MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumrblem Structured version   Visualization version   GIF version

Theorem sumrblem 14442
Description: Lemma for sumrb 14444. (Contributed by Mario Carneiro, 12-Aug-2013.)
Hypotheses
Ref Expression
summo.1 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
summo.2 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
sumrb.3 (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
sumrblem ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝑘,𝑀
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem sumrblem
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 addid2 10219 . . 3 (𝑛 ∈ ℂ → (0 + 𝑛) = 𝑛)
21adantl 482 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ ℂ) → (0 + 𝑛) = 𝑛)
3 0cnd 10033 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 0 ∈ ℂ)
4 sumrb.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
54adantr 481 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ (ℤ𝑀))
6 iftrue 4092 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 𝐵)
76adantl 482 . . . . . . . . 9 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) = 𝐵)
8 summo.2 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
97, 8eqeltrd 2701 . . . . . . . 8 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
109ex 450 . . . . . . 7 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ))
11 iffalse 4095 . . . . . . . 8 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) = 0)
12 0cn 10032 . . . . . . . 8 0 ∈ ℂ
1311, 12syl6eqel 2709 . . . . . . 7 𝑘𝐴 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1410, 13pm2.61d1 171 . . . . . 6 (𝜑 → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
1514adantr 481 . . . . 5 ((𝜑𝑘 ∈ ℤ) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
16 summo.1 . . . . 5 𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))
1715, 16fmptd 6385 . . . 4 (𝜑𝐹:ℤ⟶ℂ)
1817adantr 481 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝐹:ℤ⟶ℂ)
19 eluzelz 11697 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
204, 19syl 17 . . . 4 (𝜑𝑁 ∈ ℤ)
2120adantr 481 . . 3 ((𝜑𝐴 ⊆ (ℤ𝑁)) → 𝑁 ∈ ℤ)
2218, 21ffvelrnd 6360 . 2 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (𝐹𝑁) ∈ ℂ)
23 elfzelz 12342 . . . . 5 (𝑛 ∈ (𝑀...(𝑁 − 1)) → 𝑛 ∈ ℤ)
2423adantl 482 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ ℤ)
25 simplr 792 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ𝑁))
2620zcnd 11483 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726ad2antrr 762 . . . . . . . 8 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑁 ∈ ℂ)
28 ax-1cn 9994 . . . . . . . 8 1 ∈ ℂ
29 npcan 10290 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
3027, 28, 29sylancl 694 . . . . . . 7 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
3130fveq2d 6195 . . . . . 6 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (ℤ‘((𝑁 − 1) + 1)) = (ℤ𝑁))
3225, 31sseqtr4d 3642 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝐴 ⊆ (ℤ‘((𝑁 − 1) + 1)))
33 fznuz 12422 . . . . . 6 (𝑛 ∈ (𝑀...(𝑁 − 1)) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3433adantl 482 . . . . 5 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛 ∈ (ℤ‘((𝑁 − 1) + 1)))
3532, 34ssneldd 3606 . . . 4 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → ¬ 𝑛𝐴)
3624, 35eldifd 3585 . . 3 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → 𝑛 ∈ (ℤ ∖ 𝐴))
37 fveq2 6191 . . . . 5 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
3837eqeq1d 2624 . . . 4 (𝑘 = 𝑛 → ((𝐹𝑘) = 0 ↔ (𝐹𝑛) = 0))
39 eldifi 3732 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → 𝑘 ∈ ℤ)
40 eldifn 3733 . . . . . . . 8 (𝑘 ∈ (ℤ ∖ 𝐴) → ¬ 𝑘𝐴)
4140, 11syl 17 . . . . . . 7 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) = 0)
4241, 12syl6eqel 2709 . . . . . 6 (𝑘 ∈ (ℤ ∖ 𝐴) → if(𝑘𝐴, 𝐵, 0) ∈ ℂ)
4316fvmpt2 6291 . . . . . 6 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 0) ∈ ℂ) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4439, 42, 43syl2anc 693 . . . . 5 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))
4544, 41eqtrd 2656 . . . 4 (𝑘 ∈ (ℤ ∖ 𝐴) → (𝐹𝑘) = 0)
4638, 45vtoclga 3272 . . 3 (𝑛 ∈ (ℤ ∖ 𝐴) → (𝐹𝑛) = 0)
4736, 46syl 17 . 2 (((𝜑𝐴 ⊆ (ℤ𝑁)) ∧ 𝑛 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑛) = 0)
482, 3, 5, 22, 47seqid 12846 1 ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574  ifcif 4086  cmpt 4729  cres 5116  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cz 11377  cuz 11687  ...cfz 12326  seqcseq 12801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-seq 12802
This theorem is referenced by:  sumrb  14444
  Copyright terms: Public domain W3C validator