MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddi Structured version   Visualization version   Unicode version

Theorem xadddi 12125
Description: Distributive property for extended real addition and multiplication. Like xaddass 12079, this has an unusual domain of correctness due to counterexamples like  ( +oo  x.  (
2  -  1 ) )  = -oo  =/=  ( ( +oo  x.  2 )  -  ( +oo  x.  1 ) )  =  ( +oo  - +oo )  =  0. In this theorem we show that if the multiplier is real then everything works as expected. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddi  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )

Proof of Theorem xadddi
StepHypRef Expression
1 xadddilem 12124 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  <  A )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
2 simpl2 1065 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  B  e.  RR* )
3 simpl3 1066 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  C  e.  RR* )
4 xaddcl 12070 . . . . . 6  |-  ( ( B  e.  RR*  /\  C  e.  RR* )  ->  ( B +e C )  e.  RR* )
52, 3, 4syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  ( B +e C )  e.  RR* )
6 xmul02 12098 . . . . 5  |-  ( ( B +e C )  e.  RR*  ->  ( 0 xe ( B +e C ) )  =  0 )
75, 6syl 17 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe ( B +e C ) )  =  0 )
8 0xr 10086 . . . . 5  |-  0  e.  RR*
9 xaddid1 12072 . . . . 5  |-  ( 0  e.  RR*  ->  ( 0 +e 0 )  =  0 )
108, 9ax-mp 5 . . . 4  |-  ( 0 +e 0 )  =  0
117, 10syl6eqr 2674 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe ( B +e C ) )  =  ( 0 +e 0 ) )
12 simpr 477 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  0  =  A )
1312oveq1d 6665 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe ( B +e C ) )  =  ( A xe ( B +e C ) ) )
14 xmul02 12098 . . . . . 6  |-  ( B  e.  RR*  ->  ( 0 xe B )  =  0 )
152, 14syl 17 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe B )  =  0 )
1612oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe B )  =  ( A xe B ) )
1715, 16eqtr3d 2658 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  0  =  ( A xe B ) )
18 xmul02 12098 . . . . . 6  |-  ( C  e.  RR*  ->  ( 0 xe C )  =  0 )
193, 18syl 17 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe C )  =  0 )
2012oveq1d 6665 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 xe C )  =  ( A xe C ) )
2119, 20eqtr3d 2658 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  0  =  ( A xe C ) )
2217, 21oveq12d 6668 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  (
0 +e 0 )  =  ( ( A xe B ) +e ( A xe C ) ) )
2311, 13, 223eqtr3d 2664 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  0  =  A )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
24 simp1 1061 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR )
2524adantr 481 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  A  e.  RR )
26 rexneg 12042 . . . . . . 7  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
27 renegcl 10344 . . . . . . 7  |-  ( A  e.  RR  ->  -u A  e.  RR )
2826, 27eqeltrd 2701 . . . . . 6  |-  ( A  e.  RR  ->  -e
A  e.  RR )
2925, 28syl 17 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  -e
A  e.  RR )
30 simpl2 1065 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  B  e.  RR* )
31 simpl3 1066 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  C  e.  RR* )
3224rexrd 10089 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  A  e.  RR* )
33 xlt0neg1 12050 . . . . . . 7  |-  ( A  e.  RR*  ->  ( A  <  0  <->  0  <  -e A ) )
3432, 33syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A  <  0  <->  0  <  -e A ) )
3534biimpa 501 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  0  <  -e A )
36 xadddilem 12124 . . . . 5  |-  ( ( (  -e A  e.  RR  /\  B  e.  RR*  /\  C  e. 
RR* )  /\  0  <  -e A )  ->  (  -e
A xe ( B +e C ) )  =  ( (  -e A xe B ) +e (  -e A xe C ) ) )
3729, 30, 31, 35, 36syl31anc 1329 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (  -e A xe ( B +e
C ) )  =  ( (  -e
A xe B ) +e ( 
-e A xe C ) ) )
3832adantr 481 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  A  e.  RR* )
3930, 31, 4syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  ( B +e C )  e.  RR* )
40 xmulneg1 12099 . . . . 5  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  (  -e A xe ( B +e
C ) )  = 
-e ( A xe ( B +e C ) ) )
4138, 39, 40syl2anc 693 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (  -e A xe ( B +e
C ) )  = 
-e ( A xe ( B +e C ) ) )
42 xmulneg1 12099 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e A xe B )  =  -e ( A xe B ) )
4338, 30, 42syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (  -e A xe B )  =  -e ( A xe B ) )
44 xmulneg1 12099 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  (  -e A xe C )  =  -e ( A xe C ) )
4538, 31, 44syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (  -e A xe C )  =  -e ( A xe C ) )
4643, 45oveq12d 6668 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (
(  -e A xe B ) +e (  -e
A xe C ) )  =  ( 
-e ( A xe B ) +e  -e
( A xe C ) ) )
47 xmulcl 12103 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A xe B )  e.  RR* )
4838, 30, 47syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  ( A xe B )  e.  RR* )
49 xmulcl 12103 . . . . . . 7  |-  ( ( A  e.  RR*  /\  C  e.  RR* )  ->  ( A xe C )  e.  RR* )
5038, 31, 49syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  ( A xe C )  e.  RR* )
51 xnegdi 12078 . . . . . 6  |-  ( ( ( A xe B )  e.  RR*  /\  ( A xe C )  e.  RR* )  ->  -e ( ( A xe B ) +e ( A xe C ) )  =  ( 
-e ( A xe B ) +e  -e
( A xe C ) ) )
5248, 50, 51syl2anc 693 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  -e
( ( A xe B ) +e ( A xe C ) )  =  (  -e
( A xe B ) +e  -e ( A xe C ) ) )
5346, 52eqtr4d 2659 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (
(  -e A xe B ) +e (  -e
A xe C ) )  =  -e ( ( A xe B ) +e ( A xe C ) ) )
5437, 41, 533eqtr3d 2664 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  -e
( A xe ( B +e
C ) )  = 
-e ( ( A xe B ) +e ( A xe C ) ) )
55 xmulcl 12103 . . . . 5  |-  ( ( A  e.  RR*  /\  ( B +e C )  e.  RR* )  ->  ( A xe ( B +e C ) )  e.  RR* )
5638, 39, 55syl2anc 693 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  ( A xe ( B +e C ) )  e.  RR* )
57 xaddcl 12070 . . . . 5  |-  ( ( ( A xe B )  e.  RR*  /\  ( A xe C )  e.  RR* )  ->  ( ( A xe B ) +e ( A xe C ) )  e.  RR* )
5848, 50, 57syl2anc 693 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (
( A xe B ) +e
( A xe C ) )  e. 
RR* )
59 xneg11 12046 . . . 4  |-  ( ( ( A xe ( B +e
C ) )  e. 
RR*  /\  ( ( A xe B ) +e ( A xe C ) )  e.  RR* )  ->  (  -e ( A xe ( B +e C ) )  =  -e ( ( A xe B ) +e ( A xe C ) )  <->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) ) )
6056, 58, 59syl2anc 693 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  (  -e ( A xe ( B +e C ) )  =  -e ( ( A xe B ) +e
( A xe C ) )  <->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) ) )
6154, 60mpbid 222 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <  0 )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
62 0re 10040 . . 3  |-  0  e.  RR
63 lttri4 10122 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <  A  \/  0  =  A  \/  A  <  0
) )
6462, 24, 63sylancr 695 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
0  <  A  \/  0  =  A  \/  A  <  0 ) )
651, 23, 61, 64mpjao3dan 1395 1  |-  ( ( A  e.  RR  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( A xe ( B +e C ) )  =  ( ( A xe B ) +e ( A xe C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653  (class class class)co 6650   RRcr 9935   0cc0 9936   RR*cxr 10073    < clt 10074   -ucneg 10267    -ecxne 11943   +ecxad 11944   xecxmu 11945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-xneg 11946  df-xadd 11947  df-xmul 11948
This theorem is referenced by:  xadddir  12126  xadddi2  12127
  Copyright terms: Public domain W3C validator