| Step | Hyp | Ref
| Expression |
| 1 | | seqfveq2.3 |
. . 3
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐾)) |
| 2 | | eluzfz2 12349 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → 𝑁 ∈ (𝐾...𝑁)) |
| 3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑁 ∈ (𝐾...𝑁)) |
| 4 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝐾 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝐾 ∈ (𝐾...𝑁))) |
| 5 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝐾)) |
| 6 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝐾)) |
| 7 | 5, 6 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝐾 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))) |
| 8 | 4, 7 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝐾 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))) |
| 9 | 8 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝐾 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))))) |
| 10 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑛 ∈ (𝐾...𝑁))) |
| 11 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑛)) |
| 12 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑛)) |
| 13 | 11, 12 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))) |
| 14 | 10, 13 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))) |
| 15 | 14 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))))) |
| 16 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝐾...𝑁) ↔ (𝑛 + 1) ∈ (𝐾...𝑁))) |
| 17 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘(𝑛 + 1))) |
| 18 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))) |
| 19 | 17, 18 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))) |
| 20 | 16, 19 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))) |
| 21 | 20 | imbi2d 330 |
. . . 4
⊢ (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))) |
| 22 | | eleq1 2689 |
. . . . . 6
⊢ (𝑥 = 𝑁 → (𝑥 ∈ (𝐾...𝑁) ↔ 𝑁 ∈ (𝐾...𝑁))) |
| 23 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝑀( + , 𝐹)‘𝑁)) |
| 24 | | fveq2 6191 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (seq𝐾( + , 𝐺)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑁)) |
| 25 | 23, 24 | eqeq12d 2637 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥) ↔ (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))) |
| 26 | 22, 25 | imbi12d 334 |
. . . . 5
⊢ (𝑥 = 𝑁 → ((𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥)) ↔ (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))) |
| 27 | 26 | imbi2d 330 |
. . . 4
⊢ (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑥) = (seq𝐾( + , 𝐺)‘𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))))) |
| 28 | | seqfveq2.2 |
. . . . . . 7
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (𝐺‘𝐾)) |
| 29 | | seqfveq2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 30 | | eluzelz 11697 |
. . . . . . . . 9
⊢ (𝐾 ∈
(ℤ≥‘𝑀) → 𝐾 ∈ ℤ) |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 32 | | seq1 12814 |
. . . . . . . 8
⊢ (𝐾 ∈ ℤ → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺‘𝐾)) |
| 33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (seq𝐾( + , 𝐺)‘𝐾) = (𝐺‘𝐾)) |
| 34 | 28, 33 | eqtr4d 2659 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)) |
| 35 | 34 | a1d 25 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾))) |
| 36 | 35 | a1i 11 |
. . . 4
⊢ (𝐾 ∈ ℤ → (𝜑 → (𝐾 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝐾) = (seq𝐾( + , 𝐺)‘𝐾)))) |
| 37 | | peano2fzr 12354 |
. . . . . . . . . 10
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (𝐾...𝑁)) |
| 38 | 37 | adantl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (𝐾...𝑁)) |
| 39 | 38 | expr 643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑛 ∈ (𝐾...𝑁))) |
| 40 | 39 | imim1d 82 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)))) |
| 41 | | oveq1 6657 |
. . . . . . . . . 10
⊢
((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 42 | | simpl 473 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁)) → 𝑛 ∈ (ℤ≥‘𝐾)) |
| 43 | | uztrn 11704 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈
(ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 44 | 42, 29, 43 | syl2anr 495 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 45 | | seqp1 12816 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 47 | | seqp1 12816 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 48 | 47 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 49 | | eluzp1p1 11713 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 50 | 49 | ad2antrl 764 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1))) |
| 51 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
| 52 | 51 | ad2antll 765 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → 𝑁 ∈ (ℤ≥‘(𝑛 + 1))) |
| 53 | | elfzuzb 12336 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) ↔ ((𝑛 + 1) ∈
(ℤ≥‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ≥‘(𝑛 + 1)))) |
| 54 | 50, 52, 53 | sylanbrc 698 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝑛 + 1) ∈ ((𝐾 + 1)...𝑁)) |
| 55 | | seqfveq2.4 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ((𝐾 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 56 | 55 | ralrimiva 2966 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 57 | 56 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 58 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 59 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
| 60 | 58, 59 | eqeq12d 2637 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))) |
| 61 | 60 | rspcv 3305 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 + 1) ∈ ((𝐾 + 1)...𝑁) → (∀𝑘 ∈ ((𝐾 + 1)...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1)))) |
| 62 | 54, 57, 61 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (𝐹‘(𝑛 + 1)) = (𝐺‘(𝑛 + 1))) |
| 63 | 62 | oveq2d 6666 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 64 | 48, 63 | eqtr4d 2659 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → (seq𝐾( + , 𝐺)‘(𝑛 + 1)) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 65 | 46, 64 | eqeq12d 2637 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)) ↔ ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))) = ((seq𝐾( + , 𝐺)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 66 | 41, 65 | syl5ibr 236 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝐾) ∧ (𝑛 + 1) ∈ (𝐾...𝑁))) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))) |
| 67 | 66 | expr 643 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → ((seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))) |
| 68 | 67 | a2d 29 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → (((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))) |
| 69 | 40, 68 | syld 47 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝐾)) → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1))))) |
| 70 | 69 | expcom 451 |
. . . . 5
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → (𝜑 → ((𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛)) → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))) |
| 71 | 70 | a2d 29 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝐾) → ((𝜑 → (𝑛 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑛) = (seq𝐾( + , 𝐺)‘𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = (seq𝐾( + , 𝐺)‘(𝑛 + 1)))))) |
| 72 | 9, 15, 21, 27, 36, 71 | uzind4 11746 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝐾) → (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)))) |
| 73 | 1, 72 | mpcom 38 |
. 2
⊢ (𝜑 → (𝑁 ∈ (𝐾...𝑁) → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁))) |
| 74 | 3, 73 | mpd 15 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝐾( + , 𝐺)‘𝑁)) |