MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 21612
Description: The function 𝐹 used in xpsval 16232 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 21394 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 693 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 eqid 2622 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
6 0ex 4790 . . . . . . . . . . . . . 14 ∅ ∈ V
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
85, 7, 1pt1hmeo 21609 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
9 hmeocn 21563 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
10 cntop2 21045 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
12 eqid 2622 . . . . . . . . . . . 12 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
1312toptopon 20722 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1411, 13sylib 208 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2622 . . . . . . . . . . . . 13 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
16 1on 7567 . . . . . . . . . . . . . 14 1𝑜 ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1𝑜 ∈ On)
1815, 17, 2pt1hmeo 21609 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})))
19 hmeocn 21563 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})))
20 cntop2 21045 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})) → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
22 eqid 2622 . . . . . . . . . . . 12 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
2322toptopon 20722 . . . . . . . . . . 11 ((∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
2421, 23sylib 208 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
25 txtopon 21394 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
2614, 24, 25syl2anc 693 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
27 opeq2 4403 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2827sneqd 4189 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
29 eqid 2622 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
30 snex 4908 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3128, 29, 30fvmpt 6282 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
32 opeq2 4403 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1𝑜, 𝑧⟩ = ⟨1𝑜, 𝑦⟩)
3332sneqd 4189 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1𝑜, 𝑧⟩} = {⟨1𝑜, 𝑦⟩})
34 eqid 2622 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})
35 snex 4908 . . . . . . . . . . . . . . 15 {⟨1𝑜, 𝑦⟩} ∈ V
3633, 34, 35fvmpt 6282 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩})
37 opeq12 4404 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3831, 36, 37syl2an 494 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3938mpt2eq3ia 6720 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
40 toponuni 20719 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
42 toponuni 20719 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
432, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
44 mpt2eq12 6715 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4541, 43, 44syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4639, 45syl5eqr 2670 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
47 eqid 2622 . . . . . . . . . . . 12 𝐽 = 𝐽
48 eqid 2622 . . . . . . . . . . . 12 𝐾 = 𝐾
4947, 48, 8, 18txhmeo 21606 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5046, 49eqeltrd 2701 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
51 hmeocn 21563 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5250, 51syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
53 cnf2 21053 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
544, 26, 52, 53syl3anc 1326 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
55 eqid 2622 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
5655fmpt2 7237 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5754, 56sylibr 224 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5857r19.21bi 2932 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5958r19.21bi 2932 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
6059anasss 679 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
61 eqidd 2623 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩))
62 vex 3203 . . . . . . . . 9 𝑥 ∈ V
63 vex 3203 . . . . . . . . 9 𝑦 ∈ V
6462, 63op1std 7178 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6562, 63op2ndd 7179 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6664, 65uneq12d 3768 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6766mpt2mpt 6752 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦))
6867eqcomi 2631 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6968a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
7030, 35op1std 7178 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7130, 35op2ndd 7179 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1𝑜, 𝑦⟩})
7270, 71uneq12d 3768 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩}))
73 xpscg 16218 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩})
7462, 63, 73mp2an 708 . . . . . 6 ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}
75 df-pr 4180 . . . . . 6 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7674, 75eqtri 2644 . . . . 5 ({𝑥} +𝑐 {𝑦}) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7772, 76syl6eqr 2674 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({𝑥} +𝑐 {𝑦}))
7860, 61, 69, 77fmpt2co 7260 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
79 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
8078, 79syl6reqr 2675 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)))
81 eqid 2622 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
82 eqid 2622 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
83 eqid 2622 . . . . 5 (∏t({𝐽} +𝑐 {𝐾})) = (∏t({𝐽} +𝑐 {𝐾}))
84 eqid 2622 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
85 eqid 2622 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
86 eqid 2622 . . . . 5 (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦))
87 2on 7568 . . . . . 6 2𝑜 ∈ On
8887a1i 11 . . . . 5 (𝜑 → 2𝑜 ∈ On)
89 topontop 20718 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
901, 89syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
91 topontop 20718 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
922, 91syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
93 xpscf 16226 . . . . . 6 (({𝐽} +𝑐 {𝐾}):2𝑜⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
9490, 92, 93sylanbrc 698 . . . . 5 (𝜑({𝐽} +𝑐 {𝐾}):2𝑜⟶Top)
95 df2o3 7573 . . . . . . 7 2𝑜 = {∅, 1𝑜}
96 df-pr 4180 . . . . . . 7 {∅, 1𝑜} = ({∅} ∪ {1𝑜})
9795, 96eqtri 2644 . . . . . 6 2𝑜 = ({∅} ∪ {1𝑜})
9897a1i 11 . . . . 5 (𝜑 → 2𝑜 = ({∅} ∪ {1𝑜}))
99 1n0 7575 . . . . . . 7 1𝑜 ≠ ∅
10099necomi 2848 . . . . . 6 ∅ ≠ 1𝑜
101 disjsn2 4247 . . . . . 6 (∅ ≠ 1𝑜 → ({∅} ∩ {1𝑜}) = ∅)
102100, 101mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1𝑜}) = ∅)
10381, 82, 83, 84, 85, 86, 88, 94, 98, 102ptunhmeo 21611 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) ∈ (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
104 xpscfn 16219 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1051, 2, 104syl2anc 693 . . . . . . . . 9 (𝜑({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1066prid1 4297 . . . . . . . . . 10 ∅ ∈ {∅, 1𝑜}
107106, 95eleqtrri 2700 . . . . . . . . 9 ∅ ∈ 2𝑜
108 fnressn 6425 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ ∅ ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
109105, 107, 108sylancl 694 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
110 xpsc0 16220 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
1111, 110syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
112111opeq2d 4409 . . . . . . . . 9 (𝜑 → ⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩ = ⟨∅, 𝐽⟩)
113112sneqd 4189 . . . . . . . 8 (𝜑 → {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩} = {⟨∅, 𝐽⟩})
114109, 113eqtrd 2656 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, 𝐽⟩})
115114fveq2d 6195 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
116115unieqd 4446 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
11716elexi 3213 . . . . . . . . . . 11 1𝑜 ∈ V
118117prid2 4298 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
119118, 95eleqtrri 2700 . . . . . . . . 9 1𝑜 ∈ 2𝑜
120 fnressn 6425 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ 1𝑜 ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
121105, 119, 120sylancl 694 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
122 xpsc1 16221 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
1232, 122syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
124123opeq2d 4409 . . . . . . . . 9 (𝜑 → ⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩ = ⟨1𝑜, 𝐾⟩)
125124sneqd 4189 . . . . . . . 8 (𝜑 → {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩} = {⟨1𝑜, 𝐾⟩})
126121, 125eqtrd 2656 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, 𝐾⟩})
127126fveq2d 6195 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
128127unieqd 4446 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
129 eqidd 2623 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
130116, 128, 129mpt2eq123dv 6717 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)))
131115, 127oveq12d 6668 . . . . 5 (𝜑 → ((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))
132131oveq1d 6665 . . . 4 (𝜑 → (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
133103, 130, 1323eltr3d 2715 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
134 hmeoco 21575 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾})))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13550, 133, 134syl2anc 693 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13680, 135eqeltrd 2701 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  cop 4183   cuni 4436  cmpt 4729   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  Oncon0 5723   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1st c1st 7166  2nd c2nd 7167  1𝑜c1o 7553  2𝑜c2o 7554   +𝑐 ccda 8989  tcpt 16099  Topctop 20698  TopOnctopon 20715   Cn ccn 21028   ×t ctx 21363  Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-cda 8990  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-hmeo 21558
This theorem is referenced by:  xpstopnlem2  21614
  Copyright terms: Public domain W3C validator