Step | Hyp | Ref
| Expression |
1 | | methaus.1 |
. . 3
⊢ 𝐽 = (MetOpen‘𝐷) |
2 | 1 | mopnex 22324 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
3 | | metxmet 22139 |
. . . . . . . . . 10
⊢ (𝑑 ∈ (Met‘𝑋) → 𝑑 ∈ (∞Met‘𝑋)) |
4 | 3 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 𝑑 ∈ (∞Met‘𝑋)) |
5 | | simplrl 800 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ 𝑋) |
6 | | metcl 22137 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝑑𝑦) ∈ ℝ) |
7 | 6 | 3expb 1266 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝑑𝑦) ∈ ℝ) |
8 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑥𝑑𝑦) ∈ ℝ) |
9 | | metgt0 22164 |
. . . . . . . . . . . . . 14
⊢ ((𝑑 ∈ (Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥 ≠ 𝑦 ↔ 0 < (𝑥𝑑𝑦))) |
10 | 9 | 3expb 1266 |
. . . . . . . . . . . . 13
⊢ ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 ≠ 𝑦 ↔ 0 < (𝑥𝑑𝑦))) |
11 | 10 | biimpa 501 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 0 < (𝑥𝑑𝑦)) |
12 | 8, 11 | elrpd 11869 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑥𝑑𝑦) ∈
ℝ+) |
13 | 12 | rphalfcld 11884 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → ((𝑥𝑑𝑦) / 2) ∈
ℝ+) |
14 | 13 | rpxrd 11873 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → ((𝑥𝑑𝑦) / 2) ∈
ℝ*) |
15 | | eqid 2622 |
. . . . . . . . . 10
⊢
(MetOpen‘𝑑) =
(MetOpen‘𝑑) |
16 | 15 | blopn 22305 |
. . . . . . . . 9
⊢ ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) →
(𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑)) |
17 | 4, 5, 14, 16 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑)) |
18 | | simplrr 801 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ 𝑋) |
19 | 15 | blopn 22305 |
. . . . . . . . 9
⊢ ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ*) →
(𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑)) |
20 | 4, 18, 14, 19 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑)) |
21 | | blcntr 22218 |
. . . . . . . . 9
⊢ ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) →
𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))) |
22 | 4, 5, 13, 21 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2))) |
23 | | blcntr 22218 |
. . . . . . . . 9
⊢ ((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ+) →
𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) |
24 | 4, 18, 13, 23 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) |
25 | 13 | rpred 11872 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → ((𝑥𝑑𝑦) / 2) ∈ ℝ) |
26 | | rexadd 12063 |
. . . . . . . . . . . 12
⊢ ((((𝑥𝑑𝑦) / 2) ∈ ℝ ∧ ((𝑥𝑑𝑦) / 2) ∈ ℝ) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2))) |
27 | 25, 25, 26 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2))) |
28 | 8 | recnd 10068 |
. . . . . . . . . . . 12
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑥𝑑𝑦) ∈ ℂ) |
29 | 28 | 2halvesd 11278 |
. . . . . . . . . . 11
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (((𝑥𝑑𝑦) / 2) + ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦)) |
30 | 27, 29 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) = (𝑥𝑑𝑦)) |
31 | 8 | leidd 10594 |
. . . . . . . . . 10
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (𝑥𝑑𝑦) ≤ (𝑥𝑑𝑦)) |
32 | 30, 31 | eqbrtrd 4675 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → (((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦)) |
33 | | bldisj 22203 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧
((𝑥𝑑𝑦) / 2) ∈ ℝ* ∧
(((𝑥𝑑𝑦) / 2) +𝑒 ((𝑥𝑑𝑦) / 2)) ≤ (𝑥𝑑𝑦))) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅) |
34 | 4, 5, 18, 14, 14, 32, 33 | syl33anc 1341 |
. . . . . . . 8
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅) |
35 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑥 ∈ 𝑚 ↔ 𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)))) |
36 | | ineq1 3807 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑚 ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛)) |
37 | 36 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑚 ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅)) |
38 | 35, 37 | 3anbi13d 1401 |
. . . . . . . . 9
⊢ (𝑚 = (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ 𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅))) |
39 | | eleq2 2690 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (𝑦 ∈ 𝑛 ↔ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))) |
40 | | ineq2 3808 |
. . . . . . . . . . 11
⊢ (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)))) |
41 | 40 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅ ↔ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) |
42 | 39, 41 | 3anbi23d 1402 |
. . . . . . . . 9
⊢ (𝑛 = (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) → ((𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ 𝑛 ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ 𝑛) = ∅) ↔ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅))) |
43 | 38, 42 | rspc2ev 3324 |
. . . . . . . 8
⊢ (((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∈ (MetOpen‘𝑑) ∧ (𝑥 ∈ (𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ 𝑦 ∈ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∧ ((𝑥(ball‘𝑑)((𝑥𝑑𝑦) / 2)) ∩ (𝑦(ball‘𝑑)((𝑥𝑑𝑦) / 2))) = ∅)) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
44 | 17, 20, 22, 24, 34, 43 | syl113anc 1338 |
. . . . . . 7
⊢ (((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) ∧ 𝑥 ≠ 𝑦) → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)) |
45 | 44 | ex 450 |
. . . . . 6
⊢ ((𝑑 ∈ (Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
46 | 45 | ralrimivva 2971 |
. . . . 5
⊢ (𝑑 ∈ (Met‘𝑋) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅))) |
47 | 15 | mopntopon 22244 |
. . . . . 6
⊢ (𝑑 ∈ (∞Met‘𝑋) → (MetOpen‘𝑑) ∈ (TopOn‘𝑋)) |
48 | | ishaus2 21155 |
. . . . . 6
⊢
((MetOpen‘𝑑)
∈ (TopOn‘𝑋)
→ ((MetOpen‘𝑑)
∈ Haus ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
49 | 3, 47, 48 | 3syl 18 |
. . . . 5
⊢ (𝑑 ∈ (Met‘𝑋) → ((MetOpen‘𝑑) ∈ Haus ↔
∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥 ≠ 𝑦 → ∃𝑚 ∈ (MetOpen‘𝑑)∃𝑛 ∈ (MetOpen‘𝑑)(𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛 ∧ (𝑚 ∩ 𝑛) = ∅)))) |
50 | 46, 49 | mpbird 247 |
. . . 4
⊢ (𝑑 ∈ (Met‘𝑋) → (MetOpen‘𝑑) ∈ Haus) |
51 | | eleq1 2689 |
. . . 4
⊢ (𝐽 = (MetOpen‘𝑑) → (𝐽 ∈ Haus ↔ (MetOpen‘𝑑) ∈ Haus)) |
52 | 50, 51 | syl5ibrcom 237 |
. . 3
⊢ (𝑑 ∈ (Met‘𝑋) → (𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus)) |
53 | 52 | rexlimiv 3027 |
. 2
⊢
(∃𝑑 ∈
(Met‘𝑋)𝐽 = (MetOpen‘𝑑) → 𝐽 ∈ Haus) |
54 | 2, 53 | syl 17 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Haus) |