Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigaradd Structured version   Visualization version   GIF version

Theorem sigaradd 41055
Description: Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sharhght.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sharhght.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
sharhght.b (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
Assertion
Ref Expression
sigaradd (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigaradd
StepHypRef Expression
1 sharhght.a . . . . . . . 8 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp1d 1073 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
31simp3d 1075 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
4 sharhght.b . . . . . . . 8 (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴𝐷)𝐺(𝐵𝐷)) = 0))
54simpld 475 . . . . . . 7 (𝜑𝐷 ∈ ℂ)
62, 3, 5nnncan1d 10426 . . . . . 6 (𝜑 → ((𝐴𝐶) − (𝐴𝐷)) = (𝐷𝐶))
76oveq2d 6666 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
81simp2d 1074 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
98, 5subcld 10392 . . . . . 6 (𝜑 → (𝐵𝐷) ∈ ℂ)
102, 3subcld 10392 . . . . . 6 (𝜑 → (𝐴𝐶) ∈ ℂ)
112, 5subcld 10392 . . . . . 6 (𝜑 → (𝐴𝐷) ∈ ℂ)
12 sharhght.sigar . . . . . . 7 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
1312sigarms 41045 . . . . . 6 (((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ) → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
149, 10, 11, 13syl3anc 1326 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺((𝐴𝐶) − (𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
157, 14eqtr3d 2658 . . . 4 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))))
1612sigarac 41041 . . . . . . . . 9 (((𝐴𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
1711, 9, 16syl2anc 693 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐴𝐷)))
184simprd 479 . . . . . . . 8 (𝜑 → ((𝐴𝐷)𝐺(𝐵𝐷)) = 0)
1917, 18eqtr3d 2658 . . . . . . 7 (𝜑 → -((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2019negeqd 10275 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = -0)
219, 11jca 554 . . . . . . . 8 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐷) ∈ ℂ))
2212, 21sigarimcd 41051 . . . . . . 7 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) ∈ ℂ)
2322negnegd 10383 . . . . . 6 (𝜑 → --((𝐵𝐷)𝐺(𝐴𝐷)) = ((𝐵𝐷)𝐺(𝐴𝐷)))
24 neg0 10327 . . . . . . 7 -0 = 0
2524a1i 11 . . . . . 6 (𝜑 → -0 = 0)
2620, 23, 253eqtr3d 2664 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐷)) = 0)
2726oveq2d 6666 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − ((𝐵𝐷)𝐺(𝐴𝐷))) = (((𝐵𝐷)𝐺(𝐴𝐶)) − 0))
289, 10jca 554 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ))
2912, 28sigarimcd 41051 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐴𝐶)) ∈ ℂ)
3029subid1d 10381 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐴𝐶)) − 0) = ((𝐵𝐷)𝐺(𝐴𝐶)))
3115, 27, 303eqtrd 2660 . . 3 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
328, 5, 3nnncan2d 10427 . . . 4 (𝜑 → ((𝐵𝐶) − (𝐷𝐶)) = (𝐵𝐷))
3332oveq1d 6665 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = ((𝐵𝐷)𝐺(𝐴𝐶)))
348, 3subcld 10392 . . . 4 (𝜑 → (𝐵𝐶) ∈ ℂ)
355, 3subcld 10392 . . . 4 (𝜑 → (𝐷𝐶) ∈ ℂ)
3612sigarmf 41043 . . . 4 (((𝐵𝐶) ∈ ℂ ∧ (𝐴𝐶) ∈ ℂ ∧ (𝐷𝐶) ∈ ℂ) → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3734, 10, 35, 36syl3anc 1326 . . 3 (𝜑 → (((𝐵𝐶) − (𝐷𝐶))𝐺(𝐴𝐶)) = (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))))
3831, 33, 373eqtr2rd 2663 . 2 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐷)𝐺(𝐷𝐶)))
393, 5subcld 10392 . . . 4 (𝜑 → (𝐶𝐷) ∈ ℂ)
40 1red 10055 . . . . 5 (𝜑 → 1 ∈ ℝ)
4140renegcld 10457 . . . 4 (𝜑 → -1 ∈ ℝ)
4212sigarls 41046 . . . 4 (((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ ∧ -1 ∈ ℝ) → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
439, 39, 41, 42syl3anc 1326 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = (((𝐵𝐷)𝐺(𝐶𝐷)) · -1))
4439mulm1d 10482 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = -(𝐶𝐷))
45 1cnd 10056 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
4645negcld 10379 . . . . . 6 (𝜑 → -1 ∈ ℂ)
4746, 39mulcomd 10061 . . . . 5 (𝜑 → (-1 · (𝐶𝐷)) = ((𝐶𝐷) · -1))
483, 5negsubdi2d 10408 . . . . 5 (𝜑 → -(𝐶𝐷) = (𝐷𝐶))
4944, 47, 483eqtr3d 2664 . . . 4 (𝜑 → ((𝐶𝐷) · -1) = (𝐷𝐶))
5049oveq2d 6666 . . 3 (𝜑 → ((𝐵𝐷)𝐺((𝐶𝐷) · -1)) = ((𝐵𝐷)𝐺(𝐷𝐶)))
519, 39jca 554 . . . . . 6 (𝜑 → ((𝐵𝐷) ∈ ℂ ∧ (𝐶𝐷) ∈ ℂ))
5212, 51sigarimcd 41051 . . . . 5 (𝜑 → ((𝐵𝐷)𝐺(𝐶𝐷)) ∈ ℂ)
5352mulm1d 10482 . . . 4 (𝜑 → (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5452, 46mulcomd 10061 . . . 4 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = (-1 · ((𝐵𝐷)𝐺(𝐶𝐷))))
5512sigarac 41041 . . . . 5 (((𝐶𝐷) ∈ ℂ ∧ (𝐵𝐷) ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5639, 9, 55syl2anc 693 . . . 4 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = -((𝐵𝐷)𝐺(𝐶𝐷)))
5753, 54, 563eqtr4d 2666 . . 3 (𝜑 → (((𝐵𝐷)𝐺(𝐶𝐷)) · -1) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5843, 50, 573eqtr3d 2664 . 2 (𝜑 → ((𝐵𝐷)𝐺(𝐷𝐶)) = ((𝐶𝐷)𝐺(𝐵𝐷)))
5912sigarperm 41049 . . 3 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ) → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
603, 8, 5, 59syl3anc 1326 . 2 (𝜑 → ((𝐶𝐷)𝐺(𝐵𝐷)) = ((𝐵𝐶)𝐺(𝐷𝐶)))
6138, 58, 603eqtrd 2660 1 (𝜑 → (((𝐵𝐶)𝐺(𝐴𝐶)) − ((𝐷𝐶)𝐺(𝐴𝐶))) = ((𝐵𝐶)𝐺(𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  cmpt2 6652  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941  cmin 10266  -cneg 10267  ccj 13836  cim 13838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cevathlem2  41057
  Copyright terms: Public domain W3C validator