| Step | Hyp | Ref
| Expression |
| 1 | | xpstopnlem1.j |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 2 | | xpstopnlem1.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 3 | | txtopon 21394 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(∏t‘{〈∅, 𝐽〉}) =
(∏t‘{〈∅, 𝐽〉}) |
| 6 | | 0ex 4790 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
| 7 | 6 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∅ ∈
V) |
| 8 | 5, 7, 1 | pt1hmeo 21609 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) ∈ (𝐽Homeo(∏t‘{〈∅,
𝐽〉}))) |
| 9 | | hmeocn 21563 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) ∈ (𝐽Homeo(∏t‘{〈∅,
𝐽〉})) → (𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) ∈ (𝐽 Cn (∏t‘{〈∅,
𝐽〉}))) |
| 10 | | cntop2 21045 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) ∈ (𝐽 Cn
(∏t‘{〈∅, 𝐽〉})) →
(∏t‘{〈∅, 𝐽〉}) ∈ Top) |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∏t‘{〈∅, 𝐽〉}) ∈ Top) |
| 12 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ (∏t‘{〈∅, 𝐽〉}) = ∪ (∏t‘{〈∅, 𝐽〉}) |
| 13 | 12 | toptopon 20722 |
. . . . . . . . . . 11
⊢
((∏t‘{〈∅, 𝐽〉}) ∈ Top ↔
(∏t‘{〈∅, 𝐽〉}) ∈ (TopOn‘∪ (∏t‘{〈∅, 𝐽〉}))) |
| 14 | 11, 13 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 →
(∏t‘{〈∅, 𝐽〉}) ∈ (TopOn‘∪ (∏t‘{〈∅, 𝐽〉}))) |
| 15 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(∏t‘{〈1𝑜, 𝐾〉}) =
(∏t‘{〈1𝑜, 𝐾〉}) |
| 16 | | 1on 7567 |
. . . . . . . . . . . . . 14
⊢
1𝑜 ∈ On |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1𝑜
∈ On) |
| 18 | 15, 17, 2 | pt1hmeo 21609 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉}) ∈ (𝐾Homeo(∏t‘{〈1𝑜,
𝐾〉}))) |
| 19 | | hmeocn 21563 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉}) ∈ (𝐾Homeo(∏t‘{〈1𝑜,
𝐾〉})) → (𝑧 ∈ 𝑌
↦ {〈1𝑜, 𝑧〉}) ∈ (𝐾 Cn (∏t‘{〈1𝑜,
𝐾〉}))) |
| 20 | | cntop2 21045 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉}) ∈ (𝐾 Cn
(∏t‘{〈1𝑜, 𝐾〉})) →
(∏t‘{〈1𝑜, 𝐾〉}) ∈ Top) |
| 21 | 18, 19, 20 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 →
(∏t‘{〈1𝑜, 𝐾〉}) ∈ Top) |
| 22 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ (∏t‘{〈1𝑜,
𝐾〉}) = ∪ (∏t‘{〈1𝑜,
𝐾〉}) |
| 23 | 22 | toptopon 20722 |
. . . . . . . . . . 11
⊢
((∏t‘{〈1𝑜, 𝐾〉}) ∈ Top ↔
(∏t‘{〈1𝑜, 𝐾〉}) ∈ (TopOn‘∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 24 | 21, 23 | sylib 208 |
. . . . . . . . . 10
⊢ (𝜑 →
(∏t‘{〈1𝑜, 𝐾〉}) ∈ (TopOn‘∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 25 | | txtopon 21394 |
. . . . . . . . . 10
⊢
(((∏t‘{〈∅, 𝐽〉}) ∈ (TopOn‘∪ (∏t‘{〈∅, 𝐽〉})) ∧
(∏t‘{〈1𝑜, 𝐾〉}) ∈ (TopOn‘∪ (∏t‘{〈1𝑜,
𝐾〉}))) →
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})) ∈ (TopOn‘(∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})))) |
| 26 | 14, 24, 25 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 →
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})) ∈ (TopOn‘(∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})))) |
| 27 | | opeq2 4403 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑥 → 〈∅, 𝑧〉 = 〈∅, 𝑥〉) |
| 28 | 27 | sneqd 4189 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑥 → {〈∅, 𝑧〉} = {〈∅, 𝑥〉}) |
| 29 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) = (𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉}) |
| 30 | | snex 4908 |
. . . . . . . . . . . . . . 15
⊢
{〈∅, 𝑥〉} ∈ V |
| 31 | 28, 29, 30 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝑋 → ((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥) = {〈∅, 𝑥〉}) |
| 32 | | opeq2 4403 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 𝑦 → 〈1𝑜, 𝑧〉 =
〈1𝑜, 𝑦〉) |
| 33 | 32 | sneqd 4189 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑦 → {〈1𝑜, 𝑧〉} =
{〈1𝑜, 𝑦〉}) |
| 34 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉}) = (𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉}) |
| 35 | | snex 4908 |
. . . . . . . . . . . . . . 15
⊢
{〈1𝑜, 𝑦〉} ∈ V |
| 36 | 33, 34, 35 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝑌 → ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦) =
{〈1𝑜, 𝑦〉}) |
| 37 | | opeq12 4404 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥) = {〈∅, 𝑥〉} ∧ ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦) =
{〈1𝑜, 𝑦〉}) → 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉 = 〈{〈∅,
𝑥〉},
{〈1𝑜, 𝑦〉}〉) |
| 38 | 31, 36, 37 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉 = 〈{〈∅,
𝑥〉},
{〈1𝑜, 𝑦〉}〉) |
| 39 | 38 | mpt2eq3ia 6720 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) |
| 40 | | toponuni 20719 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 41 | 1, 40 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| 42 | | toponuni 20719 |
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 43 | 2, 42 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 44 | | mpt2eq12 6715 |
. . . . . . . . . . . . 13
⊢ ((𝑋 = ∪
𝐽 ∧ 𝑌 = ∪ 𝐾) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉) = (𝑥 ∈ ∪ 𝐽, 𝑦 ∈ ∪ 𝐾 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉)) |
| 45 | 41, 43, 44 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉) = (𝑥 ∈ ∪ 𝐽, 𝑦 ∈ ∪ 𝐾 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉)) |
| 46 | 39, 45 | syl5eqr 2670 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) = (𝑥 ∈ ∪ 𝐽, 𝑦 ∈ ∪ 𝐾 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉)) |
| 47 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 48 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 49 | 47, 48, 8, 18 | txhmeo 21606 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ ∪ 𝐽, 𝑦 ∈ ∪ 𝐾 ↦ 〈((𝑧 ∈ 𝑋 ↦ {〈∅, 𝑧〉})‘𝑥), ((𝑧 ∈ 𝑌 ↦ {〈1𝑜, 𝑧〉})‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{〈∅,
𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})))) |
| 50 | 46, 49 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{〈∅,
𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})))) |
| 51 | | hmeocn 21563 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{〈∅,
𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{〈∅,
𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})))) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾) Cn
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})))) |
| 53 | | cnf2 21053 |
. . . . . . . . 9
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})) ∈ (TopOn‘(∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) ∧ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾) Cn
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉})))) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉):(𝑋 × 𝑌)⟶(∪
(∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 54 | 4, 26, 52, 53 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉):(𝑋 × 𝑌)⟶(∪
(∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 55 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) |
| 56 | 55 | fmpt2 7237 |
. . . . . . . 8
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑌 〈{〈∅, 𝑥〉}, {〈1𝑜, 𝑦〉}〉 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉):(𝑋 × 𝑌)⟶(∪
(∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 57 | 54, 56 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 〈{〈∅, 𝑥〉}, {〈1𝑜, 𝑦〉}〉 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 58 | 57 | r19.21bi 2932 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 〈{〈∅, 𝑥〉}, {〈1𝑜, 𝑦〉}〉 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 59 | 58 | r19.21bi 2932 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 60 | 59 | anasss 679 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌)) → 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉}))) |
| 61 | | eqidd 2623 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉)) |
| 62 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 63 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
| 64 | 62, 63 | op1std 7178 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 65 | 62, 63 | op2ndd 7179 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 66 | 64, 65 | uneq12d 3768 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((1st ‘𝑧) ∪ (2nd
‘𝑧)) = (𝑥 ∪ 𝑦)) |
| 67 | 66 | mpt2mpt 6752 |
. . . . . 6
⊢ (𝑧 ∈ (∪ (∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})) ↦
((1st ‘𝑧)
∪ (2nd ‘𝑧))) = (𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) |
| 68 | 67 | eqcomi 2631 |
. . . . 5
⊢ (𝑥 ∈ ∪ (∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) = (𝑧 ∈ (∪
(∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})) ↦
((1st ‘𝑧)
∪ (2nd ‘𝑧))) |
| 69 | 68 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) = (𝑧 ∈ (∪
(∏t‘{〈∅, 𝐽〉}) × ∪ (∏t‘{〈1𝑜,
𝐾〉})) ↦
((1st ‘𝑧)
∪ (2nd ‘𝑧)))) |
| 70 | 30, 35 | op1std 7178 |
. . . . . 6
⊢ (𝑧 = 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 → (1st
‘𝑧) = {〈∅,
𝑥〉}) |
| 71 | 30, 35 | op2ndd 7179 |
. . . . . 6
⊢ (𝑧 = 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 → (2nd
‘𝑧) =
{〈1𝑜, 𝑦〉}) |
| 72 | 70, 71 | uneq12d 3768 |
. . . . 5
⊢ (𝑧 = 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 → ((1st
‘𝑧) ∪
(2nd ‘𝑧))
= ({〈∅, 𝑥〉}
∪ {〈1𝑜, 𝑦〉})) |
| 73 | | xpscg 16218 |
. . . . . . 7
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ◡({𝑥} +𝑐 {𝑦}) = {〈∅, 𝑥〉, 〈1𝑜, 𝑦〉}) |
| 74 | 62, 63, 73 | mp2an 708 |
. . . . . 6
⊢ ◡({𝑥} +𝑐 {𝑦}) = {〈∅, 𝑥〉, 〈1𝑜, 𝑦〉} |
| 75 | | df-pr 4180 |
. . . . . 6
⊢
{〈∅, 𝑥〉, 〈1𝑜, 𝑦〉} = ({〈∅, 𝑥〉} ∪
{〈1𝑜, 𝑦〉}) |
| 76 | 74, 75 | eqtri 2644 |
. . . . 5
⊢ ◡({𝑥} +𝑐 {𝑦}) = ({〈∅, 𝑥〉} ∪ {〈1𝑜,
𝑦〉}) |
| 77 | 72, 76 | syl6eqr 2674 |
. . . 4
⊢ (𝑧 = 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉 → ((1st
‘𝑧) ∪
(2nd ‘𝑧))
= ◡({𝑥} +𝑐 {𝑦})) |
| 78 | 60, 61, 69, 77 | fmpt2co 7260 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦}))) |
| 79 | | xpstopnlem1.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ◡({𝑥} +𝑐 {𝑦})) |
| 80 | 78, 79 | syl6reqr 2675 |
. 2
⊢ (𝜑 → 𝐹 = ((𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉))) |
| 81 | | eqid 2622 |
. . . . 5
⊢ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) = ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) |
| 82 | | eqid 2622 |
. . . . 5
⊢ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})) |
| 83 | | eqid 2622 |
. . . . 5
⊢
(∏t‘◡({𝐽} +𝑐 {𝐾})) = (∏t‘◡({𝐽} +𝑐 {𝐾})) |
| 84 | | eqid 2622 |
. . . . 5
⊢
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) =
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{∅})) |
| 85 | | eqid 2622 |
. . . . 5
⊢
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) =
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})) |
| 86 | | eqid 2622 |
. . . . 5
⊢ (𝑥 ∈ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 ∈ ∪
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})) ↦ (𝑥 ∪ 𝑦)) = (𝑥 ∈ ∪
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 ∈ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦
(𝑥 ∪ 𝑦)) |
| 87 | | 2on 7568 |
. . . . . 6
⊢
2𝑜 ∈ On |
| 88 | 87 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2𝑜
∈ On) |
| 89 | | topontop 20718 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 90 | 1, 89 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
| 91 | | topontop 20718 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
| 92 | 2, 91 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Top) |
| 93 | | xpscf 16226 |
. . . . . 6
⊢ (◡({𝐽} +𝑐 {𝐾}):2𝑜⟶Top ↔
(𝐽 ∈ Top ∧ 𝐾 ∈ Top)) |
| 94 | 90, 92, 93 | sylanbrc 698 |
. . . . 5
⊢ (𝜑 → ◡({𝐽} +𝑐 {𝐾}):2𝑜⟶Top) |
| 95 | | df2o3 7573 |
. . . . . . 7
⊢
2𝑜 = {∅,
1𝑜} |
| 96 | | df-pr 4180 |
. . . . . . 7
⊢ {∅,
1𝑜} = ({∅} ∪
{1𝑜}) |
| 97 | 95, 96 | eqtri 2644 |
. . . . . 6
⊢
2𝑜 = ({∅} ∪
{1𝑜}) |
| 98 | 97 | a1i 11 |
. . . . 5
⊢ (𝜑 → 2𝑜 =
({∅} ∪ {1𝑜})) |
| 99 | | 1n0 7575 |
. . . . . . 7
⊢
1𝑜 ≠ ∅ |
| 100 | 99 | necomi 2848 |
. . . . . 6
⊢ ∅
≠ 1𝑜 |
| 101 | | disjsn2 4247 |
. . . . . 6
⊢ (∅
≠ 1𝑜 → ({∅} ∩ {1𝑜}) =
∅) |
| 102 | 100, 101 | mp1i 13 |
. . . . 5
⊢ (𝜑 → ({∅} ∩
{1𝑜}) = ∅) |
| 103 | 81, 82, 83, 84, 85, 86, 88, 94, 98, 102 | ptunhmeo 21611 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ∪
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 ∈ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦
(𝑥 ∪ 𝑦)) ∈ (((∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})))Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
| 104 | | xpscfn 16219 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ◡({𝐽} +𝑐 {𝐾}) Fn
2𝑜) |
| 105 | 1, 2, 104 | syl2anc 693 |
. . . . . . . . 9
⊢ (𝜑 → ◡({𝐽} +𝑐 {𝐾}) Fn
2𝑜) |
| 106 | 6 | prid1 4297 |
. . . . . . . . . 10
⊢ ∅
∈ {∅, 1𝑜} |
| 107 | 106, 95 | eleqtrri 2700 |
. . . . . . . . 9
⊢ ∅
∈ 2𝑜 |
| 108 | | fnressn 6425 |
. . . . . . . . 9
⊢ ((◡({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ ∅
∈ 2𝑜) → (◡({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {〈∅,
(◡({𝐽} +𝑐 {𝐾})‘∅)〉}) |
| 109 | 105, 107,
108 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {〈∅,
(◡({𝐽} +𝑐 {𝐾})‘∅)〉}) |
| 110 | | xpsc0 16220 |
. . . . . . . . . . 11
⊢ (𝐽 ∈ (TopOn‘𝑋) → (◡({𝐽} +𝑐 {𝐾})‘∅) = 𝐽) |
| 111 | 1, 110 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾})‘∅) = 𝐽) |
| 112 | 111 | opeq2d 4409 |
. . . . . . . . 9
⊢ (𝜑 → 〈∅, (◡({𝐽} +𝑐 {𝐾})‘∅)〉 = 〈∅,
𝐽〉) |
| 113 | 112 | sneqd 4189 |
. . . . . . . 8
⊢ (𝜑 → {〈∅, (◡({𝐽} +𝑐 {𝐾})‘∅)〉} = {〈∅,
𝐽〉}) |
| 114 | 109, 113 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {〈∅,
𝐽〉}) |
| 115 | 114 | fveq2d 6195 |
. . . . . 6
⊢ (𝜑 →
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) =
(∏t‘{〈∅, 𝐽〉})) |
| 116 | 115 | unieqd 4446 |
. . . . 5
⊢ (𝜑 → ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})) = ∪ (∏t‘{〈∅, 𝐽〉})) |
| 117 | 16 | elexi 3213 |
. . . . . . . . . . 11
⊢
1𝑜 ∈ V |
| 118 | 117 | prid2 4298 |
. . . . . . . . . 10
⊢
1𝑜 ∈ {∅,
1𝑜} |
| 119 | 118, 95 | eleqtrri 2700 |
. . . . . . . . 9
⊢
1𝑜 ∈ 2𝑜 |
| 120 | | fnressn 6425 |
. . . . . . . . 9
⊢ ((◡({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧
1𝑜 ∈ 2𝑜) → (◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) =
{〈1𝑜, (◡({𝐽} +𝑐 {𝐾})‘1𝑜)〉}) |
| 121 | 105, 119,
120 | sylancl 694 |
. . . . . . . 8
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) =
{〈1𝑜, (◡({𝐽} +𝑐 {𝐾})‘1𝑜)〉}) |
| 122 | | xpsc1 16221 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ (TopOn‘𝑌) → (◡({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾) |
| 123 | 2, 122 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾) |
| 124 | 123 | opeq2d 4409 |
. . . . . . . . 9
⊢ (𝜑 →
〈1𝑜, (◡({𝐽} +𝑐 {𝐾})‘1𝑜)〉 =
〈1𝑜, 𝐾〉) |
| 125 | 124 | sneqd 4189 |
. . . . . . . 8
⊢ (𝜑 →
{〈1𝑜, (◡({𝐽} +𝑐 {𝐾})‘1𝑜)〉} =
{〈1𝑜, 𝐾〉}) |
| 126 | 121, 125 | eqtrd 2656 |
. . . . . . 7
⊢ (𝜑 → (◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) =
{〈1𝑜, 𝐾〉}) |
| 127 | 126 | fveq2d 6195 |
. . . . . 6
⊢ (𝜑 →
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})) =
(∏t‘{〈1𝑜, 𝐾〉})) |
| 128 | 127 | unieqd 4446 |
. . . . 5
⊢ (𝜑 → ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = ∪ (∏t‘{〈1𝑜,
𝐾〉})) |
| 129 | | eqidd 2623 |
. . . . 5
⊢ (𝜑 → (𝑥 ∪ 𝑦) = (𝑥 ∪ 𝑦)) |
| 130 | 116, 128,
129 | mpt2eq123dv 6717 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ∪
(∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 ∈ ∪ (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦
(𝑥 ∪ 𝑦)) = (𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦))) |
| 131 | 115, 127 | oveq12d 6668 |
. . . . 5
⊢ (𝜑 →
((∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅}))
×t (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))) =
((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))) |
| 132 | 131 | oveq1d 6665 |
. . . 4
⊢ (𝜑 →
(((∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾ {∅}))
×t (∏t‘(◡({𝐽} +𝑐 {𝐾}) ↾
{1𝑜})))Homeo(∏t‘◡({𝐽} +𝑐 {𝐾}))) =
(((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
| 133 | 103, 130,
132 | 3eltr3d 2715 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∈
(((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
| 134 | | hmeoco 21575 |
. . 3
⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{〈∅,
𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))) ∧ (𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∈
(((∏t‘{〈∅, 𝐽〉}) ×t
(∏t‘{〈1𝑜, 𝐾〉}))Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) → ((𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
| 135 | 50, 133, 134 | syl2anc 693 |
. 2
⊢ (𝜑 → ((𝑥 ∈ ∪
(∏t‘{〈∅, 𝐽〉}), 𝑦 ∈ ∪
(∏t‘{〈1𝑜, 𝐾〉}) ↦ (𝑥 ∪ 𝑦)) ∘ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈{〈∅, 𝑥〉},
{〈1𝑜, 𝑦〉}〉)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |
| 136 | 80, 135 | eqeltrd 2701 |
1
⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘◡({𝐽} +𝑐 {𝐾})))) |