MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2 Structured version   Visualization version   GIF version

Theorem summolem2 14447
Description: Lemma for summo 14448. (Contributed by Mario Carneiro, 3-Apr-2014.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
summo.3 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
Assertion
Ref Expression
summolem2 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Distinct variable groups:   𝑓,𝑘,𝑚,𝑛,𝑥,𝑦,𝐴   𝑓,𝐹,𝑘,𝑚,𝑛,𝑥,𝑦   𝑘,𝐺,𝑚,𝑛,𝑥,𝑦   𝜑,𝑘,𝑚,𝑛,𝑦   𝐵,𝑓,𝑚,𝑛,𝑥,𝑦   𝜑,𝑥,𝑓
Allowed substitution hints:   𝐵(𝑘)   𝐺(𝑓)

Proof of Theorem summolem2
Dummy variables 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . 5 (𝑚 = 𝑗 → (ℤ𝑚) = (ℤ𝑗))
21sseq2d 3633 . . . 4 (𝑚 = 𝑗 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴 ⊆ (ℤ𝑗)))
3 seqeq1 12804 . . . . 5 (𝑚 = 𝑗 → seq𝑚( + , 𝐹) = seq𝑗( + , 𝐹))
43breq1d 4663 . . . 4 (𝑚 = 𝑗 → (seq𝑚( + , 𝐹) ⇝ 𝑥 ↔ seq𝑗( + , 𝐹) ⇝ 𝑥))
52, 4anbi12d 747 . . 3 (𝑚 = 𝑗 → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)))
65cbvrexv 3172 . 2 (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ↔ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥))
7 simplrr 801 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ 𝑥)
8 simplrl 800 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ (ℤ𝑗))
9 uzssz 11707 . . . . . . . . . . . . . 14 (ℤ𝑗) ⊆ ℤ
10 zssre 11384 . . . . . . . . . . . . . 14 ℤ ⊆ ℝ
119, 10sstri 3612 . . . . . . . . . . . . 13 (ℤ𝑗) ⊆ ℝ
128, 11syl6ss 3615 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ⊆ ℝ)
13 ltso 10118 . . . . . . . . . . . 12 < Or ℝ
14 soss 5053 . . . . . . . . . . . 12 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
1512, 13, 14mpisyl 21 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → < Or 𝐴)
16 fzfi 12771 . . . . . . . . . . . 12 (1...𝑚) ∈ Fin
17 ovex 6678 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ V
1817f1oen 7976 . . . . . . . . . . . . . 14 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
1918ad2antll 765 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (1...𝑚) ≈ 𝐴)
2019ensymd 8007 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ≈ (1...𝑚))
21 enfii 8177 . . . . . . . . . . . 12 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
2216, 20, 21sylancr 695 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝐴 ∈ Fin)
23 fz1iso 13246 . . . . . . . . . . 11 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
2415, 22, 23syl2anc 693 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → ∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
25 summo.1 . . . . . . . . . . . . 13 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
26 simplll 798 . . . . . . . . . . . . . 14 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝜑)
27 summo.2 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2826, 27sylan 488 . . . . . . . . . . . . 13 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
29 summo.3 . . . . . . . . . . . . 13 𝐺 = (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
30 eqid 2622 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵) = (𝑛 ∈ ℕ ↦ (𝑔𝑛) / 𝑘𝐵)
31 simprll 802 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
32 simpllr 799 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑗 ∈ ℤ)
33 simplrl 800 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑗))
34 simprlr 803 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
35 simprr 796 . . . . . . . . . . . . 13 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))
3625, 28, 29, 30, 31, 32, 33, 34, 35summolem2a 14446 . . . . . . . . . . . 12 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ ((𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) ∧ 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴))) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
3736expr 643 . . . . . . . . . . 11 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3837exlimdv 1861 . . . . . . . . . 10 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → (∃𝑔 𝑔 Isom < , < ((1...(#‘𝐴)), 𝐴) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)))
3924, 38mpd 15 . . . . . . . . 9 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚))
40 climuni 14283 . . . . . . . . 9 ((seq𝑗( + , 𝐹) ⇝ 𝑥 ∧ seq𝑗( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑚)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
417, 39, 40syl2anc 693 . . . . . . . 8 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ (𝑚 ∈ ℕ ∧ 𝑓:(1...𝑚)–1-1-onto𝐴)) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
4241anassrs 680 . . . . . . 7 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝑥 = (seq1( + , 𝐺)‘𝑚))
43 eqeq2 2633 . . . . . . 7 (𝑦 = (seq1( + , 𝐺)‘𝑚) → (𝑥 = 𝑦𝑥 = (seq1( + , 𝐺)‘𝑚)))
4442, 43syl5ibrcom 237 . . . . . 6 (((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑦 = (seq1( + , 𝐺)‘𝑚) → 𝑥 = 𝑦))
4544expimpd 629 . . . . 5 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4645exlimdv 1861 . . . 4 ((((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4746rexlimdva 3031 . . 3 (((𝜑𝑗 ∈ ℤ) ∧ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
4847r19.29an 3077 . 2 ((𝜑 ∧ ∃𝑗 ∈ ℤ (𝐴 ⊆ (ℤ𝑗) ∧ seq𝑗( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
496, 48sylan2b 492 1 ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  csb 3533  wss 3574  ifcif 4086   class class class wbr 4653  cmpt 4729   Or wor 5034  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cen 7952  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   < clt 10074  cn 11020  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801  #chash 13117  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  summo  14448
  Copyright terms: Public domain W3C validator