![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omsf | Structured version Visualization version GIF version |
Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
omsf | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 12256 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 11974 | . . . . 5 ⊢ < Or ℝ* | |
3 | soss 5053 | . . . . 5 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . 4 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → < Or (0[,]+∞)) |
6 | omscl 30357 | . . . . 5 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | |
7 | 6 | 3expa 1265 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
8 | xrge0infss 29525 | . . . 4 ⊢ (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) |
10 | 5, 9 | infcl 8394 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ) ∈ (0[,]+∞)) |
11 | fex 6490 | . . . 4 ⊢ ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄 ∈ 𝑉) → 𝑅 ∈ V) | |
12 | 11 | ancoms 469 | . . 3 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → 𝑅 ∈ V) |
13 | omsval 30355 | . . 3 ⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) |
15 | simpll 790 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑄 ∈ 𝑉) | |
16 | simplr 792 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
17 | simpr 477 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ dom 𝑅) | |
18 | fdm 6051 | . . . . . . . . 9 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
19 | 18 | unieqd 4446 | . . . . . . . 8 ⊢ (𝑅:𝑄⟶(0[,]+∞) → ∪ dom 𝑅 = ∪ 𝑄) |
20 | 19 | pweqd 4163 | . . . . . . 7 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
21 | 20 | ad2antlr 763 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
22 | 17, 21 | eleqtrd 2703 | . . . . 5 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ 𝑄) |
23 | elpwi 4168 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∪ 𝑄 → 𝑎 ⊆ ∪ 𝑄) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ⊆ ∪ 𝑄) |
25 | omsfval 30356 | . . . 4 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | |
26 | 15, 16, 24, 25 | syl3anc 1326 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
27 | 26, 10 | eqeltrd 2701 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) ∈ (0[,]+∞)) |
28 | 10, 14, 27 | fmpt2d 6393 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 {crab 2916 Vcvv 3200 ⊆ wss 3574 𝒫 cpw 4158 ∪ cuni 4436 class class class wbr 4653 ↦ cmpt 4729 Or wor 5034 dom cdm 5114 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ωcom 7065 ≼ cdom 7953 infcinf 8347 0cc0 9936 +∞cpnf 10071 ℝ*cxr 10073 < clt 10074 [,]cicc 12178 Σ*cesum 30089 toOMeascoms 30353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-of 6897 df-om 7066 df-1st 7168 df-2nd 7169 df-supp 7296 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fsupp 8276 df-fi 8317 df-sup 8348 df-inf 8349 df-oi 8415 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-uz 11688 df-q 11789 df-xadd 11947 df-ioo 12179 df-ioc 12180 df-ico 12181 df-icc 12182 df-fz 12327 df-fzo 12466 df-seq 12802 df-hash 13118 df-struct 15859 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-plusg 15954 df-mulr 15955 df-tset 15960 df-ple 15961 df-ds 15964 df-rest 16083 df-topn 16084 df-0g 16102 df-gsum 16103 df-topgen 16104 df-ordt 16161 df-xrs 16162 df-mre 16246 df-mrc 16247 df-acs 16249 df-ps 17200 df-tsr 17201 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-submnd 17336 df-cntz 17750 df-cmn 18195 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-ntr 20824 df-nei 20902 df-cn 21031 df-haus 21119 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 df-tsms 21930 df-esum 30090 df-oms 30354 |
This theorem is referenced by: omssubaddlem 30361 omssubadd 30362 omsmeas 30385 |
Copyright terms: Public domain | W3C validator |