Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erdsze2lem2 Structured version   Visualization version   GIF version

Theorem erdsze2lem2 31186
Description: Lemma for erdsze2 31187. (Contributed by Mario Carneiro, 22-Jan-2015.)
Hypotheses
Ref Expression
erdsze2.r (𝜑𝑅 ∈ ℕ)
erdsze2.s (𝜑𝑆 ∈ ℕ)
erdsze2.f (𝜑𝐹:𝐴1-1→ℝ)
erdsze2.a (𝜑𝐴 ⊆ ℝ)
erdsze2lem.n 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
erdsze2lem.l (𝜑𝑁 < (#‘𝐴))
erdsze2lem.g (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
erdsze2lem.i (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
Assertion
Ref Expression
erdsze2lem2 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐺,𝑠   𝑅,𝑠   𝑆,𝑠   𝑁,𝑠   𝜑,𝑠

Proof of Theorem erdsze2lem2
Dummy variables 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 erdsze2lem.n . . . . 5 𝑁 = ((𝑅 − 1) · (𝑆 − 1))
2 erdsze2.r . . . . . . 7 (𝜑𝑅 ∈ ℕ)
3 nnm1nn0 11334 . . . . . . 7 (𝑅 ∈ ℕ → (𝑅 − 1) ∈ ℕ0)
42, 3syl 17 . . . . . 6 (𝜑 → (𝑅 − 1) ∈ ℕ0)
5 erdsze2.s . . . . . . 7 (𝜑𝑆 ∈ ℕ)
6 nnm1nn0 11334 . . . . . . 7 (𝑆 ∈ ℕ → (𝑆 − 1) ∈ ℕ0)
75, 6syl 17 . . . . . 6 (𝜑 → (𝑆 − 1) ∈ ℕ0)
84, 7nn0mulcld 11356 . . . . 5 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) ∈ ℕ0)
91, 8syl5eqel 2705 . . . 4 (𝜑𝑁 ∈ ℕ0)
10 nn0p1nn 11332 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
119, 10syl 17 . . 3 (𝜑 → (𝑁 + 1) ∈ ℕ)
12 erdsze2.f . . . 4 (𝜑𝐹:𝐴1-1→ℝ)
13 erdsze2lem.g . . . 4 (𝜑𝐺:(1...(𝑁 + 1))–1-1𝐴)
14 f1co 6110 . . . 4 ((𝐹:𝐴1-1→ℝ ∧ 𝐺:(1...(𝑁 + 1))–1-1𝐴) → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
1512, 13, 14syl2anc 693 . . 3 (𝜑 → (𝐹𝐺):(1...(𝑁 + 1))–1-1→ℝ)
169nn0red 11352 . . . . 5 (𝜑𝑁 ∈ ℝ)
1716ltp1d 10954 . . . 4 (𝜑𝑁 < (𝑁 + 1))
181, 17syl5eqbrr 4689 . . 3 (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (𝑁 + 1))
1911, 15, 2, 5, 18erdsze 31184 . 2 (𝜑 → ∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))))
20 selpw 4165 . . . 4 (𝑡 ∈ 𝒫 (1...(𝑁 + 1)) ↔ 𝑡 ⊆ (1...(𝑁 + 1)))
21 imassrn 5477 . . . . . . . 8 (𝐺𝑡) ⊆ ran 𝐺
22 f1f 6101 . . . . . . . . . 10 (𝐺:(1...(𝑁 + 1))–1-1𝐴𝐺:(1...(𝑁 + 1))⟶𝐴)
2313, 22syl 17 . . . . . . . . 9 (𝜑𝐺:(1...(𝑁 + 1))⟶𝐴)
24 frn 6053 . . . . . . . . 9 (𝐺:(1...(𝑁 + 1))⟶𝐴 → ran 𝐺𝐴)
2523, 24syl 17 . . . . . . . 8 (𝜑 → ran 𝐺𝐴)
2621, 25syl5ss 3614 . . . . . . 7 (𝜑 → (𝐺𝑡) ⊆ 𝐴)
27 erdsze2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
28 reex 10027 . . . . . . . . 9 ℝ ∈ V
29 ssexg 4804 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ ℝ ∈ V) → 𝐴 ∈ V)
3027, 28, 29sylancl 694 . . . . . . . 8 (𝜑𝐴 ∈ V)
31 elpw2g 4827 . . . . . . . 8 (𝐴 ∈ V → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3230, 31syl 17 . . . . . . 7 (𝜑 → ((𝐺𝑡) ∈ 𝒫 𝐴 ↔ (𝐺𝑡) ⊆ 𝐴))
3326, 32mpbird 247 . . . . . 6 (𝜑 → (𝐺𝑡) ∈ 𝒫 𝐴)
3433adantr 481 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ 𝒫 𝐴)
35 vex 3203 . . . . . . . . . . . 12 𝑡 ∈ V
3635f1imaen 8018 . . . . . . . . . . 11 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
3713, 36sylan 488 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ≈ 𝑡)
38 fzfid 12772 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ∈ Fin)
39 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ⊆ (1...(𝑁 + 1)))
40 ssfi 8180 . . . . . . . . . . . . 13 (((1...(𝑁 + 1)) ∈ Fin ∧ 𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
4138, 39, 40syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝑡 ∈ Fin)
42 enfii 8177 . . . . . . . . . . . 12 ((𝑡 ∈ Fin ∧ (𝐺𝑡) ≈ 𝑡) → (𝐺𝑡) ∈ Fin)
4341, 37, 42syl2anc 693 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) ∈ Fin)
44 hashen 13135 . . . . . . . . . . 11 (((𝐺𝑡) ∈ Fin ∧ 𝑡 ∈ Fin) → ((#‘(𝐺𝑡)) = (#‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4543, 41, 44syl2anc 693 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((#‘(𝐺𝑡)) = (#‘𝑡) ↔ (𝐺𝑡) ≈ 𝑡))
4637, 45mpbird 247 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (#‘(𝐺𝑡)) = (#‘𝑡))
4746breq2d 4665 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (#‘(𝐺𝑡)) ↔ 𝑅 ≤ (#‘𝑡)))
4847biimprd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑅 ≤ (#‘𝑡) → 𝑅 ≤ (#‘(𝐺𝑡))))
49 erdsze2lem.i . . . . . . . . . . . . . . 15 (𝜑𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5049ad2antrr 762 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺))
5139adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑡 ⊆ (1...(𝑁 + 1)))
52 simprl 794 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥𝑡)
5351, 52sseldd 3604 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑥 ∈ (1...(𝑁 + 1)))
54 simprr 796 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦𝑡)
5551, 54sseldd 3604 . . . . . . . . . . . . . 14 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → 𝑦 ∈ (1...(𝑁 + 1)))
56 isorel 6576 . . . . . . . . . . . . . 14 ((𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺) ∧ (𝑥 ∈ (1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1)))) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5750, 53, 55, 56syl12anc 1324 . . . . . . . . . . . . 13 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 ↔ (𝐺𝑥) < (𝐺𝑦)))
5857biimpd 219 . . . . . . . . . . . 12 (((𝜑𝑡 ⊆ (1...(𝑁 + 1))) ∧ (𝑥𝑡𝑦𝑡)) → (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
5958ralrimivva 2971 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦)))
60 elfznn 12370 . . . . . . . . . . . . . . . 16 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℕ)
6160nnred 11035 . . . . . . . . . . . . . . 15 (𝑡 ∈ (1...(𝑁 + 1)) → 𝑡 ∈ ℝ)
6261ssriv 3607 . . . . . . . . . . . . . 14 (1...(𝑁 + 1)) ⊆ ℝ
6362a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (1...(𝑁 + 1)) ⊆ ℝ)
64 ltso 10118 . . . . . . . . . . . . 13 < Or ℝ
65 soss 5053 . . . . . . . . . . . . 13 ((1...(𝑁 + 1)) ⊆ ℝ → ( < Or ℝ → < Or (1...(𝑁 + 1))))
6663, 64, 65mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or (1...(𝑁 + 1)))
6727adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐴 ⊆ ℝ)
68 soss 5053 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
6967, 64, 68mpisyl 21 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → < Or 𝐴)
7023adantr 481 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
71 soisores 6577 . . . . . . . . . . . 12 ((( < Or (1...(𝑁 + 1)) ∧ < Or 𝐴) ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴𝑡 ⊆ (1...(𝑁 + 1)))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7266, 69, 70, 39, 71syl22anc 1327 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) ↔ ∀𝑥𝑡𝑦𝑡 (𝑥 < 𝑦 → (𝐺𝑥) < (𝐺𝑦))))
7359, 72mpbird 247 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)))
74 isocnv 6580 . . . . . . . . . 10 ((𝐺𝑡) Isom < , < (𝑡, (𝐺𝑡)) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
7573, 74syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡))
76 isotr 6586 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
7776ex 450 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
7875, 77syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
79 resco 5639 . . . . . . . . . . . . 13 ((𝐹𝐺) ↾ 𝑡) = (𝐹 ∘ (𝐺𝑡))
8079coeq1i 5281 . . . . . . . . . . . 12 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡))
81 coass 5654 . . . . . . . . . . . 12 ((𝐹 ∘ (𝐺𝑡)) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
8280, 81eqtri 2644 . . . . . . . . . . 11 (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡)))
83 f1ores 6151 . . . . . . . . . . . . . . 15 ((𝐺:(1...(𝑁 + 1))–1-1𝐴𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
8413, 83sylan 488 . . . . . . . . . . . . . 14 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐺𝑡):𝑡1-1-onto→(𝐺𝑡))
85 f1ococnv2 6163 . . . . . . . . . . . . . 14 ((𝐺𝑡):𝑡1-1-onto→(𝐺𝑡) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8684, 85syl 17 . . . . . . . . . . . . 13 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝐺𝑡) ∘ (𝐺𝑡)) = ( I ↾ (𝐺𝑡)))
8786coeq2d 5284 . . . . . . . . . . . 12 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ∘ ( I ↾ (𝐺𝑡))))
88 coires1 5653 . . . . . . . . . . . 12 (𝐹 ∘ ( I ↾ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡))
8987, 88syl6eq 2672 . . . . . . . . . . 11 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝐹 ∘ ((𝐺𝑡) ∘ (𝐺𝑡))) = (𝐹 ↾ (𝐺𝑡)))
9082, 89syl5eq 2668 . . . . . . . . . 10 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)))
91 isoeq1 6567 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
9290, 91syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
93 imaco 5640 . . . . . . . . . 10 ((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡))
94 isoeq5 6571 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9593, 94ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
9692, 95syl6bb 276 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9778, 96sylibd 229 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
9848, 97anim12d 586 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑅 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
9946breq2d 4665 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (#‘(𝐺𝑡)) ↔ 𝑆 ≤ (#‘𝑡)))
10099biimprd 238 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (𝑆 ≤ (#‘𝑡) → 𝑆 ≤ (#‘(𝐺𝑡))))
101 isotr 6586 . . . . . . . . . 10 (((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)))
102101ex 450 . . . . . . . . 9 ((𝐺𝑡) Isom < , < ((𝐺𝑡), 𝑡) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10375, 102syl 17 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
104 isoeq1 6567 . . . . . . . . . 10 ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) = (𝐹 ↾ (𝐺𝑡)) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
10590, 104syl 17 . . . . . . . . 9 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡))))
106 isoeq5 6571 . . . . . . . . . 10 (((𝐹𝐺) “ 𝑡) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
10793, 106ax-mp 5 . . . . . . . . 9 ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))
108105, 107syl6bb 276 . . . . . . . 8 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((((𝐹𝐺) ↾ 𝑡) ∘ (𝐺𝑡)) Isom < , < ((𝐺𝑡), ((𝐹𝐺) “ 𝑡)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
109103, 108sylibd 229 . . . . . . 7 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)) → (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
110100, 109anim12d 586 . . . . . 6 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → ((𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) → (𝑆 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
11198, 110orim12d 883 . . . . 5 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ((𝑅 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
112 fveq2 6191 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → (#‘𝑠) = (#‘(𝐺𝑡)))
113112breq2d 4665 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑅 ≤ (#‘𝑠) ↔ 𝑅 ≤ (#‘(𝐺𝑡))))
114 reseq2 5391 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)))
115 isoeq1 6567 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
116114, 115syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
117 isoeq4 6570 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
118 imaeq2 5462 . . . . . . . . . 10 (𝑠 = (𝐺𝑡) → (𝐹𝑠) = (𝐹 “ (𝐺𝑡)))
119 isoeq5 6571 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
120118, 119syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
121116, 117, 1203bitrd 294 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
122113, 121anbi12d 747 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑅 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
123112breq2d 4665 . . . . . . . 8 (𝑠 = (𝐺𝑡) → (𝑆 ≤ (#‘𝑠) ↔ 𝑆 ≤ (#‘(𝐺𝑡))))
124 isoeq1 6567 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 ↾ (𝐺𝑡)) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
125114, 124syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠))))
126 isoeq4 6570 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠))))
127 isoeq5 6571 . . . . . . . . . 10 ((𝐹𝑠) = (𝐹 “ (𝐺𝑡)) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
128118, 127syl 17 . . . . . . . . 9 (𝑠 = (𝐺𝑡) → ((𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
129125, 126, 1283bitrd 294 . . . . . . . 8 (𝑠 = (𝐺𝑡) → ((𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)) ↔ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))
130123, 129anbi12d 747 . . . . . . 7 (𝑠 = (𝐺𝑡) → ((𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ↔ (𝑆 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡))))))
131122, 130orbi12d 746 . . . . . 6 (𝑠 = (𝐺𝑡) → (((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))) ↔ ((𝑅 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))))
132131rspcev 3309 . . . . 5 (((𝐺𝑡) ∈ 𝒫 𝐴 ∧ ((𝑅 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))) ∨ (𝑆 ≤ (#‘(𝐺𝑡)) ∧ (𝐹 ↾ (𝐺𝑡)) Isom < , < ((𝐺𝑡), (𝐹 “ (𝐺𝑡)))))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
13334, 111, 132syl6an 568 . . . 4 ((𝜑𝑡 ⊆ (1...(𝑁 + 1))) → (((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13420, 133sylan2b 492 . . 3 ((𝜑𝑡 ∈ 𝒫 (1...(𝑁 + 1))) → (((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
135134rexlimdva 3031 . 2 (𝜑 → (∃𝑡 ∈ 𝒫 (1...(𝑁 + 1))((𝑅 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡))) ∨ (𝑆 ≤ (#‘𝑡) ∧ ((𝐹𝐺) ↾ 𝑡) Isom < , < (𝑡, ((𝐹𝐺) “ 𝑡)))) → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))))))
13619, 135mpd 15 1 (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠))) ∨ (𝑆 ≤ (#‘𝑠) ∧ (𝐹𝑠) Isom < , < (𝑠, (𝐹𝑠)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  𝒫 cpw 4158   class class class wbr 4653   I cid 5023   Or wor 5034  ccnv 5113  ran crn 5115  cres 5116  cima 5117  ccom 5118  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888   Isom wiso 5889  (class class class)co 6650  cen 7952  Fincfn 7955  cr 9935  1c1 9937   + caddc 9939   · cmul 9941   < clt 10074  cle 10075  cmin 10266  cn 11020  0cn0 11292  ...cfz 12326  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118
This theorem is referenced by:  erdsze2  31187
  Copyright terms: Public domain W3C validator