ph  /\  ( b  =  A  /\  m  =  M ) )  -> 
( sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m  <->  sum_ a  e.  ( 0..^ S ) ( c `  a
)  =  M ) )
2118, 20rabeqbidv 3195 . 2  |-  ( (
ph  /\  ( b  =  A  /\  m  =  M ) )  ->  { c  e.  ( b  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  m }  =  { c  e.  ( A  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M } )
2211a1i 11 . . . 4  |-  ( ph  ->  NN  e.  _V )
23 reprval.a . . . 4  |-  ( ph  ->  A  C_  NN )
2422, 23ssexd 4805 . . 3  |-  ( ph  ->  A  e.  _V )
2524, 23elpwd 4167 . 2  |-  ( ph  ->  A  e.  ~P NN )
26 reprval.m . 2  |-  ( ph  ->  M  e.  ZZ )
27 ovex 6678 . . . 4  |-  ( A  ^m  ( 0..^ S ) )  e.  _V
2827rabex 4813 . . 3  |-  { c  e.  ( A  ^m  ( 0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M }  e.  _V
2928a1i 11 . 2  |-  ( ph  ->  { c  e.  ( A  ^m  ( 0..^ S ) )  | 
sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M }  e.  _V )
3016, 21, 25, 26, 29ovmpt2d 6788 1  |-  ( ph  ->  ( A (repr `  S ) M )  =  { c  e.  ( A  ^m  (
0..^ S ) )  |  sum_ a  e.  ( 0..^ S ) ( c `  a )  =  M } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   0cc0 9936   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   sum_csu 14416  reprcrepr 30686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-neg 10269  df-nn 11021  df-z 11378  df-seq 12802  df-sum 14417  df-repr 30687
This theorem is referenced by:  repr0  30689  reprf  30690  reprsum  30691  reprsuc  30693  reprfi  30694  reprss  30695  reprinrn  30696  reprlt  30697  reprgt  30699  reprinfz1  30700  reprpmtf1o  30704  reprdifc  30705  breprexplema  30708
  Copyright terms: Public domain W3C validator