![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resv1r | Structured version Visualization version GIF version |
Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
resvbas.1 | ⊢ 𝐻 = (𝐺 ↾v 𝐴) |
resv1r.2 | ⊢ 1 = (1r‘𝐺) |
Ref | Expression |
---|---|
resv1r | ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvbas.1 | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾v 𝐴) | |
2 | eqid 2622 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 1, 2 | resvbas 29832 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐻)) |
4 | 3 | eleq2d 2687 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑒 ∈ (Base‘𝐺) ↔ 𝑒 ∈ (Base‘𝐻))) |
5 | eqid 2622 | . . . . . . . . 9 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
6 | 1, 5 | resvmulr 29835 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (.r‘𝐺) = (.r‘𝐻)) |
7 | 6 | oveqd 6667 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑒(.r‘𝐺)𝑥) = (𝑒(.r‘𝐻)𝑥)) |
8 | 7 | eqeq1d 2624 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑒(.r‘𝐺)𝑥) = 𝑥 ↔ (𝑒(.r‘𝐻)𝑥) = 𝑥)) |
9 | 6 | oveqd 6667 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑥(.r‘𝐺)𝑒) = (𝑥(.r‘𝐻)𝑒)) |
10 | 9 | eqeq1d 2624 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑥(.r‘𝐺)𝑒) = 𝑥 ↔ (𝑥(.r‘𝐻)𝑒) = 𝑥)) |
11 | 8, 10 | anbi12d 747 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
12 | 3, 11 | raleqbidv 3152 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
13 | 4, 12 | anbi12d 747 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
14 | 13 | iotabidv 5872 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
15 | resv1r.2 | . . 3 ⊢ 1 = (1r‘𝐺) | |
16 | 2, 5, 15 | dfur2 18504 | . 2 ⊢ 1 = (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) |
17 | eqid 2622 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
18 | eqid 2622 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
19 | eqid 2622 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
20 | 17, 18, 19 | dfur2 18504 | . 2 ⊢ (1r‘𝐻) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
21 | 14, 16, 20 | 3eqtr4g 2681 | 1 ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ℩cio 5849 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 .rcmulr 15942 1rcur 18501 ↾v cresv 29824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-plusg 15954 df-mulr 15955 df-sca 15957 df-0g 16102 df-mgp 18490 df-ur 18502 df-resv 29825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |