MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimclim Structured version   Visualization version   GIF version

Theorem rlimclim 14277
Description: A sequence on an upper integer set converges in the real sense iff it converges in the integer sense. (Contributed by Mario Carneiro, 16-Sep-2014.)
Hypotheses
Ref Expression
rlimclim.1 𝑍 = (ℤ𝑀)
rlimclim.2 (𝜑𝑀 ∈ ℤ)
rlimclim.3 (𝜑𝐹:𝑍⟶ℂ)
Assertion
Ref Expression
rlimclim (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))

Proof of Theorem rlimclim
Dummy variables 𝑤 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimclim.1 . . 3 𝑍 = (ℤ𝑀)
2 rlimclim.2 . . . 4 (𝜑𝑀 ∈ ℤ)
32adantr 481 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑀 ∈ ℤ)
4 simpr 477 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝐹𝑟 𝐴)
5 rlimclim.3 . . . . 5 (𝜑𝐹:𝑍⟶ℂ)
6 fdm 6051 . . . . 5 (𝐹:𝑍⟶ℂ → dom 𝐹 = 𝑍)
7 eqimss2 3658 . . . . 5 (dom 𝐹 = 𝑍𝑍 ⊆ dom 𝐹)
85, 6, 73syl 18 . . . 4 (𝜑𝑍 ⊆ dom 𝐹)
98adantr 481 . . 3 ((𝜑𝐹𝑟 𝐴) → 𝑍 ⊆ dom 𝐹)
101, 3, 4, 9rlimclim1 14276 . 2 ((𝜑𝐹𝑟 𝐴) → 𝐹𝐴)
11 climcl 14230 . . . 4 (𝐹𝐴𝐴 ∈ ℂ)
1211adantl 482 . . 3 ((𝜑𝐹𝐴) → 𝐴 ∈ ℂ)
132ad2antrr 762 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑀 ∈ ℤ)
14 simpr 477 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
15 eqidd 2623 . . . . . 6 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
16 simplr 792 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → 𝐹𝐴)
171, 13, 14, 15, 16climi2 14242 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
18 uzssz 11707 . . . . . . . . . . . . . 14 (ℤ𝑀) ⊆ ℤ
191, 18eqsstri 3635 . . . . . . . . . . . . 13 𝑍 ⊆ ℤ
20 simplrl 800 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑍)
2119, 20sseldi 3601 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧 ∈ ℤ)
22 simprl 794 . . . . . . . . . . . . 13 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤𝑍)
2319, 22sseldi 3601 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ ℤ)
24 simprr 796 . . . . . . . . . . . 12 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑧𝑤)
25 eluz2 11693 . . . . . . . . . . . 12 (𝑤 ∈ (ℤ𝑧) ↔ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ 𝑧𝑤))
2621, 23, 24, 25syl3anbrc 1246 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → 𝑤 ∈ (ℤ𝑧))
27 simplrr 801 . . . . . . . . . . 11 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)
28 fveq2 6191 . . . . . . . . . . . . . . 15 (𝑘 = 𝑤 → (𝐹𝑘) = (𝐹𝑤))
2928oveq1d 6665 . . . . . . . . . . . . . 14 (𝑘 = 𝑤 → ((𝐹𝑘) − 𝐴) = ((𝐹𝑤) − 𝐴))
3029fveq2d 6195 . . . . . . . . . . . . 13 (𝑘 = 𝑤 → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘((𝐹𝑤) − 𝐴)))
3130breq1d 4663 . . . . . . . . . . . 12 (𝑘 = 𝑤 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑦 ↔ (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3231rspcv 3305 . . . . . . . . . . 11 (𝑤 ∈ (ℤ𝑧) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3326, 27, 32sylc 65 . . . . . . . . . 10 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ (𝑤𝑍𝑧𝑤)) → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)
3433expr 643 . . . . . . . . 9 (((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) ∧ 𝑤𝑍) → (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3534ralrimiva 2966 . . . . . . . 8 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ (𝑧𝑍 ∧ ∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦)) → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
3635expr 643 . . . . . . 7 ((((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) ∧ 𝑧𝑍) → (∀𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
3736reximdva 3017 . . . . . 6 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
38 zssre 11384 . . . . . . . 8 ℤ ⊆ ℝ
3919, 38sstri 3612 . . . . . . 7 𝑍 ⊆ ℝ
40 ssrexv 3667 . . . . . . 7 (𝑍 ⊆ ℝ → (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4139, 40ax-mp 5 . . . . . 6 (∃𝑧𝑍𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4237, 41syl6 35 . . . . 5 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → (∃𝑧𝑍𝑘 ∈ (ℤ𝑧)(abs‘((𝐹𝑘) − 𝐴)) < 𝑦 → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦)))
4317, 42mpd 15 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
4443ralrimiva 2966 . . 3 ((𝜑𝐹𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))
455adantr 481 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℂ)
4639a1i 11 . . . 4 ((𝜑𝐹𝐴) → 𝑍 ⊆ ℝ)
47 eqidd 2623 . . . 4 (((𝜑𝐹𝐴) ∧ 𝑤𝑍) → (𝐹𝑤) = (𝐹𝑤))
4845, 46, 47rlim 14226 . . 3 ((𝜑𝐹𝐴) → (𝐹𝑟 𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤𝑍 (𝑧𝑤 → (abs‘((𝐹𝑤) − 𝐴)) < 𝑦))))
4912, 44, 48mpbir2and 957 . 2 ((𝜑𝐹𝐴) → 𝐹𝑟 𝐴)
5010, 49impbida 877 1 (𝜑 → (𝐹𝑟 𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935   < clt 10074  cle 10075  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215  𝑟 crli 14216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fl 12593  df-clim 14219  df-rlim 14220
This theorem is referenced by:  climmpt2  14304  climrecl  14314  climge0  14315  caurcvg  14407  caucvg  14409  climfsum  14552  divcnv  14585  dfef2  24697
  Copyright terms: Public domain W3C validator