MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncdadom Structured version   Visualization version   Unicode version

Theorem uncdadom 8993
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.)
Assertion
Ref Expression
uncdadom  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  ~<_  ( A  +c  B ) )

Proof of Theorem uncdadom
StepHypRef Expression
1 0ex 4790 . . . . 5  |-  (/)  e.  _V
2 xpsneng 8045 . . . . 5  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
31, 2mpan2 707 . . . 4  |-  ( A  e.  V  ->  ( A  X.  { (/) } ) 
~~  A )
4 ensym 8005 . . . 4  |-  ( ( A  X.  { (/) } )  ~~  A  ->  A  ~~  ( A  X.  { (/) } ) )
5 endom 7982 . . . 4  |-  ( A 
~~  ( A  X.  { (/) } )  ->  A  ~<_  ( A  X.  { (/) } ) )
63, 4, 53syl 18 . . 3  |-  ( A  e.  V  ->  A  ~<_  ( A  X.  { (/) } ) )
7 1on 7567 . . . . 5  |-  1o  e.  On
8 xpsneng 8045 . . . . 5  |-  ( ( B  e.  W  /\  1o  e.  On )  -> 
( B  X.  { 1o } )  ~~  B
)
97, 8mpan2 707 . . . 4  |-  ( B  e.  W  ->  ( B  X.  { 1o }
)  ~~  B )
10 ensym 8005 . . . 4  |-  ( ( B  X.  { 1o } )  ~~  B  ->  B  ~~  ( B  X.  { 1o }
) )
11 endom 7982 . . . 4  |-  ( B 
~~  ( B  X.  { 1o } )  ->  B  ~<_  ( B  X.  { 1o } ) )
129, 10, 113syl 18 . . 3  |-  ( B  e.  W  ->  B  ~<_  ( B  X.  { 1o } ) )
13 xp01disj 7576 . . . 4  |-  ( ( A  X.  { (/) } )  i^i  ( B  X.  { 1o }
) )  =  (/)
14 undom 8048 . . . 4  |-  ( ( ( A  ~<_  ( A  X.  { (/) } )  /\  B  ~<_  ( B  X.  { 1o }
) )  /\  (
( A  X.  { (/)
} )  i^i  ( B  X.  { 1o }
) )  =  (/) )  ->  ( A  u.  B )  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
1513, 14mpan2 707 . . 3  |-  ( ( A  ~<_  ( A  X.  { (/) } )  /\  B  ~<_  ( B  X.  { 1o } ) )  ->  ( A  u.  B )  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
166, 12, 15syl2an 494 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  ~<_  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o } ) ) )
17 cdaval 8992 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  +c  B
)  =  ( ( A  X.  { (/) } )  u.  ( B  X.  { 1o }
) ) )
1816, 17breqtrrd 4681 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  ~<_  ( A  +c  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   Oncon0 5723  (class class class)co 6650   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    +c ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-cda 8990
This theorem is referenced by:  cdadom3  9010  unnum  9022  ficardun2  9025  pwsdompw  9026  unctb  9027  infunabs  9029  infcda  9030  infdif  9031
  Copyright terms: Public domain W3C validator