Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnmul Structured version   Visualization version   GIF version

Theorem sgnmul 30604
Description: Signum of a product. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnmul ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))

Proof of Theorem sgnmul
StepHypRef Expression
1 remulcl 10021 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
21rexrd 10089 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ*)
3 eqeq1 2626 . 2 ((sgn‘(𝐴 · 𝐵)) = 0 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 0 = ((sgn‘𝐴) · (sgn‘𝐵))))
4 eqeq1 2626 . 2 ((sgn‘(𝐴 · 𝐵)) = 1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = ((sgn‘𝐴) · (sgn‘𝐵))))
5 eqeq1 2626 . 2 ((sgn‘(𝐴 · 𝐵)) = -1 → ((sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = ((sgn‘𝐴) · (sgn‘𝐵))))
6 fveq2 6191 . . . . . . 7 (𝐴 = 0 → (sgn‘𝐴) = (sgn‘0))
7 sgn0 13829 . . . . . . 7 (sgn‘0) = 0
86, 7syl6eq 2672 . . . . . 6 (𝐴 = 0 → (sgn‘𝐴) = 0)
98oveq1d 6665 . . . . 5 (𝐴 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
109adantl 482 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
11 sgnclre 30601 . . . . . . 7 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℝ)
1211recnd 10068 . . . . . 6 (𝐵 ∈ ℝ → (sgn‘𝐵) ∈ ℂ)
1312mul02d 10234 . . . . 5 (𝐵 ∈ ℝ → (0 · (sgn‘𝐵)) = 0)
1413ad3antlr 767 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → (0 · (sgn‘𝐵)) = 0)
1510, 14eqtr2d 2657 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐴 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
16 fveq2 6191 . . . . . . 7 (𝐵 = 0 → (sgn‘𝐵) = (sgn‘0))
1716, 7syl6eq 2672 . . . . . 6 (𝐵 = 0 → (sgn‘𝐵) = 0)
1817oveq2d 6666 . . . . 5 (𝐵 = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
1918adantl 482 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · (sgn‘𝐵)) = ((sgn‘𝐴) · 0))
20 sgnclre 30601 . . . . . . 7 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℝ)
2120recnd 10068 . . . . . 6 (𝐴 ∈ ℝ → (sgn‘𝐴) ∈ ℂ)
2221mul01d 10235 . . . . 5 (𝐴 ∈ ℝ → ((sgn‘𝐴) · 0) = 0)
2322ad3antrrr 766 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → ((sgn‘𝐴) · 0) = 0)
2419, 23eqtr2d 2657 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) ∧ 𝐵 = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
25 simpl 473 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2625recnd 10068 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℂ)
27 simpr 477 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
2827recnd 10068 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℂ)
2926, 28mul0ord 10677 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 0)))
3029biimpa 501 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → (𝐴 = 0 ∨ 𝐵 = 0))
3115, 24, 30mpjaodan 827 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) = 0) → 0 = ((sgn‘𝐴) · (sgn‘𝐵)))
32 simpll 790 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ)
3332rexrd 10089 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℝ*)
34 oveq1 6657 . . . 4 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) · (sgn‘𝐵)) = (0 · (sgn‘𝐵)))
3534eqeq2d 2632 . . 3 ((sgn‘𝐴) = 0 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (0 · (sgn‘𝐵))))
36 oveq1 6657 . . . 4 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (1 · (sgn‘𝐵)))
3736eqeq2d 2632 . . 3 ((sgn‘𝐴) = 1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (1 · (sgn‘𝐵))))
38 oveq1 6657 . . . 4 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) · (sgn‘𝐵)) = (-1 · (sgn‘𝐵)))
3938eqeq2d 2632 . . 3 ((sgn‘𝐴) = -1 → (1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ 1 = (-1 · (sgn‘𝐵))))
40 simpr 477 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
4126adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ∈ ℂ)
4228adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐵 ∈ ℂ)
43 simpr 477 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 0 < (𝐴 · 𝐵))
4443gt0ne0d 10592 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → (𝐴 · 𝐵) ≠ 0)
4541, 42, 44mulne0bad 10682 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 𝐴 ≠ 0)
4645neneqd 2799 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → ¬ 𝐴 = 0)
4746adantr 481 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
4840, 47pm2.21dd 186 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 = 0) → 1 = (0 · (sgn‘𝐵)))
4927ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
5049rexrd 10089 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
51 simpll 790 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
52 0red 10041 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ∈ ℝ)
53 simplll 798 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
54 simpr 477 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐴)
5552, 53, 54ltled 10185 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 ≤ 𝐴)
56 simplr 792 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < (𝐴 · 𝐵))
57 prodgt0 10868 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
5851, 55, 56, 57syl12anc 1324 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 0 < 𝐵)
59 sgnp 13830 . . . . . 6 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (sgn‘𝐵) = 1)
6050, 58, 59syl2anc 693 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (sgn‘𝐵) = 1)
6160oveq2d 6666 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · 1))
62 1t1e1 11175 . . . 4 (1 · 1) = 1
6361, 62syl6req 2673 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 0 < 𝐴) → 1 = (1 · (sgn‘𝐵)))
6427ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
6564rexrd 10089 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
66 simplll 798 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
6766renegcld 10457 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6864renegcld 10457 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → -𝐵 ∈ ℝ)
69 0red 10041 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ∈ ℝ)
70 simpr 477 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 < 0)
7125lt0neg1d 10597 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 0 ↔ 0 < -𝐴))
7271ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐴 < 0 ↔ 0 < -𝐴))
7370, 72mpbid 222 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐴)
7469, 67, 73ltled 10185 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 ≤ -𝐴)
75 simplr 792 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (𝐴 · 𝐵))
7626ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
7728ad2antrr 762 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 ∈ ℂ)
7876, 77mul2negd 10485 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
7975, 78breqtrrd 4681 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < (-𝐴 · -𝐵))
80 prodgt0 10868 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 < (-𝐴 · -𝐵))) → 0 < -𝐵)
8167, 68, 74, 79, 80syl22anc 1327 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 0 < -𝐵)
8227lt0neg1d 10597 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 0 ↔ 0 < -𝐵))
8382ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (𝐵 < 0 ↔ 0 < -𝐵))
8481, 83mpbird 247 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 𝐵 < 0)
85 sgnn 13834 . . . . . 6 ((𝐵 ∈ ℝ*𝐵 < 0) → (sgn‘𝐵) = -1)
8665, 84, 85syl2anc 693 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (sgn‘𝐵) = -1)
8786oveq2d 6666 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · -1))
88 neg1mulneg1e1 11245 . . . 4 (-1 · -1) = 1
8987, 88syl6req 2673 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) ∧ 𝐴 < 0) → 1 = (-1 · (sgn‘𝐵)))
9033, 35, 37, 39, 48, 63, 89sgn3da 30603 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < (𝐴 · 𝐵)) → 1 = ((sgn‘𝐴) · (sgn‘𝐵)))
91 simpll 790 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ)
9291rexrd 10089 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐴 ∈ ℝ*)
9334eqeq2d 2632 . . 3 ((sgn‘𝐴) = 0 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (0 · (sgn‘𝐵))))
9436eqeq2d 2632 . . 3 ((sgn‘𝐴) = 1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (1 · (sgn‘𝐵))))
9538eqeq2d 2632 . . 3 ((sgn‘𝐴) = -1 → (-1 = ((sgn‘𝐴) · (sgn‘𝐵)) ↔ -1 = (-1 · (sgn‘𝐵))))
96 simpr 477 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 = 0)
9726ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ∈ ℂ)
9828ad2antrr 762 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐵 ∈ ℂ)
99 simplr 792 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) < 0)
10099lt0ne0d 10593 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → (𝐴 · 𝐵) ≠ 0)
10197, 98, 100mulne0bad 10682 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → 𝐴 ≠ 0)
102101neneqd 2799 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → ¬ 𝐴 = 0)
10396, 102pm2.21dd 186 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 = 0) → -1 = (0 · (sgn‘𝐵)))
10427ad2antrr 762 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
105104rexrd 10089 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ*)
106 simplr 792 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → 𝐵 ∈ ℝ)
10726, 28mulcomd 10061 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
108107breq1d 4663 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 𝐵) < 0 ↔ (𝐵 · 𝐴) < 0))
109108biimpa 501 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → (𝐵 · 𝐴) < 0)
110106, 91, 109mul2lt0rgt0 11933 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → 𝐵 < 0)
111105, 110, 85syl2anc 693 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (sgn‘𝐵) = -1)
112111oveq2d 6666 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → (1 · (sgn‘𝐵)) = (1 · -1))
113 neg1cn 11124 . . . . 5 -1 ∈ ℂ
114113mulid2i 10043 . . . 4 (1 · -1) = -1
115112, 114syl6req 2673 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 0 < 𝐴) → -1 = (1 · (sgn‘𝐵)))
116106adantr 481 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ)
117116rexrd 10089 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 𝐵 ∈ ℝ*)
118106, 91, 109mul2lt0rlt0 11932 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → 0 < 𝐵)
119117, 118, 59syl2anc 693 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (sgn‘𝐵) = 1)
120119oveq2d 6666 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → (-1 · (sgn‘𝐵)) = (-1 · 1))
121113mulid1i 10042 . . . 4 (-1 · 1) = -1
122120, 121syl6req 2673 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) ∧ 𝐴 < 0) → -1 = (-1 · (sgn‘𝐵)))
12392, 93, 94, 95, 103, 115, 122sgn3da 30603 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 · 𝐵) < 0) → -1 = ((sgn‘𝐴) · (sgn‘𝐵)))
1242, 3, 4, 5, 31, 90, 123sgn3da 30603 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (sgn‘(𝐴 · 𝐵)) = ((sgn‘𝐴) · (sgn‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  *cxr 10073   < clt 10074  cle 10075  -cneg 10267  sgncsgn 13826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-rp 11833  df-sgn 13827
This theorem is referenced by:  sgnmulrp2  30605  sgnmulsgn  30611  sgnmulsgp  30612
  Copyright terms: Public domain W3C validator