![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrexthaus | Structured version Visualization version GIF version |
Description: The topology of an extension of ℝ is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018.) |
Ref | Expression |
---|---|
rrexthaus.1 | ⊢ 𝐾 = (TopOpen‘𝑅) |
Ref | Expression |
---|---|
rrexthaus | ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg 30045 | . . . 4 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ NrmRing) | |
2 | nrgngp 22466 | . . . 4 ⊢ (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp) | |
3 | ngpxms 22405 | . . . 4 ⊢ (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝑅 ∈ ℝExt → 𝑅 ∈ ∞MetSp) |
5 | rrexthaus.1 | . . . 4 ⊢ 𝐾 = (TopOpen‘𝑅) | |
6 | eqid 2622 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | eqid 2622 | . . . 4 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
8 | 5, 6, 7 | xmstopn 22256 | . . 3 ⊢ (𝑅 ∈ ∞MetSp → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝑅 ∈ ℝExt → 𝐾 = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))) |
10 | 6, 7 | xmsxmet 22261 | . . 3 ⊢ (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅))) |
11 | eqid 2622 | . . . 4 ⊢ (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) = (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) | |
12 | 11 | methaus 22325 | . . 3 ⊢ (((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (∞Met‘(Base‘𝑅)) → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus) |
13 | 4, 10, 12 | 3syl 18 | . 2 ⊢ (𝑅 ∈ ℝExt → (MetOpen‘((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) ∈ Haus) |
14 | 9, 13 | eqeltrd 2701 | 1 ⊢ (𝑅 ∈ ℝExt → 𝐾 ∈ Haus) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 × cxp 5112 ↾ cres 5116 ‘cfv 5888 Basecbs 15857 distcds 15950 TopOpenctopn 16082 ∞Metcxmt 19731 MetOpencmopn 19736 Hauscha 21112 ∞MetSpcxme 22122 NrmGrpcngp 22382 NrmRingcnrg 22384 ℝExt crrext 30038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-haus 21119 df-xms 22125 df-ms 22126 df-ngp 22388 df-nrg 22390 df-rrext 30043 |
This theorem is referenced by: rrhqima 30058 |
Copyright terms: Public domain | W3C validator |