| Step | Hyp | Ref
| Expression |
| 1 | | srgmnd 18509 |
. . . 4
⊢ (𝑅 ∈ SRing → 𝑅 ∈ Mnd) |
| 2 | 1, 1 | jca 554 |
. . 3
⊢ (𝑅 ∈ SRing → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
| 3 | 2 | adantr 481 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd)) |
| 4 | | srglmhm.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝑅) |
| 5 | | srglmhm.t |
. . . . . . 7
⊢ · =
(.r‘𝑅) |
| 6 | 4, 5 | srgcl 18512 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 7 | 6 | 3com23 1271 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 8 | 7 | 3expa 1265 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑥 · 𝑋) ∈ 𝐵) |
| 9 | | eqid 2622 |
. . . 4
⊢ (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) = (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) |
| 10 | 8, 9 | fmptd 6385 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵) |
| 11 | | 3anrot 1043 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 12 | | 3anass 1042 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
| 13 | 11, 12 | bitr3i 266 |
. . . . . . 7
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) |
| 14 | | eqid 2622 |
. . . . . . . 8
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 15 | 4, 14, 5 | srgdir 18517 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
| 16 | 13, 15 | sylan2br 493 |
. . . . . 6
⊢ ((𝑅 ∈ SRing ∧ (𝑋 ∈ 𝐵 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵))) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
| 17 | 16 | anassrs 680 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑎(+g‘𝑅)𝑏) · 𝑋) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
| 18 | 4, 14 | srgacl 18524 |
. . . . . . . 8
⊢ ((𝑅 ∈ SRing ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
| 19 | 18 | 3expb 1266 |
. . . . . . 7
⊢ ((𝑅 ∈ SRing ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
| 20 | 19 | adantlr 751 |
. . . . . 6
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑅)𝑏) ∈ 𝐵) |
| 21 | | oveq1 6657 |
. . . . . . 7
⊢ (𝑥 = (𝑎(+g‘𝑅)𝑏) → (𝑥 · 𝑋) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) |
| 22 | | ovex 6678 |
. . . . . . 7
⊢ ((𝑎(+g‘𝑅)𝑏) · 𝑋) ∈ V |
| 23 | 21, 9, 22 | fvmpt 6282 |
. . . . . 6
⊢ ((𝑎(+g‘𝑅)𝑏) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) |
| 24 | 20, 23 | syl 17 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = ((𝑎(+g‘𝑅)𝑏) · 𝑋)) |
| 25 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 → (𝑥 · 𝑋) = (𝑎 · 𝑋)) |
| 26 | | ovex 6678 |
. . . . . . . 8
⊢ (𝑎 · 𝑋) ∈ V |
| 27 | 25, 9, 26 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎) = (𝑎 · 𝑋)) |
| 28 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑥 = 𝑏 → (𝑥 · 𝑋) = (𝑏 · 𝑋)) |
| 29 | | ovex 6678 |
. . . . . . . 8
⊢ (𝑏 · 𝑋) ∈ V |
| 30 | 28, 9, 29 | fvmpt 6282 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏) = (𝑏 · 𝑋)) |
| 31 | 27, 30 | oveqan12d 6669 |
. . . . . 6
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
| 32 | 31 | adantl 482 |
. . . . 5
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) = ((𝑎 · 𝑋)(+g‘𝑅)(𝑏 · 𝑋))) |
| 33 | 17, 24, 32 | 3eqtr4d 2666 |
. . . 4
⊢ (((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) |
| 34 | 33 | ralrimivva 2971 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏))) |
| 35 | | eqid 2622 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 36 | 4, 35 | srg0cl 18519 |
. . . . . 6
⊢ (𝑅 ∈ SRing →
(0g‘𝑅)
∈ 𝐵) |
| 37 | 36 | adantr 481 |
. . . . 5
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (0g‘𝑅) ∈ 𝐵) |
| 38 | | oveq1 6657 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑅) → (𝑥 · 𝑋) = ((0g‘𝑅) · 𝑋)) |
| 39 | | ovex 6678 |
. . . . . 6
⊢
((0g‘𝑅) · 𝑋) ∈ V |
| 40 | 38, 9, 39 | fvmpt 6282 |
. . . . 5
⊢
((0g‘𝑅) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = ((0g‘𝑅) · 𝑋)) |
| 41 | 37, 40 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = ((0g‘𝑅) · 𝑋)) |
| 42 | 4, 5, 35 | srglz 18527 |
. . . 4
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((0g‘𝑅) · 𝑋) = (0g‘𝑅)) |
| 43 | 41, 42 | eqtrd 2656 |
. . 3
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)) |
| 44 | 10, 34, 43 | 3jca 1242 |
. 2
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅))) |
| 45 | 4, 4, 14, 14, 35, 35 | ismhm 17337 |
. 2
⊢ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅) ↔ ((𝑅 ∈ Mnd ∧ 𝑅 ∈ Mnd) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)):𝐵⟶𝐵 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(𝑎(+g‘𝑅)𝑏)) = (((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑎)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘𝑏)) ∧ ((𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋))‘(0g‘𝑅)) = (0g‘𝑅)))) |
| 46 | 3, 44, 45 | sylanbrc 698 |
1
⊢ ((𝑅 ∈ SRing ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅)) |