Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amd_iommu.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3  * Author: Joerg Roedel <[email protected]>
4  * Leo Duran <[email protected]>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  */
19 
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/pci-ats.h>
23 #include <linux/bitmap.h>
24 #include <linux/slab.h>
25 #include <linux/debugfs.h>
26 #include <linux/scatterlist.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/iommu-helper.h>
29 #include <linux/iommu.h>
30 #include <linux/delay.h>
31 #include <linux/amd-iommu.h>
32 #include <linux/notifier.h>
33 #include <linux/export.h>
34 #include <linux/irq.h>
35 #include <linux/msi.h>
36 #include <asm/irq_remapping.h>
37 #include <asm/io_apic.h>
38 #include <asm/apic.h>
39 #include <asm/hw_irq.h>
40 #include <asm/msidef.h>
41 #include <asm/proto.h>
42 #include <asm/iommu.h>
43 #include <asm/gart.h>
44 #include <asm/dma.h>
45 
46 #include "amd_iommu_proto.h"
47 #include "amd_iommu_types.h"
48 #include "irq_remapping.h"
49 
50 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
51 
52 #define LOOP_TIMEOUT 100000
53 
54 /*
55  * This bitmap is used to advertise the page sizes our hardware support
56  * to the IOMMU core, which will then use this information to split
57  * physically contiguous memory regions it is mapping into page sizes
58  * that we support.
59  *
60  * Traditionally the IOMMU core just handed us the mappings directly,
61  * after making sure the size is an order of a 4KiB page and that the
62  * mapping has natural alignment.
63  *
64  * To retain this behavior, we currently advertise that we support
65  * all page sizes that are an order of 4KiB.
66  *
67  * If at some point we'd like to utilize the IOMMU core's new behavior,
68  * we could change this to advertise the real page sizes we support.
69  */
70 #define AMD_IOMMU_PGSIZES (~0xFFFUL)
71 
72 static DEFINE_RWLOCK(amd_iommu_devtable_lock);
73 
74 /* A list of preallocated protection domains */
75 static LIST_HEAD(iommu_pd_list);
76 static DEFINE_SPINLOCK(iommu_pd_list_lock);
77 
78 /* List of all available dev_data structures */
79 static LIST_HEAD(dev_data_list);
80 static DEFINE_SPINLOCK(dev_data_list_lock);
81 
82 LIST_HEAD(ioapic_map);
83 LIST_HEAD(hpet_map);
84 
85 /*
86  * Domain for untranslated devices - only allocated
87  * if iommu=pt passed on kernel cmd line.
88  */
89 static struct protection_domain *pt_domain;
90 
91 static struct iommu_ops amd_iommu_ops;
92 
93 static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
95 
96 static struct dma_map_ops amd_iommu_dma_ops;
97 
98 /*
99  * general struct to manage commands send to an IOMMU
100  */
101 struct iommu_cmd {
102  u32 data[4];
103 };
104 
106 
107 static void update_domain(struct protection_domain *domain);
108 static int __init alloc_passthrough_domain(void);
109 
110 /****************************************************************************
111  *
112  * Helper functions
113  *
114  ****************************************************************************/
115 
116 static struct iommu_dev_data *alloc_dev_data(u16 devid)
117 {
118  struct iommu_dev_data *dev_data;
119  unsigned long flags;
120 
121  dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
122  if (!dev_data)
123  return NULL;
124 
125  dev_data->devid = devid;
126  atomic_set(&dev_data->bind, 0);
127 
128  spin_lock_irqsave(&dev_data_list_lock, flags);
130  spin_unlock_irqrestore(&dev_data_list_lock, flags);
131 
132  return dev_data;
133 }
134 
135 static void free_dev_data(struct iommu_dev_data *dev_data)
136 {
137  unsigned long flags;
138 
139  spin_lock_irqsave(&dev_data_list_lock, flags);
140  list_del(&dev_data->dev_data_list);
141  spin_unlock_irqrestore(&dev_data_list_lock, flags);
142 
143  kfree(dev_data);
144 }
145 
146 static struct iommu_dev_data *search_dev_data(u16 devid)
147 {
148  struct iommu_dev_data *dev_data;
149  unsigned long flags;
150 
151  spin_lock_irqsave(&dev_data_list_lock, flags);
153  if (dev_data->devid == devid)
154  goto out_unlock;
155  }
156 
157  dev_data = NULL;
158 
159 out_unlock:
160  spin_unlock_irqrestore(&dev_data_list_lock, flags);
161 
162  return dev_data;
163 }
164 
165 static struct iommu_dev_data *find_dev_data(u16 devid)
166 {
167  struct iommu_dev_data *dev_data;
168 
169  dev_data = search_dev_data(devid);
170 
171  if (dev_data == NULL)
172  dev_data = alloc_dev_data(devid);
173 
174  return dev_data;
175 }
176 
177 static inline u16 get_device_id(struct device *dev)
178 {
179  struct pci_dev *pdev = to_pci_dev(dev);
180 
181  return calc_devid(pdev->bus->number, pdev->devfn);
182 }
183 
184 static struct iommu_dev_data *get_dev_data(struct device *dev)
185 {
186  return dev->archdata.iommu;
187 }
188 
189 static bool pci_iommuv2_capable(struct pci_dev *pdev)
190 {
191  static const int caps[] = {
195  };
196  int i, pos;
197 
198  for (i = 0; i < 3; ++i) {
199  pos = pci_find_ext_capability(pdev, caps[i]);
200  if (pos == 0)
201  return false;
202  }
203 
204  return true;
205 }
206 
207 static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
208 {
209  struct iommu_dev_data *dev_data;
210 
211  dev_data = get_dev_data(&pdev->dev);
212 
213  return dev_data->errata & (1 << erratum) ? true : false;
214 }
215 
216 /*
217  * In this function the list of preallocated protection domains is traversed to
218  * find the domain for a specific device
219  */
220 static struct dma_ops_domain *find_protection_domain(u16 devid)
221 {
222  struct dma_ops_domain *entry, *ret = NULL;
223  unsigned long flags;
225 
226  if (list_empty(&iommu_pd_list))
227  return NULL;
228 
229  spin_lock_irqsave(&iommu_pd_list_lock, flags);
230 
231  list_for_each_entry(entry, &iommu_pd_list, list) {
232  if (entry->target_dev == devid ||
233  entry->target_dev == alias) {
234  ret = entry;
235  break;
236  }
237  }
238 
239  spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
240 
241  return ret;
242 }
243 
244 /*
245  * This function checks if the driver got a valid device from the caller to
246  * avoid dereferencing invalid pointers.
247  */
248 static bool check_device(struct device *dev)
249 {
250  u16 devid;
251 
252  if (!dev || !dev->dma_mask)
253  return false;
254 
255  /* No device or no PCI device */
256  if (dev->bus != &pci_bus_type)
257  return false;
258 
259  devid = get_device_id(dev);
260 
261  /* Out of our scope? */
262  if (devid > amd_iommu_last_bdf)
263  return false;
264 
265  if (amd_iommu_rlookup_table[devid] == NULL)
266  return false;
267 
268  return true;
269 }
270 
271 static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
272 {
273  pci_dev_put(*from);
274  *from = to;
275 }
276 
277 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
278 
279 static int iommu_init_device(struct device *dev)
280 {
281  struct pci_dev *dma_pdev = NULL, *pdev = to_pci_dev(dev);
282  struct iommu_dev_data *dev_data;
283  struct iommu_group *group;
284  u16 alias;
285  int ret;
286 
287  if (dev->archdata.iommu)
288  return 0;
289 
290  dev_data = find_dev_data(get_device_id(dev));
291  if (!dev_data)
292  return -ENOMEM;
293 
294  alias = amd_iommu_alias_table[dev_data->devid];
295  if (alias != dev_data->devid) {
296  struct iommu_dev_data *alias_data;
297 
298  alias_data = find_dev_data(alias);
299  if (alias_data == NULL) {
300  pr_err("AMD-Vi: Warning: Unhandled device %s\n",
301  dev_name(dev));
302  free_dev_data(dev_data);
303  return -ENOTSUPP;
304  }
305  dev_data->alias_data = alias_data;
306 
307  dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
308  }
309 
310  if (dma_pdev == NULL)
311  dma_pdev = pci_dev_get(pdev);
312 
313  /* Account for quirked devices */
314  swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
315 
316  /*
317  * If it's a multifunction device that does not support our
318  * required ACS flags, add to the same group as function 0.
319  */
320  if (dma_pdev->multifunction &&
321  !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
322  swap_pci_ref(&dma_pdev,
323  pci_get_slot(dma_pdev->bus,
324  PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
325  0)));
326 
327  /*
328  * Devices on the root bus go through the iommu. If that's not us,
329  * find the next upstream device and test ACS up to the root bus.
330  * Finding the next device may require skipping virtual buses.
331  */
332  while (!pci_is_root_bus(dma_pdev->bus)) {
333  struct pci_bus *bus = dma_pdev->bus;
334 
335  while (!bus->self) {
336  if (!pci_is_root_bus(bus))
337  bus = bus->parent;
338  else
339  goto root_bus;
340  }
341 
343  break;
344 
345  swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
346  }
347 
348 root_bus:
349  group = iommu_group_get(&dma_pdev->dev);
350  pci_dev_put(dma_pdev);
351  if (!group) {
352  group = iommu_group_alloc();
353  if (IS_ERR(group))
354  return PTR_ERR(group);
355  }
356 
357  ret = iommu_group_add_device(group, dev);
358 
359  iommu_group_put(group);
360 
361  if (ret)
362  return ret;
363 
364  if (pci_iommuv2_capable(pdev)) {
365  struct amd_iommu *iommu;
366 
367  iommu = amd_iommu_rlookup_table[dev_data->devid];
368  dev_data->iommu_v2 = iommu->is_iommu_v2;
369  }
370 
371  dev->archdata.iommu = dev_data;
372 
373  return 0;
374 }
375 
376 static void iommu_ignore_device(struct device *dev)
377 {
378  u16 devid, alias;
379 
380  devid = get_device_id(dev);
381  alias = amd_iommu_alias_table[devid];
382 
383  memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
384  memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
385 
388 }
389 
390 static void iommu_uninit_device(struct device *dev)
391 {
393 
394  /*
395  * Nothing to do here - we keep dev_data around for unplugged devices
396  * and reuse it when the device is re-plugged - not doing so would
397  * introduce a ton of races.
398  */
399 }
400 
402 {
403  struct iommu_dev_data *dev_data, *n;
404  struct pci_dev *pdev = NULL;
405 
406  for_each_pci_dev(pdev) {
407 
408  if (!check_device(&pdev->dev))
409  continue;
410 
411  iommu_uninit_device(&pdev->dev);
412  }
413 
414  /* Free all of our dev_data structures */
415  list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
416  free_dev_data(dev_data);
417 }
418 
420 {
421  struct pci_dev *pdev = NULL;
422  int ret = 0;
423 
424  for_each_pci_dev(pdev) {
425 
426  if (!check_device(&pdev->dev))
427  continue;
428 
429  ret = iommu_init_device(&pdev->dev);
430  if (ret == -ENOTSUPP)
431  iommu_ignore_device(&pdev->dev);
432  else if (ret)
433  goto out_free;
434  }
435 
436  return 0;
437 
438 out_free:
439 
441 
442  return ret;
443 }
444 #ifdef CONFIG_AMD_IOMMU_STATS
445 
446 /*
447  * Initialization code for statistics collection
448  */
449 
450 DECLARE_STATS_COUNTER(compl_wait);
451 DECLARE_STATS_COUNTER(cnt_map_single);
452 DECLARE_STATS_COUNTER(cnt_unmap_single);
453 DECLARE_STATS_COUNTER(cnt_map_sg);
454 DECLARE_STATS_COUNTER(cnt_unmap_sg);
455 DECLARE_STATS_COUNTER(cnt_alloc_coherent);
456 DECLARE_STATS_COUNTER(cnt_free_coherent);
457 DECLARE_STATS_COUNTER(cross_page);
458 DECLARE_STATS_COUNTER(domain_flush_single);
459 DECLARE_STATS_COUNTER(domain_flush_all);
460 DECLARE_STATS_COUNTER(alloced_io_mem);
461 DECLARE_STATS_COUNTER(total_map_requests);
462 DECLARE_STATS_COUNTER(complete_ppr);
463 DECLARE_STATS_COUNTER(invalidate_iotlb);
464 DECLARE_STATS_COUNTER(invalidate_iotlb_all);
465 DECLARE_STATS_COUNTER(pri_requests);
466 
467 static struct dentry *stats_dir;
468 static struct dentry *de_fflush;
469 
470 static void amd_iommu_stats_add(struct __iommu_counter *cnt)
471 {
472  if (stats_dir == NULL)
473  return;
474 
475  cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
476  &cnt->value);
477 }
478 
479 static void amd_iommu_stats_init(void)
480 {
481  stats_dir = debugfs_create_dir("amd-iommu", NULL);
482  if (stats_dir == NULL)
483  return;
484 
485  de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
487 
488  amd_iommu_stats_add(&compl_wait);
489  amd_iommu_stats_add(&cnt_map_single);
490  amd_iommu_stats_add(&cnt_unmap_single);
491  amd_iommu_stats_add(&cnt_map_sg);
492  amd_iommu_stats_add(&cnt_unmap_sg);
493  amd_iommu_stats_add(&cnt_alloc_coherent);
494  amd_iommu_stats_add(&cnt_free_coherent);
495  amd_iommu_stats_add(&cross_page);
496  amd_iommu_stats_add(&domain_flush_single);
497  amd_iommu_stats_add(&domain_flush_all);
498  amd_iommu_stats_add(&alloced_io_mem);
499  amd_iommu_stats_add(&total_map_requests);
500  amd_iommu_stats_add(&complete_ppr);
501  amd_iommu_stats_add(&invalidate_iotlb);
502  amd_iommu_stats_add(&invalidate_iotlb_all);
503  amd_iommu_stats_add(&pri_requests);
504 }
505 
506 #endif
507 
508 /****************************************************************************
509  *
510  * Interrupt handling functions
511  *
512  ****************************************************************************/
513 
514 static void dump_dte_entry(u16 devid)
515 {
516  int i;
517 
518  for (i = 0; i < 4; ++i)
519  pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
520  amd_iommu_dev_table[devid].data[i]);
521 }
522 
523 static void dump_command(unsigned long phys_addr)
524 {
525  struct iommu_cmd *cmd = phys_to_virt(phys_addr);
526  int i;
527 
528  for (i = 0; i < 4; ++i)
529  pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
530 }
531 
532 static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
533 {
534  int type, devid, domid, flags;
535  volatile u32 *event = __evt;
536  int count = 0;
537  u64 address;
538 
539 retry:
540  type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
541  devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
542  domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
543  flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
544  address = (u64)(((u64)event[3]) << 32) | event[2];
545 
546  if (type == 0) {
547  /* Did we hit the erratum? */
548  if (++count == LOOP_TIMEOUT) {
549  pr_err("AMD-Vi: No event written to event log\n");
550  return;
551  }
552  udelay(1);
553  goto retry;
554  }
555 
556  printk(KERN_ERR "AMD-Vi: Event logged [");
557 
558  switch (type) {
559  case EVENT_TYPE_ILL_DEV:
560  printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
561  "address=0x%016llx flags=0x%04x]\n",
562  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
563  address, flags);
564  dump_dte_entry(devid);
565  break;
566  case EVENT_TYPE_IO_FAULT:
567  printk("IO_PAGE_FAULT device=%02x:%02x.%x "
568  "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
569  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
570  domid, address, flags);
571  break;
573  printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
574  "address=0x%016llx flags=0x%04x]\n",
575  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
576  address, flags);
577  break;
579  printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
580  "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
581  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
582  domid, address, flags);
583  break;
584  case EVENT_TYPE_ILL_CMD:
585  printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
586  dump_command(address);
587  break;
589  printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
590  "flags=0x%04x]\n", address, flags);
591  break;
593  printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
594  "address=0x%016llx]\n",
595  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
596  address);
597  break;
599  printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
600  "address=0x%016llx flags=0x%04x]\n",
601  PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
602  address, flags);
603  break;
604  default:
605  printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
606  }
607 
608  memset(__evt, 0, 4 * sizeof(u32));
609 }
610 
611 static void iommu_poll_events(struct amd_iommu *iommu)
612 {
613  u32 head, tail;
614  unsigned long flags;
615 
616  spin_lock_irqsave(&iommu->lock, flags);
617 
618  head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
619  tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
620 
621  while (head != tail) {
622  iommu_print_event(iommu, iommu->evt_buf + head);
623  head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
624  }
625 
626  writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
627 
628  spin_unlock_irqrestore(&iommu->lock, flags);
629 }
630 
631 static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
632 {
633  struct amd_iommu_fault fault;
634 
635  INC_STATS_COUNTER(pri_requests);
636 
637  if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
638  pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
639  return;
640  }
641 
642  fault.address = raw[1];
643  fault.pasid = PPR_PASID(raw[0]);
644  fault.device_id = PPR_DEVID(raw[0]);
645  fault.tag = PPR_TAG(raw[0]);
646  fault.flags = PPR_FLAGS(raw[0]);
647 
648  atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
649 }
650 
651 static void iommu_poll_ppr_log(struct amd_iommu *iommu)
652 {
653  unsigned long flags;
654  u32 head, tail;
655 
656  if (iommu->ppr_log == NULL)
657  return;
658 
659  /* enable ppr interrupts again */
661 
662  spin_lock_irqsave(&iommu->lock, flags);
663 
664  head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
665  tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
666 
667  while (head != tail) {
668  volatile u64 *raw;
669  u64 entry[2];
670  int i;
671 
672  raw = (u64 *)(iommu->ppr_log + head);
673 
674  /*
675  * Hardware bug: Interrupt may arrive before the entry is
676  * written to memory. If this happens we need to wait for the
677  * entry to arrive.
678  */
679  for (i = 0; i < LOOP_TIMEOUT; ++i) {
680  if (PPR_REQ_TYPE(raw[0]) != 0)
681  break;
682  udelay(1);
683  }
684 
685  /* Avoid memcpy function-call overhead */
686  entry[0] = raw[0];
687  entry[1] = raw[1];
688 
689  /*
690  * To detect the hardware bug we need to clear the entry
691  * back to zero.
692  */
693  raw[0] = raw[1] = 0UL;
694 
695  /* Update head pointer of hardware ring-buffer */
696  head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
697  writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
698 
699  /*
700  * Release iommu->lock because ppr-handling might need to
701  * re-acquire it
702  */
703  spin_unlock_irqrestore(&iommu->lock, flags);
704 
705  /* Handle PPR entry */
706  iommu_handle_ppr_entry(iommu, entry);
707 
708  spin_lock_irqsave(&iommu->lock, flags);
709 
710  /* Refresh ring-buffer information */
711  head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
712  tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
713  }
714 
715  spin_unlock_irqrestore(&iommu->lock, flags);
716 }
717 
719 {
720  struct amd_iommu *iommu;
721 
722  for_each_iommu(iommu) {
723  iommu_poll_events(iommu);
724  iommu_poll_ppr_log(iommu);
725  }
726 
727  return IRQ_HANDLED;
728 }
729 
731 {
732  return IRQ_WAKE_THREAD;
733 }
734 
735 /****************************************************************************
736  *
737  * IOMMU command queuing functions
738  *
739  ****************************************************************************/
740 
741 static int wait_on_sem(volatile u64 *sem)
742 {
743  int i = 0;
744 
745  while (*sem == 0 && i < LOOP_TIMEOUT) {
746  udelay(1);
747  i += 1;
748  }
749 
750  if (i == LOOP_TIMEOUT) {
751  pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
752  return -EIO;
753  }
754 
755  return 0;
756 }
757 
758 static void copy_cmd_to_buffer(struct amd_iommu *iommu,
759  struct iommu_cmd *cmd,
760  u32 tail)
761 {
762  u8 *target;
763 
764  target = iommu->cmd_buf + tail;
765  tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
766 
767  /* Copy command to buffer */
768  memcpy(target, cmd, sizeof(*cmd));
769 
770  /* Tell the IOMMU about it */
771  writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
772 }
773 
774 static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
775 {
776  WARN_ON(address & 0x7ULL);
777 
778  memset(cmd, 0, sizeof(*cmd));
779  cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
780  cmd->data[1] = upper_32_bits(__pa(address));
781  cmd->data[2] = 1;
783 }
784 
785 static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
786 {
787  memset(cmd, 0, sizeof(*cmd));
788  cmd->data[0] = devid;
790 }
791 
792 static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
793  size_t size, u16 domid, int pde)
794 {
795  u64 pages;
796  int s;
797 
798  pages = iommu_num_pages(address, size, PAGE_SIZE);
799  s = 0;
800 
801  if (pages > 1) {
802  /*
803  * If we have to flush more than one page, flush all
804  * TLB entries for this domain
805  */
807  s = 1;
808  }
809 
810  address &= PAGE_MASK;
811 
812  memset(cmd, 0, sizeof(*cmd));
813  cmd->data[1] |= domid;
814  cmd->data[2] = lower_32_bits(address);
815  cmd->data[3] = upper_32_bits(address);
817  if (s) /* size bit - we flush more than one 4kb page */
819  if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
821 }
822 
823 static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
824  u64 address, size_t size)
825 {
826  u64 pages;
827  int s;
828 
829  pages = iommu_num_pages(address, size, PAGE_SIZE);
830  s = 0;
831 
832  if (pages > 1) {
833  /*
834  * If we have to flush more than one page, flush all
835  * TLB entries for this domain
836  */
838  s = 1;
839  }
840 
841  address &= PAGE_MASK;
842 
843  memset(cmd, 0, sizeof(*cmd));
844  cmd->data[0] = devid;
845  cmd->data[0] |= (qdep & 0xff) << 24;
846  cmd->data[1] = devid;
847  cmd->data[2] = lower_32_bits(address);
848  cmd->data[3] = upper_32_bits(address);
850  if (s)
852 }
853 
854 static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
855  u64 address, bool size)
856 {
857  memset(cmd, 0, sizeof(*cmd));
858 
859  address &= ~(0xfffULL);
860 
861  cmd->data[0] = pasid & PASID_MASK;
862  cmd->data[1] = domid;
863  cmd->data[2] = lower_32_bits(address);
864  cmd->data[3] = upper_32_bits(address);
867  if (size)
870 }
871 
872 static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
873  int qdep, u64 address, bool size)
874 {
875  memset(cmd, 0, sizeof(*cmd));
876 
877  address &= ~(0xfffULL);
878 
879  cmd->data[0] = devid;
880  cmd->data[0] |= (pasid & 0xff) << 16;
881  cmd->data[0] |= (qdep & 0xff) << 24;
882  cmd->data[1] = devid;
883  cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
884  cmd->data[2] = lower_32_bits(address);
886  cmd->data[3] = upper_32_bits(address);
887  if (size)
890 }
891 
892 static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
893  int status, int tag, bool gn)
894 {
895  memset(cmd, 0, sizeof(*cmd));
896 
897  cmd->data[0] = devid;
898  if (gn) {
899  cmd->data[1] = pasid & PASID_MASK;
901  }
902  cmd->data[3] = tag & 0x1ff;
903  cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
904 
906 }
907 
908 static void build_inv_all(struct iommu_cmd *cmd)
909 {
910  memset(cmd, 0, sizeof(*cmd));
912 }
913 
914 static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
915 {
916  memset(cmd, 0, sizeof(*cmd));
917  cmd->data[0] = devid;
919 }
920 
921 /*
922  * Writes the command to the IOMMUs command buffer and informs the
923  * hardware about the new command.
924  */
925 static int iommu_queue_command_sync(struct amd_iommu *iommu,
926  struct iommu_cmd *cmd,
927  bool sync)
928 {
929  u32 left, tail, head, next_tail;
930  unsigned long flags;
931 
933 
934 again:
935  spin_lock_irqsave(&iommu->lock, flags);
936 
937  head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
938  tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
939  next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
940  left = (head - next_tail) % iommu->cmd_buf_size;
941 
942  if (left <= 2) {
943  struct iommu_cmd sync_cmd;
944  volatile u64 sem = 0;
945  int ret;
946 
947  build_completion_wait(&sync_cmd, (u64)&sem);
948  copy_cmd_to_buffer(iommu, &sync_cmd, tail);
949 
950  spin_unlock_irqrestore(&iommu->lock, flags);
951 
952  if ((ret = wait_on_sem(&sem)) != 0)
953  return ret;
954 
955  goto again;
956  }
957 
958  copy_cmd_to_buffer(iommu, cmd, tail);
959 
960  /* We need to sync now to make sure all commands are processed */
961  iommu->need_sync = sync;
962 
963  spin_unlock_irqrestore(&iommu->lock, flags);
964 
965  return 0;
966 }
967 
968 static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
969 {
970  return iommu_queue_command_sync(iommu, cmd, true);
971 }
972 
973 /*
974  * This function queues a completion wait command into the command
975  * buffer of an IOMMU
976  */
977 static int iommu_completion_wait(struct amd_iommu *iommu)
978 {
979  struct iommu_cmd cmd;
980  volatile u64 sem = 0;
981  int ret;
982 
983  if (!iommu->need_sync)
984  return 0;
985 
986  build_completion_wait(&cmd, (u64)&sem);
987 
988  ret = iommu_queue_command_sync(iommu, &cmd, false);
989  if (ret)
990  return ret;
991 
992  return wait_on_sem(&sem);
993 }
994 
995 static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
996 {
997  struct iommu_cmd cmd;
998 
999  build_inv_dte(&cmd, devid);
1000 
1001  return iommu_queue_command(iommu, &cmd);
1002 }
1003 
1004 static void iommu_flush_dte_all(struct amd_iommu *iommu)
1005 {
1006  u32 devid;
1007 
1008  for (devid = 0; devid <= 0xffff; ++devid)
1009  iommu_flush_dte(iommu, devid);
1010 
1011  iommu_completion_wait(iommu);
1012 }
1013 
1014 /*
1015  * This function uses heavy locking and may disable irqs for some time. But
1016  * this is no issue because it is only called during resume.
1017  */
1018 static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1019 {
1020  u32 dom_id;
1021 
1022  for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1023  struct iommu_cmd cmd;
1024  build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1025  dom_id, 1);
1026  iommu_queue_command(iommu, &cmd);
1027  }
1028 
1029  iommu_completion_wait(iommu);
1030 }
1031 
1032 static void iommu_flush_all(struct amd_iommu *iommu)
1033 {
1034  struct iommu_cmd cmd;
1035 
1036  build_inv_all(&cmd);
1037 
1038  iommu_queue_command(iommu, &cmd);
1039  iommu_completion_wait(iommu);
1040 }
1041 
1042 static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1043 {
1044  struct iommu_cmd cmd;
1045 
1046  build_inv_irt(&cmd, devid);
1047 
1048  iommu_queue_command(iommu, &cmd);
1049 }
1050 
1051 static void iommu_flush_irt_all(struct amd_iommu *iommu)
1052 {
1053  u32 devid;
1054 
1055  for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1056  iommu_flush_irt(iommu, devid);
1057 
1058  iommu_completion_wait(iommu);
1059 }
1060 
1062 {
1063  if (iommu_feature(iommu, FEATURE_IA)) {
1064  iommu_flush_all(iommu);
1065  } else {
1066  iommu_flush_dte_all(iommu);
1067  iommu_flush_irt_all(iommu);
1068  iommu_flush_tlb_all(iommu);
1069  }
1070 }
1071 
1072 /*
1073  * Command send function for flushing on-device TLB
1074  */
1075 static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1076  u64 address, size_t size)
1077 {
1078  struct amd_iommu *iommu;
1079  struct iommu_cmd cmd;
1080  int qdep;
1081 
1082  qdep = dev_data->ats.qdep;
1083  iommu = amd_iommu_rlookup_table[dev_data->devid];
1084 
1085  build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1086 
1087  return iommu_queue_command(iommu, &cmd);
1088 }
1089 
1090 /*
1091  * Command send function for invalidating a device table entry
1092  */
1093 static int device_flush_dte(struct iommu_dev_data *dev_data)
1094 {
1095  struct amd_iommu *iommu;
1096  int ret;
1097 
1098  iommu = amd_iommu_rlookup_table[dev_data->devid];
1099 
1100  ret = iommu_flush_dte(iommu, dev_data->devid);
1101  if (ret)
1102  return ret;
1103 
1104  if (dev_data->ats.enabled)
1105  ret = device_flush_iotlb(dev_data, 0, ~0UL);
1106 
1107  return ret;
1108 }
1109 
1110 /*
1111  * TLB invalidation function which is called from the mapping functions.
1112  * It invalidates a single PTE if the range to flush is within a single
1113  * page. Otherwise it flushes the whole TLB of the IOMMU.
1114  */
1115 static void __domain_flush_pages(struct protection_domain *domain,
1116  u64 address, size_t size, int pde)
1117 {
1118  struct iommu_dev_data *dev_data;
1119  struct iommu_cmd cmd;
1120  int ret = 0, i;
1121 
1122  build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1123 
1124  for (i = 0; i < amd_iommus_present; ++i) {
1125  if (!domain->dev_iommu[i])
1126  continue;
1127 
1128  /*
1129  * Devices of this domain are behind this IOMMU
1130  * We need a TLB flush
1131  */
1132  ret |= iommu_queue_command(amd_iommus[i], &cmd);
1133  }
1134 
1135  list_for_each_entry(dev_data, &domain->dev_list, list) {
1136 
1137  if (!dev_data->ats.enabled)
1138  continue;
1139 
1140  ret |= device_flush_iotlb(dev_data, address, size);
1141  }
1142 
1143  WARN_ON(ret);
1144 }
1145 
1146 static void domain_flush_pages(struct protection_domain *domain,
1147  u64 address, size_t size)
1148 {
1149  __domain_flush_pages(domain, address, size, 0);
1150 }
1151 
1152 /* Flush the whole IO/TLB for a given protection domain */
1153 static void domain_flush_tlb(struct protection_domain *domain)
1154 {
1155  __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1156 }
1157 
1158 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1159 static void domain_flush_tlb_pde(struct protection_domain *domain)
1160 {
1161  __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1162 }
1163 
1164 static void domain_flush_complete(struct protection_domain *domain)
1165 {
1166  int i;
1167 
1168  for (i = 0; i < amd_iommus_present; ++i) {
1169  if (!domain->dev_iommu[i])
1170  continue;
1171 
1172  /*
1173  * Devices of this domain are behind this IOMMU
1174  * We need to wait for completion of all commands.
1175  */
1176  iommu_completion_wait(amd_iommus[i]);
1177  }
1178 }
1179 
1180 
1181 /*
1182  * This function flushes the DTEs for all devices in domain
1183  */
1184 static void domain_flush_devices(struct protection_domain *domain)
1185 {
1186  struct iommu_dev_data *dev_data;
1187 
1188  list_for_each_entry(dev_data, &domain->dev_list, list)
1189  device_flush_dte(dev_data);
1190 }
1191 
1192 /****************************************************************************
1193  *
1194  * The functions below are used the create the page table mappings for
1195  * unity mapped regions.
1196  *
1197  ****************************************************************************/
1198 
1199 /*
1200  * This function is used to add another level to an IO page table. Adding
1201  * another level increases the size of the address space by 9 bits to a size up
1202  * to 64 bits.
1203  */
1204 static bool increase_address_space(struct protection_domain *domain,
1205  gfp_t gfp)
1206 {
1207  u64 *pte;
1208 
1209  if (domain->mode == PAGE_MODE_6_LEVEL)
1210  /* address space already 64 bit large */
1211  return false;
1212 
1213  pte = (void *)get_zeroed_page(gfp);
1214  if (!pte)
1215  return false;
1216 
1217  *pte = PM_LEVEL_PDE(domain->mode,
1218  virt_to_phys(domain->pt_root));
1219  domain->pt_root = pte;
1220  domain->mode += 1;
1221  domain->updated = true;
1222 
1223  return true;
1224 }
1225 
1226 static u64 *alloc_pte(struct protection_domain *domain,
1227  unsigned long address,
1228  unsigned long page_size,
1229  u64 **pte_page,
1230  gfp_t gfp)
1231 {
1232  int level, end_lvl;
1233  u64 *pte, *page;
1234 
1235  BUG_ON(!is_power_of_2(page_size));
1236 
1237  while (address > PM_LEVEL_SIZE(domain->mode))
1238  increase_address_space(domain, gfp);
1239 
1240  level = domain->mode - 1;
1241  pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1242  address = PAGE_SIZE_ALIGN(address, page_size);
1243  end_lvl = PAGE_SIZE_LEVEL(page_size);
1244 
1245  while (level > end_lvl) {
1246  if (!IOMMU_PTE_PRESENT(*pte)) {
1247  page = (u64 *)get_zeroed_page(gfp);
1248  if (!page)
1249  return NULL;
1250  *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1251  }
1252 
1253  /* No level skipping support yet */
1254  if (PM_PTE_LEVEL(*pte) != level)
1255  return NULL;
1256 
1257  level -= 1;
1258 
1259  pte = IOMMU_PTE_PAGE(*pte);
1260 
1261  if (pte_page && level == end_lvl)
1262  *pte_page = pte;
1263 
1264  pte = &pte[PM_LEVEL_INDEX(level, address)];
1265  }
1266 
1267  return pte;
1268 }
1269 
1270 /*
1271  * This function checks if there is a PTE for a given dma address. If
1272  * there is one, it returns the pointer to it.
1273  */
1274 static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1275 {
1276  int level;
1277  u64 *pte;
1278 
1279  if (address > PM_LEVEL_SIZE(domain->mode))
1280  return NULL;
1281 
1282  level = domain->mode - 1;
1283  pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1284 
1285  while (level > 0) {
1286 
1287  /* Not Present */
1288  if (!IOMMU_PTE_PRESENT(*pte))
1289  return NULL;
1290 
1291  /* Large PTE */
1292  if (PM_PTE_LEVEL(*pte) == 0x07) {
1293  unsigned long pte_mask, __pte;
1294 
1295  /*
1296  * If we have a series of large PTEs, make
1297  * sure to return a pointer to the first one.
1298  */
1299  pte_mask = PTE_PAGE_SIZE(*pte);
1300  pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1301  __pte = ((unsigned long)pte) & pte_mask;
1302 
1303  return (u64 *)__pte;
1304  }
1305 
1306  /* No level skipping support yet */
1307  if (PM_PTE_LEVEL(*pte) != level)
1308  return NULL;
1309 
1310  level -= 1;
1311 
1312  /* Walk to the next level */
1313  pte = IOMMU_PTE_PAGE(*pte);
1314  pte = &pte[PM_LEVEL_INDEX(level, address)];
1315  }
1316 
1317  return pte;
1318 }
1319 
1320 /*
1321  * Generic mapping functions. It maps a physical address into a DMA
1322  * address space. It allocates the page table pages if necessary.
1323  * In the future it can be extended to a generic mapping function
1324  * supporting all features of AMD IOMMU page tables like level skipping
1325  * and full 64 bit address spaces.
1326  */
1327 static int iommu_map_page(struct protection_domain *dom,
1328  unsigned long bus_addr,
1329  unsigned long phys_addr,
1330  int prot,
1331  unsigned long page_size)
1332 {
1333  u64 __pte, *pte;
1334  int i, count;
1335 
1336  if (!(prot & IOMMU_PROT_MASK))
1337  return -EINVAL;
1338 
1339  bus_addr = PAGE_ALIGN(bus_addr);
1340  phys_addr = PAGE_ALIGN(phys_addr);
1341  count = PAGE_SIZE_PTE_COUNT(page_size);
1342  pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1343 
1344  for (i = 0; i < count; ++i)
1345  if (IOMMU_PTE_PRESENT(pte[i]))
1346  return -EBUSY;
1347 
1348  if (page_size > PAGE_SIZE) {
1349  __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1350  __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1351  } else
1352  __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1353 
1354  if (prot & IOMMU_PROT_IR)
1355  __pte |= IOMMU_PTE_IR;
1356  if (prot & IOMMU_PROT_IW)
1357  __pte |= IOMMU_PTE_IW;
1358 
1359  for (i = 0; i < count; ++i)
1360  pte[i] = __pte;
1361 
1362  update_domain(dom);
1363 
1364  return 0;
1365 }
1366 
1367 static unsigned long iommu_unmap_page(struct protection_domain *dom,
1368  unsigned long bus_addr,
1369  unsigned long page_size)
1370 {
1371  unsigned long long unmap_size, unmapped;
1372  u64 *pte;
1373 
1374  BUG_ON(!is_power_of_2(page_size));
1375 
1376  unmapped = 0;
1377 
1378  while (unmapped < page_size) {
1379 
1380  pte = fetch_pte(dom, bus_addr);
1381 
1382  if (!pte) {
1383  /*
1384  * No PTE for this address
1385  * move forward in 4kb steps
1386  */
1387  unmap_size = PAGE_SIZE;
1388  } else if (PM_PTE_LEVEL(*pte) == 0) {
1389  /* 4kb PTE found for this address */
1390  unmap_size = PAGE_SIZE;
1391  *pte = 0ULL;
1392  } else {
1393  int count, i;
1394 
1395  /* Large PTE found which maps this address */
1396  unmap_size = PTE_PAGE_SIZE(*pte);
1397  count = PAGE_SIZE_PTE_COUNT(unmap_size);
1398  for (i = 0; i < count; i++)
1399  pte[i] = 0ULL;
1400  }
1401 
1402  bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1403  unmapped += unmap_size;
1404  }
1405 
1406  BUG_ON(!is_power_of_2(unmapped));
1407 
1408  return unmapped;
1409 }
1410 
1411 /*
1412  * This function checks if a specific unity mapping entry is needed for
1413  * this specific IOMMU.
1414  */
1415 static int iommu_for_unity_map(struct amd_iommu *iommu,
1416  struct unity_map_entry *entry)
1417 {
1418  u16 bdf, i;
1419 
1420  for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1421  bdf = amd_iommu_alias_table[i];
1422  if (amd_iommu_rlookup_table[bdf] == iommu)
1423  return 1;
1424  }
1425 
1426  return 0;
1427 }
1428 
1429 /*
1430  * This function actually applies the mapping to the page table of the
1431  * dma_ops domain.
1432  */
1433 static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1434  struct unity_map_entry *e)
1435 {
1436  u64 addr;
1437  int ret;
1438 
1439  for (addr = e->address_start; addr < e->address_end;
1440  addr += PAGE_SIZE) {
1441  ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1442  PAGE_SIZE);
1443  if (ret)
1444  return ret;
1445  /*
1446  * if unity mapping is in aperture range mark the page
1447  * as allocated in the aperture
1448  */
1449  if (addr < dma_dom->aperture_size)
1450  __set_bit(addr >> PAGE_SHIFT,
1451  dma_dom->aperture[0]->bitmap);
1452  }
1453 
1454  return 0;
1455 }
1456 
1457 /*
1458  * Init the unity mappings for a specific IOMMU in the system
1459  *
1460  * Basically iterates over all unity mapping entries and applies them to
1461  * the default domain DMA of that IOMMU if necessary.
1462  */
1463 static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1464 {
1465  struct unity_map_entry *entry;
1466  int ret;
1467 
1468  list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1469  if (!iommu_for_unity_map(iommu, entry))
1470  continue;
1471  ret = dma_ops_unity_map(iommu->default_dom, entry);
1472  if (ret)
1473  return ret;
1474  }
1475 
1476  return 0;
1477 }
1478 
1479 /*
1480  * Inits the unity mappings required for a specific device
1481  */
1482 static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1483  u16 devid)
1484 {
1485  struct unity_map_entry *e;
1486  int ret;
1487 
1488  list_for_each_entry(e, &amd_iommu_unity_map, list) {
1489  if (!(devid >= e->devid_start && devid <= e->devid_end))
1490  continue;
1491  ret = dma_ops_unity_map(dma_dom, e);
1492  if (ret)
1493  return ret;
1494  }
1495 
1496  return 0;
1497 }
1498 
1499 /****************************************************************************
1500  *
1501  * The next functions belong to the address allocator for the dma_ops
1502  * interface functions. They work like the allocators in the other IOMMU
1503  * drivers. Its basically a bitmap which marks the allocated pages in
1504  * the aperture. Maybe it could be enhanced in the future to a more
1505  * efficient allocator.
1506  *
1507  ****************************************************************************/
1508 
1509 /*
1510  * The address allocator core functions.
1511  *
1512  * called with domain->lock held
1513  */
1514 
1515 /*
1516  * Used to reserve address ranges in the aperture (e.g. for exclusion
1517  * ranges.
1518  */
1519 static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1520  unsigned long start_page,
1521  unsigned int pages)
1522 {
1523  unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1524 
1525  if (start_page + pages > last_page)
1526  pages = last_page - start_page;
1527 
1528  for (i = start_page; i < start_page + pages; ++i) {
1529  int index = i / APERTURE_RANGE_PAGES;
1530  int page = i % APERTURE_RANGE_PAGES;
1531  __set_bit(page, dom->aperture[index]->bitmap);
1532  }
1533 }
1534 
1535 /*
1536  * This function is used to add a new aperture range to an existing
1537  * aperture in case of dma_ops domain allocation or address allocation
1538  * failure.
1539  */
1540 static int alloc_new_range(struct dma_ops_domain *dma_dom,
1541  bool populate, gfp_t gfp)
1542 {
1543  int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1544  struct amd_iommu *iommu;
1545  unsigned long i, old_size;
1546 
1547 #ifdef CONFIG_IOMMU_STRESS
1548  populate = false;
1549 #endif
1550 
1551  if (index >= APERTURE_MAX_RANGES)
1552  return -ENOMEM;
1553 
1554  dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1555  if (!dma_dom->aperture[index])
1556  return -ENOMEM;
1557 
1558  dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1559  if (!dma_dom->aperture[index]->bitmap)
1560  goto out_free;
1561 
1562  dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1563 
1564  if (populate) {
1565  unsigned long address = dma_dom->aperture_size;
1566  int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1567  u64 *pte, *pte_page;
1568 
1569  for (i = 0; i < num_ptes; ++i) {
1570  pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1571  &pte_page, gfp);
1572  if (!pte)
1573  goto out_free;
1574 
1575  dma_dom->aperture[index]->pte_pages[i] = pte_page;
1576 
1577  address += APERTURE_RANGE_SIZE / 64;
1578  }
1579  }
1580 
1581  old_size = dma_dom->aperture_size;
1582  dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1583 
1584  /* Reserve address range used for MSI messages */
1585  if (old_size < MSI_ADDR_BASE_LO &&
1586  dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1587  unsigned long spage;
1588  int pages;
1589 
1590  pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1591  spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1592 
1593  dma_ops_reserve_addresses(dma_dom, spage, pages);
1594  }
1595 
1596  /* Initialize the exclusion range if necessary */
1597  for_each_iommu(iommu) {
1598  if (iommu->exclusion_start &&
1599  iommu->exclusion_start >= dma_dom->aperture[index]->offset
1600  && iommu->exclusion_start < dma_dom->aperture_size) {
1601  unsigned long startpage;
1602  int pages = iommu_num_pages(iommu->exclusion_start,
1603  iommu->exclusion_length,
1604  PAGE_SIZE);
1605  startpage = iommu->exclusion_start >> PAGE_SHIFT;
1606  dma_ops_reserve_addresses(dma_dom, startpage, pages);
1607  }
1608  }
1609 
1610  /*
1611  * Check for areas already mapped as present in the new aperture
1612  * range and mark those pages as reserved in the allocator. Such
1613  * mappings may already exist as a result of requested unity
1614  * mappings for devices.
1615  */
1616  for (i = dma_dom->aperture[index]->offset;
1617  i < dma_dom->aperture_size;
1618  i += PAGE_SIZE) {
1619  u64 *pte = fetch_pte(&dma_dom->domain, i);
1620  if (!pte || !IOMMU_PTE_PRESENT(*pte))
1621  continue;
1622 
1623  dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1624  }
1625 
1626  update_domain(&dma_dom->domain);
1627 
1628  return 0;
1629 
1630 out_free:
1631  update_domain(&dma_dom->domain);
1632 
1633  free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1634 
1635  kfree(dma_dom->aperture[index]);
1636  dma_dom->aperture[index] = NULL;
1637 
1638  return -ENOMEM;
1639 }
1640 
1641 static unsigned long dma_ops_area_alloc(struct device *dev,
1642  struct dma_ops_domain *dom,
1643  unsigned int pages,
1644  unsigned long align_mask,
1645  u64 dma_mask,
1646  unsigned long start)
1647 {
1648  unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1649  int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1650  int i = start >> APERTURE_RANGE_SHIFT;
1651  unsigned long boundary_size;
1652  unsigned long address = -1;
1653  unsigned long limit;
1654 
1655  next_bit >>= PAGE_SHIFT;
1656 
1657  boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1658  PAGE_SIZE) >> PAGE_SHIFT;
1659 
1660  for (;i < max_index; ++i) {
1661  unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1662 
1663  if (dom->aperture[i]->offset >= dma_mask)
1664  break;
1665 
1666  limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1667  dma_mask >> PAGE_SHIFT);
1668 
1669  address = iommu_area_alloc(dom->aperture[i]->bitmap,
1670  limit, next_bit, pages, 0,
1671  boundary_size, align_mask);
1672  if (address != -1) {
1673  address = dom->aperture[i]->offset +
1674  (address << PAGE_SHIFT);
1675  dom->next_address = address + (pages << PAGE_SHIFT);
1676  break;
1677  }
1678 
1679  next_bit = 0;
1680  }
1681 
1682  return address;
1683 }
1684 
1685 static unsigned long dma_ops_alloc_addresses(struct device *dev,
1686  struct dma_ops_domain *dom,
1687  unsigned int pages,
1688  unsigned long align_mask,
1689  u64 dma_mask)
1690 {
1691  unsigned long address;
1692 
1693 #ifdef CONFIG_IOMMU_STRESS
1694  dom->next_address = 0;
1695  dom->need_flush = true;
1696 #endif
1697 
1698  address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1699  dma_mask, dom->next_address);
1700 
1701  if (address == -1) {
1702  dom->next_address = 0;
1703  address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1704  dma_mask, 0);
1705  dom->need_flush = true;
1706  }
1707 
1708  if (unlikely(address == -1))
1709  address = DMA_ERROR_CODE;
1710 
1711  WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1712 
1713  return address;
1714 }
1715 
1716 /*
1717  * The address free function.
1718  *
1719  * called with domain->lock held
1720  */
1721 static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1722  unsigned long address,
1723  unsigned int pages)
1724 {
1725  unsigned i = address >> APERTURE_RANGE_SHIFT;
1726  struct aperture_range *range = dom->aperture[i];
1727 
1728  BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1729 
1730 #ifdef CONFIG_IOMMU_STRESS
1731  if (i < 4)
1732  return;
1733 #endif
1734 
1735  if (address >= dom->next_address)
1736  dom->need_flush = true;
1737 
1738  address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1739 
1740  bitmap_clear(range->bitmap, address, pages);
1741 
1742 }
1743 
1744 /****************************************************************************
1745  *
1746  * The next functions belong to the domain allocation. A domain is
1747  * allocated for every IOMMU as the default domain. If device isolation
1748  * is enabled, every device get its own domain. The most important thing
1749  * about domains is the page table mapping the DMA address space they
1750  * contain.
1751  *
1752  ****************************************************************************/
1753 
1754 /*
1755  * This function adds a protection domain to the global protection domain list
1756  */
1757 static void add_domain_to_list(struct protection_domain *domain)
1758 {
1759  unsigned long flags;
1760 
1762  list_add(&domain->list, &amd_iommu_pd_list);
1763  spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1764 }
1765 
1766 /*
1767  * This function removes a protection domain to the global
1768  * protection domain list
1769  */
1770 static void del_domain_from_list(struct protection_domain *domain)
1771 {
1772  unsigned long flags;
1773 
1775  list_del(&domain->list);
1776  spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1777 }
1778 
1779 static u16 domain_id_alloc(void)
1780 {
1781  unsigned long flags;
1782  int id;
1783 
1784  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1786  BUG_ON(id == 0);
1787  if (id > 0 && id < MAX_DOMAIN_ID)
1789  else
1790  id = 0;
1791  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1792 
1793  return id;
1794 }
1795 
1796 static void domain_id_free(int id)
1797 {
1798  unsigned long flags;
1799 
1800  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1801  if (id > 0 && id < MAX_DOMAIN_ID)
1803  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1804 }
1805 
1806 static void free_pagetable(struct protection_domain *domain)
1807 {
1808  int i, j;
1809  u64 *p1, *p2, *p3;
1810 
1811  p1 = domain->pt_root;
1812 
1813  if (!p1)
1814  return;
1815 
1816  for (i = 0; i < 512; ++i) {
1817  if (!IOMMU_PTE_PRESENT(p1[i]))
1818  continue;
1819 
1820  p2 = IOMMU_PTE_PAGE(p1[i]);
1821  for (j = 0; j < 512; ++j) {
1822  if (!IOMMU_PTE_PRESENT(p2[j]))
1823  continue;
1824  p3 = IOMMU_PTE_PAGE(p2[j]);
1825  free_page((unsigned long)p3);
1826  }
1827 
1828  free_page((unsigned long)p2);
1829  }
1830 
1831  free_page((unsigned long)p1);
1832 
1833  domain->pt_root = NULL;
1834 }
1835 
1836 static void free_gcr3_tbl_level1(u64 *tbl)
1837 {
1838  u64 *ptr;
1839  int i;
1840 
1841  for (i = 0; i < 512; ++i) {
1842  if (!(tbl[i] & GCR3_VALID))
1843  continue;
1844 
1845  ptr = __va(tbl[i] & PAGE_MASK);
1846 
1847  free_page((unsigned long)ptr);
1848  }
1849 }
1850 
1851 static void free_gcr3_tbl_level2(u64 *tbl)
1852 {
1853  u64 *ptr;
1854  int i;
1855 
1856  for (i = 0; i < 512; ++i) {
1857  if (!(tbl[i] & GCR3_VALID))
1858  continue;
1859 
1860  ptr = __va(tbl[i] & PAGE_MASK);
1861 
1862  free_gcr3_tbl_level1(ptr);
1863  }
1864 }
1865 
1866 static void free_gcr3_table(struct protection_domain *domain)
1867 {
1868  if (domain->glx == 2)
1869  free_gcr3_tbl_level2(domain->gcr3_tbl);
1870  else if (domain->glx == 1)
1871  free_gcr3_tbl_level1(domain->gcr3_tbl);
1872  else if (domain->glx != 0)
1873  BUG();
1874 
1875  free_page((unsigned long)domain->gcr3_tbl);
1876 }
1877 
1878 /*
1879  * Free a domain, only used if something went wrong in the
1880  * allocation path and we need to free an already allocated page table
1881  */
1882 static void dma_ops_domain_free(struct dma_ops_domain *dom)
1883 {
1884  int i;
1885 
1886  if (!dom)
1887  return;
1888 
1889  del_domain_from_list(&dom->domain);
1890 
1891  free_pagetable(&dom->domain);
1892 
1893  for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1894  if (!dom->aperture[i])
1895  continue;
1896  free_page((unsigned long)dom->aperture[i]->bitmap);
1897  kfree(dom->aperture[i]);
1898  }
1899 
1900  kfree(dom);
1901 }
1902 
1903 /*
1904  * Allocates a new protection domain usable for the dma_ops functions.
1905  * It also initializes the page table and the address allocator data
1906  * structures required for the dma_ops interface
1907  */
1908 static struct dma_ops_domain *dma_ops_domain_alloc(void)
1909 {
1910  struct dma_ops_domain *dma_dom;
1911 
1912  dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1913  if (!dma_dom)
1914  return NULL;
1915 
1916  spin_lock_init(&dma_dom->domain.lock);
1917 
1918  dma_dom->domain.id = domain_id_alloc();
1919  if (dma_dom->domain.id == 0)
1920  goto free_dma_dom;
1921  INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1922  dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1923  dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1924  dma_dom->domain.flags = PD_DMA_OPS_MASK;
1925  dma_dom->domain.priv = dma_dom;
1926  if (!dma_dom->domain.pt_root)
1927  goto free_dma_dom;
1928 
1929  dma_dom->need_flush = false;
1930  dma_dom->target_dev = 0xffff;
1931 
1932  add_domain_to_list(&dma_dom->domain);
1933 
1934  if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1935  goto free_dma_dom;
1936 
1937  /*
1938  * mark the first page as allocated so we never return 0 as
1939  * a valid dma-address. So we can use 0 as error value
1940  */
1941  dma_dom->aperture[0]->bitmap[0] = 1;
1942  dma_dom->next_address = 0;
1943 
1944 
1945  return dma_dom;
1946 
1947 free_dma_dom:
1948  dma_ops_domain_free(dma_dom);
1949 
1950  return NULL;
1951 }
1952 
1953 /*
1954  * little helper function to check whether a given protection domain is a
1955  * dma_ops domain
1956  */
1957 static bool dma_ops_domain(struct protection_domain *domain)
1958 {
1959  return domain->flags & PD_DMA_OPS_MASK;
1960 }
1961 
1962 static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1963 {
1964  u64 pte_root = 0;
1965  u64 flags = 0;
1966 
1967  if (domain->mode != PAGE_MODE_NONE)
1968  pte_root = virt_to_phys(domain->pt_root);
1969 
1970  pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1973 
1974  flags = amd_iommu_dev_table[devid].data[1];
1975 
1976  if (ats)
1977  flags |= DTE_FLAG_IOTLB;
1978 
1979  if (domain->flags & PD_IOMMUV2_MASK) {
1980  u64 gcr3 = __pa(domain->gcr3_tbl);
1981  u64 glx = domain->glx;
1982  u64 tmp;
1983 
1984  pte_root |= DTE_FLAG_GV;
1985  pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1986 
1987  /* First mask out possible old values for GCR3 table */
1988  tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1989  flags &= ~tmp;
1990 
1991  tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1992  flags &= ~tmp;
1993 
1994  /* Encode GCR3 table into DTE */
1995  tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1996  pte_root |= tmp;
1997 
1998  tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1999  flags |= tmp;
2000 
2001  tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2002  flags |= tmp;
2003  }
2004 
2005  flags &= ~(0xffffUL);
2006  flags |= domain->id;
2007 
2008  amd_iommu_dev_table[devid].data[1] = flags;
2009  amd_iommu_dev_table[devid].data[0] = pte_root;
2010 }
2011 
2012 static void clear_dte_entry(u16 devid)
2013 {
2014  /* remove entry from the device table seen by the hardware */
2016  amd_iommu_dev_table[devid].data[1] = 0;
2017 
2019 }
2020 
2021 static void do_attach(struct iommu_dev_data *dev_data,
2022  struct protection_domain *domain)
2023 {
2024  struct amd_iommu *iommu;
2025  bool ats;
2026 
2027  iommu = amd_iommu_rlookup_table[dev_data->devid];
2028  ats = dev_data->ats.enabled;
2029 
2030  /* Update data structures */
2031  dev_data->domain = domain;
2032  list_add(&dev_data->list, &domain->dev_list);
2033  set_dte_entry(dev_data->devid, domain, ats);
2034 
2035  /* Do reference counting */
2036  domain->dev_iommu[iommu->index] += 1;
2037  domain->dev_cnt += 1;
2038 
2039  /* Flush the DTE entry */
2040  device_flush_dte(dev_data);
2041 }
2042 
2043 static void do_detach(struct iommu_dev_data *dev_data)
2044 {
2045  struct amd_iommu *iommu;
2046 
2047  iommu = amd_iommu_rlookup_table[dev_data->devid];
2048 
2049  /* decrease reference counters */
2050  dev_data->domain->dev_iommu[iommu->index] -= 1;
2051  dev_data->domain->dev_cnt -= 1;
2052 
2053  /* Update data structures */
2054  dev_data->domain = NULL;
2055  list_del(&dev_data->list);
2056  clear_dte_entry(dev_data->devid);
2057 
2058  /* Flush the DTE entry */
2059  device_flush_dte(dev_data);
2060 }
2061 
2062 /*
2063  * If a device is not yet associated with a domain, this function does
2064  * assigns it visible for the hardware
2065  */
2066 static int __attach_device(struct iommu_dev_data *dev_data,
2067  struct protection_domain *domain)
2068 {
2069  int ret;
2070 
2071  /* lock domain */
2072  spin_lock(&domain->lock);
2073 
2074  if (dev_data->alias_data != NULL) {
2075  struct iommu_dev_data *alias_data = dev_data->alias_data;
2076 
2077  /* Some sanity checks */
2078  ret = -EBUSY;
2079  if (alias_data->domain != NULL &&
2080  alias_data->domain != domain)
2081  goto out_unlock;
2082 
2083  if (dev_data->domain != NULL &&
2084  dev_data->domain != domain)
2085  goto out_unlock;
2086 
2087  /* Do real assignment */
2088  if (alias_data->domain == NULL)
2089  do_attach(alias_data, domain);
2090 
2091  atomic_inc(&alias_data->bind);
2092  }
2093 
2094  if (dev_data->domain == NULL)
2095  do_attach(dev_data, domain);
2096 
2097  atomic_inc(&dev_data->bind);
2098 
2099  ret = 0;
2100 
2101 out_unlock:
2102 
2103  /* ready */
2104  spin_unlock(&domain->lock);
2105 
2106  return ret;
2107 }
2108 
2109 
2110 static void pdev_iommuv2_disable(struct pci_dev *pdev)
2111 {
2112  pci_disable_ats(pdev);
2113  pci_disable_pri(pdev);
2114  pci_disable_pasid(pdev);
2115 }
2116 
2117 /* FIXME: Change generic reset-function to do the same */
2118 static int pri_reset_while_enabled(struct pci_dev *pdev)
2119 {
2120  u16 control;
2121  int pos;
2122 
2124  if (!pos)
2125  return -EINVAL;
2126 
2127  pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2128  control |= PCI_PRI_CTRL_RESET;
2129  pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2130 
2131  return 0;
2132 }
2133 
2134 static int pdev_iommuv2_enable(struct pci_dev *pdev)
2135 {
2136  bool reset_enable;
2137  int reqs, ret;
2138 
2139  /* FIXME: Hardcode number of outstanding requests for now */
2140  reqs = 32;
2141  if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2142  reqs = 1;
2143  reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2144 
2145  /* Only allow access to user-accessible pages */
2146  ret = pci_enable_pasid(pdev, 0);
2147  if (ret)
2148  goto out_err;
2149 
2150  /* First reset the PRI state of the device */
2151  ret = pci_reset_pri(pdev);
2152  if (ret)
2153  goto out_err;
2154 
2155  /* Enable PRI */
2156  ret = pci_enable_pri(pdev, reqs);
2157  if (ret)
2158  goto out_err;
2159 
2160  if (reset_enable) {
2161  ret = pri_reset_while_enabled(pdev);
2162  if (ret)
2163  goto out_err;
2164  }
2165 
2166  ret = pci_enable_ats(pdev, PAGE_SHIFT);
2167  if (ret)
2168  goto out_err;
2169 
2170  return 0;
2171 
2172 out_err:
2173  pci_disable_pri(pdev);
2174  pci_disable_pasid(pdev);
2175 
2176  return ret;
2177 }
2178 
2179 /* FIXME: Move this to PCI code */
2180 #define PCI_PRI_TLP_OFF (1 << 15)
2181 
2182 static bool pci_pri_tlp_required(struct pci_dev *pdev)
2183 {
2184  u16 status;
2185  int pos;
2186 
2188  if (!pos)
2189  return false;
2190 
2191  pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2192 
2193  return (status & PCI_PRI_TLP_OFF) ? true : false;
2194 }
2195 
2196 /*
2197  * If a device is not yet associated with a domain, this function
2198  * assigns it visible for the hardware
2199  */
2200 static int attach_device(struct device *dev,
2201  struct protection_domain *domain)
2202 {
2203  struct pci_dev *pdev = to_pci_dev(dev);
2204  struct iommu_dev_data *dev_data;
2205  unsigned long flags;
2206  int ret;
2207 
2208  dev_data = get_dev_data(dev);
2209 
2210  if (domain->flags & PD_IOMMUV2_MASK) {
2211  if (!dev_data->iommu_v2 || !dev_data->passthrough)
2212  return -EINVAL;
2213 
2214  if (pdev_iommuv2_enable(pdev) != 0)
2215  return -EINVAL;
2216 
2217  dev_data->ats.enabled = true;
2218  dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2219  dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2220  } else if (amd_iommu_iotlb_sup &&
2221  pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2222  dev_data->ats.enabled = true;
2223  dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2224  }
2225 
2226  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2227  ret = __attach_device(dev_data, domain);
2228  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2229 
2230  /*
2231  * We might boot into a crash-kernel here. The crashed kernel
2232  * left the caches in the IOMMU dirty. So we have to flush
2233  * here to evict all dirty stuff.
2234  */
2235  domain_flush_tlb_pde(domain);
2236 
2237  return ret;
2238 }
2239 
2240 /*
2241  * Removes a device from a protection domain (unlocked)
2242  */
2243 static void __detach_device(struct iommu_dev_data *dev_data)
2244 {
2245  struct protection_domain *domain;
2246  unsigned long flags;
2247 
2248  BUG_ON(!dev_data->domain);
2249 
2250  domain = dev_data->domain;
2251 
2252  spin_lock_irqsave(&domain->lock, flags);
2253 
2254  if (dev_data->alias_data != NULL) {
2255  struct iommu_dev_data *alias_data = dev_data->alias_data;
2256 
2257  if (atomic_dec_and_test(&alias_data->bind))
2258  do_detach(alias_data);
2259  }
2260 
2261  if (atomic_dec_and_test(&dev_data->bind))
2262  do_detach(dev_data);
2263 
2264  spin_unlock_irqrestore(&domain->lock, flags);
2265 
2266  /*
2267  * If we run in passthrough mode the device must be assigned to the
2268  * passthrough domain if it is detached from any other domain.
2269  * Make sure we can deassign from the pt_domain itself.
2270  */
2271  if (dev_data->passthrough &&
2272  (dev_data->domain == NULL && domain != pt_domain))
2273  __attach_device(dev_data, pt_domain);
2274 }
2275 
2276 /*
2277  * Removes a device from a protection domain (with devtable_lock held)
2278  */
2279 static void detach_device(struct device *dev)
2280 {
2281  struct protection_domain *domain;
2282  struct iommu_dev_data *dev_data;
2283  unsigned long flags;
2284 
2285  dev_data = get_dev_data(dev);
2286  domain = dev_data->domain;
2287 
2288  /* lock device table */
2289  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2290  __detach_device(dev_data);
2291  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2292 
2293  if (domain->flags & PD_IOMMUV2_MASK)
2294  pdev_iommuv2_disable(to_pci_dev(dev));
2295  else if (dev_data->ats.enabled)
2297 
2298  dev_data->ats.enabled = false;
2299 }
2300 
2301 /*
2302  * Find out the protection domain structure for a given PCI device. This
2303  * will give us the pointer to the page table root for example.
2304  */
2305 static struct protection_domain *domain_for_device(struct device *dev)
2306 {
2307  struct iommu_dev_data *dev_data;
2308  struct protection_domain *dom = NULL;
2309  unsigned long flags;
2310 
2311  dev_data = get_dev_data(dev);
2312 
2313  if (dev_data->domain)
2314  return dev_data->domain;
2315 
2316  if (dev_data->alias_data != NULL) {
2317  struct iommu_dev_data *alias_data = dev_data->alias_data;
2318 
2319  read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2320  if (alias_data->domain != NULL) {
2321  __attach_device(dev_data, alias_data->domain);
2322  dom = alias_data->domain;
2323  }
2324  read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2325  }
2326 
2327  return dom;
2328 }
2329 
2330 static int device_change_notifier(struct notifier_block *nb,
2331  unsigned long action, void *data)
2332 {
2333  struct dma_ops_domain *dma_domain;
2334  struct protection_domain *domain;
2335  struct iommu_dev_data *dev_data;
2336  struct device *dev = data;
2337  struct amd_iommu *iommu;
2338  unsigned long flags;
2339  u16 devid;
2340 
2341  if (!check_device(dev))
2342  return 0;
2343 
2344  devid = get_device_id(dev);
2345  iommu = amd_iommu_rlookup_table[devid];
2346  dev_data = get_dev_data(dev);
2347 
2348  switch (action) {
2350 
2351  domain = domain_for_device(dev);
2352 
2353  if (!domain)
2354  goto out;
2355  if (dev_data->passthrough)
2356  break;
2357  detach_device(dev);
2358  break;
2359  case BUS_NOTIFY_ADD_DEVICE:
2360 
2361  iommu_init_device(dev);
2362 
2363  /*
2364  * dev_data is still NULL and
2365  * got initialized in iommu_init_device
2366  */
2367  dev_data = get_dev_data(dev);
2368 
2369  if (iommu_pass_through || dev_data->iommu_v2) {
2370  dev_data->passthrough = true;
2371  attach_device(dev, pt_domain);
2372  break;
2373  }
2374 
2375  domain = domain_for_device(dev);
2376 
2377  /* allocate a protection domain if a device is added */
2378  dma_domain = find_protection_domain(devid);
2379  if (dma_domain)
2380  goto out;
2381  dma_domain = dma_ops_domain_alloc();
2382  if (!dma_domain)
2383  goto out;
2384  dma_domain->target_dev = devid;
2385 
2386  spin_lock_irqsave(&iommu_pd_list_lock, flags);
2387  list_add_tail(&dma_domain->list, &iommu_pd_list);
2388  spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2389 
2390  dev_data = get_dev_data(dev);
2391 
2392  dev->archdata.dma_ops = &amd_iommu_dma_ops;
2393 
2394  break;
2395  case BUS_NOTIFY_DEL_DEVICE:
2396 
2397  iommu_uninit_device(dev);
2398 
2399  default:
2400  goto out;
2401  }
2402 
2403  iommu_completion_wait(iommu);
2404 
2405 out:
2406  return 0;
2407 }
2408 
2409 static struct notifier_block device_nb = {
2410  .notifier_call = device_change_notifier,
2411 };
2412 
2414 {
2415  bus_register_notifier(&pci_bus_type, &device_nb);
2416 }
2417 
2418 /*****************************************************************************
2419  *
2420  * The next functions belong to the dma_ops mapping/unmapping code.
2421  *
2422  *****************************************************************************/
2423 
2424 /*
2425  * In the dma_ops path we only have the struct device. This function
2426  * finds the corresponding IOMMU, the protection domain and the
2427  * requestor id for a given device.
2428  * If the device is not yet associated with a domain this is also done
2429  * in this function.
2430  */
2431 static struct protection_domain *get_domain(struct device *dev)
2432 {
2433  struct protection_domain *domain;
2434  struct dma_ops_domain *dma_dom;
2435  u16 devid = get_device_id(dev);
2436 
2437  if (!check_device(dev))
2438  return ERR_PTR(-EINVAL);
2439 
2440  domain = domain_for_device(dev);
2441  if (domain != NULL && !dma_ops_domain(domain))
2442  return ERR_PTR(-EBUSY);
2443 
2444  if (domain != NULL)
2445  return domain;
2446 
2447  /* Device not bound yet - bind it */
2448  dma_dom = find_protection_domain(devid);
2449  if (!dma_dom)
2450  dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2451  attach_device(dev, &dma_dom->domain);
2452  DUMP_printk("Using protection domain %d for device %s\n",
2453  dma_dom->domain.id, dev_name(dev));
2454 
2455  return &dma_dom->domain;
2456 }
2457 
2458 static void update_device_table(struct protection_domain *domain)
2459 {
2460  struct iommu_dev_data *dev_data;
2461 
2462  list_for_each_entry(dev_data, &domain->dev_list, list)
2463  set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2464 }
2465 
2466 static void update_domain(struct protection_domain *domain)
2467 {
2468  if (!domain->updated)
2469  return;
2470 
2471  update_device_table(domain);
2472 
2473  domain_flush_devices(domain);
2474  domain_flush_tlb_pde(domain);
2475 
2476  domain->updated = false;
2477 }
2478 
2479 /*
2480  * This function fetches the PTE for a given address in the aperture
2481  */
2482 static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2483  unsigned long address)
2484 {
2485  struct aperture_range *aperture;
2486  u64 *pte, *pte_page;
2487 
2488  aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2489  if (!aperture)
2490  return NULL;
2491 
2492  pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2493  if (!pte) {
2494  pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2495  GFP_ATOMIC);
2496  aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2497  } else
2498  pte += PM_LEVEL_INDEX(0, address);
2499 
2500  update_domain(&dom->domain);
2501 
2502  return pte;
2503 }
2504 
2505 /*
2506  * This is the generic map function. It maps one 4kb page at paddr to
2507  * the given address in the DMA address space for the domain.
2508  */
2509 static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2510  unsigned long address,
2512  int direction)
2513 {
2514  u64 *pte, __pte;
2515 
2516  WARN_ON(address > dom->aperture_size);
2517 
2518  paddr &= PAGE_MASK;
2519 
2520  pte = dma_ops_get_pte(dom, address);
2521  if (!pte)
2522  return DMA_ERROR_CODE;
2523 
2524  __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2525 
2526  if (direction == DMA_TO_DEVICE)
2527  __pte |= IOMMU_PTE_IR;
2528  else if (direction == DMA_FROM_DEVICE)
2529  __pte |= IOMMU_PTE_IW;
2530  else if (direction == DMA_BIDIRECTIONAL)
2531  __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2532 
2533  WARN_ON(*pte);
2534 
2535  *pte = __pte;
2536 
2537  return (dma_addr_t)address;
2538 }
2539 
2540 /*
2541  * The generic unmapping function for on page in the DMA address space.
2542  */
2543 static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2544  unsigned long address)
2545 {
2546  struct aperture_range *aperture;
2547  u64 *pte;
2548 
2549  if (address >= dom->aperture_size)
2550  return;
2551 
2552  aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2553  if (!aperture)
2554  return;
2555 
2556  pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2557  if (!pte)
2558  return;
2559 
2560  pte += PM_LEVEL_INDEX(0, address);
2561 
2562  WARN_ON(!*pte);
2563 
2564  *pte = 0ULL;
2565 }
2566 
2567 /*
2568  * This function contains common code for mapping of a physically
2569  * contiguous memory region into DMA address space. It is used by all
2570  * mapping functions provided with this IOMMU driver.
2571  * Must be called with the domain lock held.
2572  */
2573 static dma_addr_t __map_single(struct device *dev,
2574  struct dma_ops_domain *dma_dom,
2575  phys_addr_t paddr,
2576  size_t size,
2577  int dir,
2578  bool align,
2579  u64 dma_mask)
2580 {
2581  dma_addr_t offset = paddr & ~PAGE_MASK;
2583  unsigned int pages;
2584  unsigned long align_mask = 0;
2585  int i;
2586 
2587  pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2588  paddr &= PAGE_MASK;
2589 
2590  INC_STATS_COUNTER(total_map_requests);
2591 
2592  if (pages > 1)
2593  INC_STATS_COUNTER(cross_page);
2594 
2595  if (align)
2596  align_mask = (1UL << get_order(size)) - 1;
2597 
2598 retry:
2599  address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2600  dma_mask);
2601  if (unlikely(address == DMA_ERROR_CODE)) {
2602  /*
2603  * setting next_address here will let the address
2604  * allocator only scan the new allocated range in the
2605  * first run. This is a small optimization.
2606  */
2607  dma_dom->next_address = dma_dom->aperture_size;
2608 
2609  if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2610  goto out;
2611 
2612  /*
2613  * aperture was successfully enlarged by 128 MB, try
2614  * allocation again
2615  */
2616  goto retry;
2617  }
2618 
2619  start = address;
2620  for (i = 0; i < pages; ++i) {
2621  ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2622  if (ret == DMA_ERROR_CODE)
2623  goto out_unmap;
2624 
2625  paddr += PAGE_SIZE;
2626  start += PAGE_SIZE;
2627  }
2628  address += offset;
2629 
2630  ADD_STATS_COUNTER(alloced_io_mem, size);
2631 
2632  if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2633  domain_flush_tlb(&dma_dom->domain);
2634  dma_dom->need_flush = false;
2635  } else if (unlikely(amd_iommu_np_cache))
2636  domain_flush_pages(&dma_dom->domain, address, size);
2637 
2638 out:
2639  return address;
2640 
2641 out_unmap:
2642 
2643  for (--i; i >= 0; --i) {
2644  start -= PAGE_SIZE;
2645  dma_ops_domain_unmap(dma_dom, start);
2646  }
2647 
2648  dma_ops_free_addresses(dma_dom, address, pages);
2649 
2650  return DMA_ERROR_CODE;
2651 }
2652 
2653 /*
2654  * Does the reverse of the __map_single function. Must be called with
2655  * the domain lock held too
2656  */
2657 static void __unmap_single(struct dma_ops_domain *dma_dom,
2659  size_t size,
2660  int dir)
2661 {
2662  dma_addr_t flush_addr;
2663  dma_addr_t i, start;
2664  unsigned int pages;
2665 
2666  if ((dma_addr == DMA_ERROR_CODE) ||
2667  (dma_addr + size > dma_dom->aperture_size))
2668  return;
2669 
2670  flush_addr = dma_addr;
2671  pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2672  dma_addr &= PAGE_MASK;
2673  start = dma_addr;
2674 
2675  for (i = 0; i < pages; ++i) {
2676  dma_ops_domain_unmap(dma_dom, start);
2677  start += PAGE_SIZE;
2678  }
2679 
2680  SUB_STATS_COUNTER(alloced_io_mem, size);
2681 
2682  dma_ops_free_addresses(dma_dom, dma_addr, pages);
2683 
2684  if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2685  domain_flush_pages(&dma_dom->domain, flush_addr, size);
2686  dma_dom->need_flush = false;
2687  }
2688 }
2689 
2690 /*
2691  * The exported map_single function for dma_ops.
2692  */
2693 static dma_addr_t map_page(struct device *dev, struct page *page,
2694  unsigned long offset, size_t size,
2695  enum dma_data_direction dir,
2696  struct dma_attrs *attrs)
2697 {
2698  unsigned long flags;
2699  struct protection_domain *domain;
2700  dma_addr_t addr;
2701  u64 dma_mask;
2702  phys_addr_t paddr = page_to_phys(page) + offset;
2703 
2704  INC_STATS_COUNTER(cnt_map_single);
2705 
2706  domain = get_domain(dev);
2707  if (PTR_ERR(domain) == -EINVAL)
2708  return (dma_addr_t)paddr;
2709  else if (IS_ERR(domain))
2710  return DMA_ERROR_CODE;
2711 
2712  dma_mask = *dev->dma_mask;
2713 
2714  spin_lock_irqsave(&domain->lock, flags);
2715 
2716  addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2717  dma_mask);
2718  if (addr == DMA_ERROR_CODE)
2719  goto out;
2720 
2721  domain_flush_complete(domain);
2722 
2723 out:
2724  spin_unlock_irqrestore(&domain->lock, flags);
2725 
2726  return addr;
2727 }
2728 
2729 /*
2730  * The exported unmap_single function for dma_ops.
2731  */
2732 static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2733  enum dma_data_direction dir, struct dma_attrs *attrs)
2734 {
2735  unsigned long flags;
2736  struct protection_domain *domain;
2737 
2738  INC_STATS_COUNTER(cnt_unmap_single);
2739 
2740  domain = get_domain(dev);
2741  if (IS_ERR(domain))
2742  return;
2743 
2744  spin_lock_irqsave(&domain->lock, flags);
2745 
2746  __unmap_single(domain->priv, dma_addr, size, dir);
2747 
2748  domain_flush_complete(domain);
2749 
2750  spin_unlock_irqrestore(&domain->lock, flags);
2751 }
2752 
2753 /*
2754  * This is a special map_sg function which is used if we should map a
2755  * device which is not handled by an AMD IOMMU in the system.
2756  */
2757 static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2758  int nelems, int dir)
2759 {
2760  struct scatterlist *s;
2761  int i;
2762 
2763  for_each_sg(sglist, s, nelems, i) {
2764  s->dma_address = (dma_addr_t)sg_phys(s);
2765  s->dma_length = s->length;
2766  }
2767 
2768  return nelems;
2769 }
2770 
2771 /*
2772  * The exported map_sg function for dma_ops (handles scatter-gather
2773  * lists).
2774  */
2775 static int map_sg(struct device *dev, struct scatterlist *sglist,
2776  int nelems, enum dma_data_direction dir,
2777  struct dma_attrs *attrs)
2778 {
2779  unsigned long flags;
2780  struct protection_domain *domain;
2781  int i;
2782  struct scatterlist *s;
2784  int mapped_elems = 0;
2785  u64 dma_mask;
2786 
2787  INC_STATS_COUNTER(cnt_map_sg);
2788 
2789  domain = get_domain(dev);
2790  if (PTR_ERR(domain) == -EINVAL)
2791  return map_sg_no_iommu(dev, sglist, nelems, dir);
2792  else if (IS_ERR(domain))
2793  return 0;
2794 
2795  dma_mask = *dev->dma_mask;
2796 
2797  spin_lock_irqsave(&domain->lock, flags);
2798 
2799  for_each_sg(sglist, s, nelems, i) {
2800  paddr = sg_phys(s);
2801 
2802  s->dma_address = __map_single(dev, domain->priv,
2803  paddr, s->length, dir, false,
2804  dma_mask);
2805 
2806  if (s->dma_address) {
2807  s->dma_length = s->length;
2808  mapped_elems++;
2809  } else
2810  goto unmap;
2811  }
2812 
2813  domain_flush_complete(domain);
2814 
2815 out:
2816  spin_unlock_irqrestore(&domain->lock, flags);
2817 
2818  return mapped_elems;
2819 unmap:
2820  for_each_sg(sglist, s, mapped_elems, i) {
2821  if (s->dma_address)
2822  __unmap_single(domain->priv, s->dma_address,
2823  s->dma_length, dir);
2824  s->dma_address = s->dma_length = 0;
2825  }
2826 
2827  mapped_elems = 0;
2828 
2829  goto out;
2830 }
2831 
2832 /*
2833  * The exported map_sg function for dma_ops (handles scatter-gather
2834  * lists).
2835  */
2836 static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2837  int nelems, enum dma_data_direction dir,
2838  struct dma_attrs *attrs)
2839 {
2840  unsigned long flags;
2841  struct protection_domain *domain;
2842  struct scatterlist *s;
2843  int i;
2844 
2845  INC_STATS_COUNTER(cnt_unmap_sg);
2846 
2847  domain = get_domain(dev);
2848  if (IS_ERR(domain))
2849  return;
2850 
2851  spin_lock_irqsave(&domain->lock, flags);
2852 
2853  for_each_sg(sglist, s, nelems, i) {
2854  __unmap_single(domain->priv, s->dma_address,
2855  s->dma_length, dir);
2856  s->dma_address = s->dma_length = 0;
2857  }
2858 
2859  domain_flush_complete(domain);
2860 
2861  spin_unlock_irqrestore(&domain->lock, flags);
2862 }
2863 
2864 /*
2865  * The exported alloc_coherent function for dma_ops.
2866  */
2867 static void *alloc_coherent(struct device *dev, size_t size,
2868  dma_addr_t *dma_addr, gfp_t flag,
2869  struct dma_attrs *attrs)
2870 {
2871  unsigned long flags;
2872  void *virt_addr;
2873  struct protection_domain *domain;
2875  u64 dma_mask = dev->coherent_dma_mask;
2876 
2877  INC_STATS_COUNTER(cnt_alloc_coherent);
2878 
2879  domain = get_domain(dev);
2880  if (PTR_ERR(domain) == -EINVAL) {
2881  virt_addr = (void *)__get_free_pages(flag, get_order(size));
2882  *dma_addr = __pa(virt_addr);
2883  return virt_addr;
2884  } else if (IS_ERR(domain))
2885  return NULL;
2886 
2887  dma_mask = dev->coherent_dma_mask;
2888  flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2889  flag |= __GFP_ZERO;
2890 
2891  virt_addr = (void *)__get_free_pages(flag, get_order(size));
2892  if (!virt_addr)
2893  return NULL;
2894 
2895  paddr = virt_to_phys(virt_addr);
2896 
2897  if (!dma_mask)
2898  dma_mask = *dev->dma_mask;
2899 
2900  spin_lock_irqsave(&domain->lock, flags);
2901 
2902  *dma_addr = __map_single(dev, domain->priv, paddr,
2903  size, DMA_BIDIRECTIONAL, true, dma_mask);
2904 
2905  if (*dma_addr == DMA_ERROR_CODE) {
2906  spin_unlock_irqrestore(&domain->lock, flags);
2907  goto out_free;
2908  }
2909 
2910  domain_flush_complete(domain);
2911 
2912  spin_unlock_irqrestore(&domain->lock, flags);
2913 
2914  return virt_addr;
2915 
2916 out_free:
2917 
2918  free_pages((unsigned long)virt_addr, get_order(size));
2919 
2920  return NULL;
2921 }
2922 
2923 /*
2924  * The exported free_coherent function for dma_ops.
2925  */
2926 static void free_coherent(struct device *dev, size_t size,
2927  void *virt_addr, dma_addr_t dma_addr,
2928  struct dma_attrs *attrs)
2929 {
2930  unsigned long flags;
2931  struct protection_domain *domain;
2932 
2933  INC_STATS_COUNTER(cnt_free_coherent);
2934 
2935  domain = get_domain(dev);
2936  if (IS_ERR(domain))
2937  goto free_mem;
2938 
2939  spin_lock_irqsave(&domain->lock, flags);
2940 
2941  __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2942 
2943  domain_flush_complete(domain);
2944 
2945  spin_unlock_irqrestore(&domain->lock, flags);
2946 
2947 free_mem:
2948  free_pages((unsigned long)virt_addr, get_order(size));
2949 }
2950 
2951 /*
2952  * This function is called by the DMA layer to find out if we can handle a
2953  * particular device. It is part of the dma_ops.
2954  */
2955 static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2956 {
2957  return check_device(dev);
2958 }
2959 
2960 /*
2961  * The function for pre-allocating protection domains.
2962  *
2963  * If the driver core informs the DMA layer if a driver grabs a device
2964  * we don't need to preallocate the protection domains anymore.
2965  * For now we have to.
2966  */
2967 static void __init prealloc_protection_domains(void)
2968 {
2969  struct iommu_dev_data *dev_data;
2970  struct dma_ops_domain *dma_dom;
2971  struct pci_dev *dev = NULL;
2972  u16 devid;
2973 
2974  for_each_pci_dev(dev) {
2975 
2976  /* Do we handle this device? */
2977  if (!check_device(&dev->dev))
2978  continue;
2979 
2980  dev_data = get_dev_data(&dev->dev);
2981  if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2982  /* Make sure passthrough domain is allocated */
2983  alloc_passthrough_domain();
2984  dev_data->passthrough = true;
2985  attach_device(&dev->dev, pt_domain);
2986  pr_info("AMD-Vi: Using passthrough domain for device %s\n",
2987  dev_name(&dev->dev));
2988  }
2989 
2990  /* Is there already any domain for it? */
2991  if (domain_for_device(&dev->dev))
2992  continue;
2993 
2994  devid = get_device_id(&dev->dev);
2995 
2996  dma_dom = dma_ops_domain_alloc();
2997  if (!dma_dom)
2998  continue;
2999  init_unity_mappings_for_device(dma_dom, devid);
3000  dma_dom->target_dev = devid;
3001 
3002  attach_device(&dev->dev, &dma_dom->domain);
3003 
3004  list_add_tail(&dma_dom->list, &iommu_pd_list);
3005  }
3006 }
3007 
3008 static struct dma_map_ops amd_iommu_dma_ops = {
3009  .alloc = alloc_coherent,
3010  .free = free_coherent,
3011  .map_page = map_page,
3012  .unmap_page = unmap_page,
3013  .map_sg = map_sg,
3014  .unmap_sg = unmap_sg,
3015  .dma_supported = amd_iommu_dma_supported,
3016 };
3017 
3018 static unsigned device_dma_ops_init(void)
3019 {
3020  struct iommu_dev_data *dev_data;
3021  struct pci_dev *pdev = NULL;
3022  unsigned unhandled = 0;
3023 
3024  for_each_pci_dev(pdev) {
3025  if (!check_device(&pdev->dev)) {
3026 
3027  iommu_ignore_device(&pdev->dev);
3028 
3029  unhandled += 1;
3030  continue;
3031  }
3032 
3033  dev_data = get_dev_data(&pdev->dev);
3034 
3035  if (!dev_data->passthrough)
3036  pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3037  else
3038  pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3039  }
3040 
3041  return unhandled;
3042 }
3043 
3044 /*
3045  * The function which clues the AMD IOMMU driver into dma_ops.
3046  */
3047 
3049 {
3050  bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3051 }
3052 
3054 {
3055  struct amd_iommu *iommu;
3056  int ret, unhandled;
3057 
3058  /*
3059  * first allocate a default protection domain for every IOMMU we
3060  * found in the system. Devices not assigned to any other
3061  * protection domain will be assigned to the default one.
3062  */
3063  for_each_iommu(iommu) {
3064  iommu->default_dom = dma_ops_domain_alloc();
3065  if (iommu->default_dom == NULL)
3066  return -ENOMEM;
3067  iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3068  ret = iommu_init_unity_mappings(iommu);
3069  if (ret)
3070  goto free_domains;
3071  }
3072 
3073  /*
3074  * Pre-allocate the protection domains for each device.
3075  */
3076  prealloc_protection_domains();
3077 
3078  iommu_detected = 1;
3079  swiotlb = 0;
3080 
3081  /* Make the driver finally visible to the drivers */
3082  unhandled = device_dma_ops_init();
3083  if (unhandled && max_pfn > MAX_DMA32_PFN) {
3084  /* There are unhandled devices - initialize swiotlb for them */
3085  swiotlb = 1;
3086  }
3087 
3088  amd_iommu_stats_init();
3089 
3091  pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3092  else
3093  pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3094 
3095  return 0;
3096 
3097 free_domains:
3098 
3099  for_each_iommu(iommu) {
3100  if (iommu->default_dom)
3101  dma_ops_domain_free(iommu->default_dom);
3102  }
3103 
3104  return ret;
3105 }
3106 
3107 /*****************************************************************************
3108  *
3109  * The following functions belong to the exported interface of AMD IOMMU
3110  *
3111  * This interface allows access to lower level functions of the IOMMU
3112  * like protection domain handling and assignement of devices to domains
3113  * which is not possible with the dma_ops interface.
3114  *
3115  *****************************************************************************/
3116 
3117 static void cleanup_domain(struct protection_domain *domain)
3118 {
3119  struct iommu_dev_data *dev_data, *next;
3120  unsigned long flags;
3121 
3122  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3123 
3124  list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3125  __detach_device(dev_data);
3126  atomic_set(&dev_data->bind, 0);
3127  }
3128 
3129  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3130 }
3131 
3132 static void protection_domain_free(struct protection_domain *domain)
3133 {
3134  if (!domain)
3135  return;
3136 
3137  del_domain_from_list(domain);
3138 
3139  if (domain->id)
3140  domain_id_free(domain->id);
3141 
3142  kfree(domain);
3143 }
3144 
3145 static struct protection_domain *protection_domain_alloc(void)
3146 {
3147  struct protection_domain *domain;
3148 
3149  domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3150  if (!domain)
3151  return NULL;
3152 
3153  spin_lock_init(&domain->lock);
3154  mutex_init(&domain->api_lock);
3155  domain->id = domain_id_alloc();
3156  if (!domain->id)
3157  goto out_err;
3158  INIT_LIST_HEAD(&domain->dev_list);
3159 
3160  add_domain_to_list(domain);
3161 
3162  return domain;
3163 
3164 out_err:
3165  kfree(domain);
3166 
3167  return NULL;
3168 }
3169 
3170 static int __init alloc_passthrough_domain(void)
3171 {
3172  if (pt_domain != NULL)
3173  return 0;
3174 
3175  /* allocate passthrough domain */
3176  pt_domain = protection_domain_alloc();
3177  if (!pt_domain)
3178  return -ENOMEM;
3179 
3180  pt_domain->mode = PAGE_MODE_NONE;
3181 
3182  return 0;
3183 }
3184 static int amd_iommu_domain_init(struct iommu_domain *dom)
3185 {
3186  struct protection_domain *domain;
3187 
3188  domain = protection_domain_alloc();
3189  if (!domain)
3190  goto out_free;
3191 
3192  domain->mode = PAGE_MODE_3_LEVEL;
3193  domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3194  if (!domain->pt_root)
3195  goto out_free;
3196 
3197  domain->iommu_domain = dom;
3198 
3199  dom->priv = domain;
3200 
3201  dom->geometry.aperture_start = 0;
3202  dom->geometry.aperture_end = ~0ULL;
3203  dom->geometry.force_aperture = true;
3204 
3205  return 0;
3206 
3207 out_free:
3208  protection_domain_free(domain);
3209 
3210  return -ENOMEM;
3211 }
3212 
3213 static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3214 {
3215  struct protection_domain *domain = dom->priv;
3216 
3217  if (!domain)
3218  return;
3219 
3220  if (domain->dev_cnt > 0)
3221  cleanup_domain(domain);
3222 
3223  BUG_ON(domain->dev_cnt != 0);
3224 
3225  if (domain->mode != PAGE_MODE_NONE)
3226  free_pagetable(domain);
3227 
3228  if (domain->flags & PD_IOMMUV2_MASK)
3229  free_gcr3_table(domain);
3230 
3231  protection_domain_free(domain);
3232 
3233  dom->priv = NULL;
3234 }
3235 
3236 static void amd_iommu_detach_device(struct iommu_domain *dom,
3237  struct device *dev)
3238 {
3239  struct iommu_dev_data *dev_data = dev->archdata.iommu;
3240  struct amd_iommu *iommu;
3241  u16 devid;
3242 
3243  if (!check_device(dev))
3244  return;
3245 
3246  devid = get_device_id(dev);
3247 
3248  if (dev_data->domain != NULL)
3249  detach_device(dev);
3250 
3251  iommu = amd_iommu_rlookup_table[devid];
3252  if (!iommu)
3253  return;
3254 
3255  iommu_completion_wait(iommu);
3256 }
3257 
3258 static int amd_iommu_attach_device(struct iommu_domain *dom,
3259  struct device *dev)
3260 {
3261  struct protection_domain *domain = dom->priv;
3262  struct iommu_dev_data *dev_data;
3263  struct amd_iommu *iommu;
3264  int ret;
3265 
3266  if (!check_device(dev))
3267  return -EINVAL;
3268 
3269  dev_data = dev->archdata.iommu;
3270 
3271  iommu = amd_iommu_rlookup_table[dev_data->devid];
3272  if (!iommu)
3273  return -EINVAL;
3274 
3275  if (dev_data->domain)
3276  detach_device(dev);
3277 
3278  ret = attach_device(dev, domain);
3279 
3280  iommu_completion_wait(iommu);
3281 
3282  return ret;
3283 }
3284 
3285 static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3286  phys_addr_t paddr, size_t page_size, int iommu_prot)
3287 {
3288  struct protection_domain *domain = dom->priv;
3289  int prot = 0;
3290  int ret;
3291 
3292  if (domain->mode == PAGE_MODE_NONE)
3293  return -EINVAL;
3294 
3295  if (iommu_prot & IOMMU_READ)
3296  prot |= IOMMU_PROT_IR;
3297  if (iommu_prot & IOMMU_WRITE)
3298  prot |= IOMMU_PROT_IW;
3299 
3300  mutex_lock(&domain->api_lock);
3301  ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3302  mutex_unlock(&domain->api_lock);
3303 
3304  return ret;
3305 }
3306 
3307 static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3308  size_t page_size)
3309 {
3310  struct protection_domain *domain = dom->priv;
3311  size_t unmap_size;
3312 
3313  if (domain->mode == PAGE_MODE_NONE)
3314  return -EINVAL;
3315 
3316  mutex_lock(&domain->api_lock);
3317  unmap_size = iommu_unmap_page(domain, iova, page_size);
3318  mutex_unlock(&domain->api_lock);
3319 
3320  domain_flush_tlb_pde(domain);
3321 
3322  return unmap_size;
3323 }
3324 
3325 static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3326  unsigned long iova)
3327 {
3328  struct protection_domain *domain = dom->priv;
3329  unsigned long offset_mask;
3331  u64 *pte, __pte;
3332 
3333  if (domain->mode == PAGE_MODE_NONE)
3334  return iova;
3335 
3336  pte = fetch_pte(domain, iova);
3337 
3338  if (!pte || !IOMMU_PTE_PRESENT(*pte))
3339  return 0;
3340 
3341  if (PM_PTE_LEVEL(*pte) == 0)
3342  offset_mask = PAGE_SIZE - 1;
3343  else
3344  offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3345 
3346  __pte = *pte & PM_ADDR_MASK;
3347  paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3348 
3349  return paddr;
3350 }
3351 
3352 static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3353  unsigned long cap)
3354 {
3355  switch (cap) {
3357  return 1;
3358  case IOMMU_CAP_INTR_REMAP:
3359  return irq_remapping_enabled;
3360  }
3361 
3362  return 0;
3363 }
3364 
3365 static struct iommu_ops amd_iommu_ops = {
3366  .domain_init = amd_iommu_domain_init,
3367  .domain_destroy = amd_iommu_domain_destroy,
3368  .attach_dev = amd_iommu_attach_device,
3369  .detach_dev = amd_iommu_detach_device,
3370  .map = amd_iommu_map,
3371  .unmap = amd_iommu_unmap,
3372  .iova_to_phys = amd_iommu_iova_to_phys,
3373  .domain_has_cap = amd_iommu_domain_has_cap,
3374  .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3375 };
3376 
3377 /*****************************************************************************
3378  *
3379  * The next functions do a basic initialization of IOMMU for pass through
3380  * mode
3381  *
3382  * In passthrough mode the IOMMU is initialized and enabled but not used for
3383  * DMA-API translation.
3384  *
3385  *****************************************************************************/
3386 
3388 {
3389  struct iommu_dev_data *dev_data;
3390  struct pci_dev *dev = NULL;
3391  struct amd_iommu *iommu;
3392  u16 devid;
3393  int ret;
3394 
3395  ret = alloc_passthrough_domain();
3396  if (ret)
3397  return ret;
3398 
3399  for_each_pci_dev(dev) {
3400  if (!check_device(&dev->dev))
3401  continue;
3402 
3403  dev_data = get_dev_data(&dev->dev);
3404  dev_data->passthrough = true;
3405 
3406  devid = get_device_id(&dev->dev);
3407 
3408  iommu = amd_iommu_rlookup_table[devid];
3409  if (!iommu)
3410  continue;
3411 
3412  attach_device(&dev->dev, pt_domain);
3413  }
3414 
3415  amd_iommu_stats_init();
3416 
3417  pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3418 
3419  return 0;
3420 }
3421 
3422 /* IOMMUv2 specific functions */
3424 {
3425  return atomic_notifier_chain_register(&ppr_notifier, nb);
3426 }
3428 
3430 {
3431  return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3432 }
3434 
3436 {
3437  struct protection_domain *domain = dom->priv;
3438  unsigned long flags;
3439 
3440  spin_lock_irqsave(&domain->lock, flags);
3441 
3442  /* Update data structure */
3443  domain->mode = PAGE_MODE_NONE;
3444  domain->updated = true;
3445 
3446  /* Make changes visible to IOMMUs */
3447  update_domain(domain);
3448 
3449  /* Page-table is not visible to IOMMU anymore, so free it */
3450  free_pagetable(domain);
3451 
3452  spin_unlock_irqrestore(&domain->lock, flags);
3453 }
3455 
3456 int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3457 {
3458  struct protection_domain *domain = dom->priv;
3459  unsigned long flags;
3460  int levels, ret;
3461 
3462  if (pasids <= 0 || pasids > (PASID_MASK + 1))
3463  return -EINVAL;
3464 
3465  /* Number of GCR3 table levels required */
3466  for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3467  levels += 1;
3468 
3469  if (levels > amd_iommu_max_glx_val)
3470  return -EINVAL;
3471 
3472  spin_lock_irqsave(&domain->lock, flags);
3473 
3474  /*
3475  * Save us all sanity checks whether devices already in the
3476  * domain support IOMMUv2. Just force that the domain has no
3477  * devices attached when it is switched into IOMMUv2 mode.
3478  */
3479  ret = -EBUSY;
3480  if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3481  goto out;
3482 
3483  ret = -ENOMEM;
3484  domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3485  if (domain->gcr3_tbl == NULL)
3486  goto out;
3487 
3488  domain->glx = levels;
3489  domain->flags |= PD_IOMMUV2_MASK;
3490  domain->updated = true;
3491 
3492  update_domain(domain);
3493 
3494  ret = 0;
3495 
3496 out:
3497  spin_unlock_irqrestore(&domain->lock, flags);
3498 
3499  return ret;
3500 }
3502 
3503 static int __flush_pasid(struct protection_domain *domain, int pasid,
3504  u64 address, bool size)
3505 {
3506  struct iommu_dev_data *dev_data;
3507  struct iommu_cmd cmd;
3508  int i, ret;
3509 
3510  if (!(domain->flags & PD_IOMMUV2_MASK))
3511  return -EINVAL;
3512 
3513  build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3514 
3515  /*
3516  * IOMMU TLB needs to be flushed before Device TLB to
3517  * prevent device TLB refill from IOMMU TLB
3518  */
3519  for (i = 0; i < amd_iommus_present; ++i) {
3520  if (domain->dev_iommu[i] == 0)
3521  continue;
3522 
3523  ret = iommu_queue_command(amd_iommus[i], &cmd);
3524  if (ret != 0)
3525  goto out;
3526  }
3527 
3528  /* Wait until IOMMU TLB flushes are complete */
3529  domain_flush_complete(domain);
3530 
3531  /* Now flush device TLBs */
3532  list_for_each_entry(dev_data, &domain->dev_list, list) {
3533  struct amd_iommu *iommu;
3534  int qdep;
3535 
3536  BUG_ON(!dev_data->ats.enabled);
3537 
3538  qdep = dev_data->ats.qdep;
3539  iommu = amd_iommu_rlookup_table[dev_data->devid];
3540 
3541  build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3542  qdep, address, size);
3543 
3544  ret = iommu_queue_command(iommu, &cmd);
3545  if (ret != 0)
3546  goto out;
3547  }
3548 
3549  /* Wait until all device TLBs are flushed */
3550  domain_flush_complete(domain);
3551 
3552  ret = 0;
3553 
3554 out:
3555 
3556  return ret;
3557 }
3558 
3559 static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3560  u64 address)
3561 {
3562  INC_STATS_COUNTER(invalidate_iotlb);
3563 
3564  return __flush_pasid(domain, pasid, address, false);
3565 }
3566 
3567 int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3568  u64 address)
3569 {
3570  struct protection_domain *domain = dom->priv;
3571  unsigned long flags;
3572  int ret;
3573 
3574  spin_lock_irqsave(&domain->lock, flags);
3575  ret = __amd_iommu_flush_page(domain, pasid, address);
3576  spin_unlock_irqrestore(&domain->lock, flags);
3577 
3578  return ret;
3579 }
3581 
3582 static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3583 {
3584  INC_STATS_COUNTER(invalidate_iotlb_all);
3585 
3586  return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3587  true);
3588 }
3589 
3590 int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3591 {
3592  struct protection_domain *domain = dom->priv;
3593  unsigned long flags;
3594  int ret;
3595 
3596  spin_lock_irqsave(&domain->lock, flags);
3597  ret = __amd_iommu_flush_tlb(domain, pasid);
3598  spin_unlock_irqrestore(&domain->lock, flags);
3599 
3600  return ret;
3601 }
3603 
3604 static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3605 {
3606  int index;
3607  u64 *pte;
3608 
3609  while (true) {
3610 
3611  index = (pasid >> (9 * level)) & 0x1ff;
3612  pte = &root[index];
3613 
3614  if (level == 0)
3615  break;
3616 
3617  if (!(*pte & GCR3_VALID)) {
3618  if (!alloc)
3619  return NULL;
3620 
3621  root = (void *)get_zeroed_page(GFP_ATOMIC);
3622  if (root == NULL)
3623  return NULL;
3624 
3625  *pte = __pa(root) | GCR3_VALID;
3626  }
3627 
3628  root = __va(*pte & PAGE_MASK);
3629 
3630  level -= 1;
3631  }
3632 
3633  return pte;
3634 }
3635 
3636 static int __set_gcr3(struct protection_domain *domain, int pasid,
3637  unsigned long cr3)
3638 {
3639  u64 *pte;
3640 
3641  if (domain->mode != PAGE_MODE_NONE)
3642  return -EINVAL;
3643 
3644  pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3645  if (pte == NULL)
3646  return -ENOMEM;
3647 
3648  *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3649 
3650  return __amd_iommu_flush_tlb(domain, pasid);
3651 }
3652 
3653 static int __clear_gcr3(struct protection_domain *domain, int pasid)
3654 {
3655  u64 *pte;
3656 
3657  if (domain->mode != PAGE_MODE_NONE)
3658  return -EINVAL;
3659 
3660  pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3661  if (pte == NULL)
3662  return 0;
3663 
3664  *pte = 0;
3665 
3666  return __amd_iommu_flush_tlb(domain, pasid);
3667 }
3668 
3669 int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3670  unsigned long cr3)
3671 {
3672  struct protection_domain *domain = dom->priv;
3673  unsigned long flags;
3674  int ret;
3675 
3676  spin_lock_irqsave(&domain->lock, flags);
3677  ret = __set_gcr3(domain, pasid, cr3);
3678  spin_unlock_irqrestore(&domain->lock, flags);
3679 
3680  return ret;
3681 }
3683 
3684 int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3685 {
3686  struct protection_domain *domain = dom->priv;
3687  unsigned long flags;
3688  int ret;
3689 
3690  spin_lock_irqsave(&domain->lock, flags);
3691  ret = __clear_gcr3(domain, pasid);
3692  spin_unlock_irqrestore(&domain->lock, flags);
3693 
3694  return ret;
3695 }
3697 
3698 int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3699  int status, int tag)
3700 {
3701  struct iommu_dev_data *dev_data;
3702  struct amd_iommu *iommu;
3703  struct iommu_cmd cmd;
3704 
3705  INC_STATS_COUNTER(complete_ppr);
3706 
3707  dev_data = get_dev_data(&pdev->dev);
3708  iommu = amd_iommu_rlookup_table[dev_data->devid];
3709 
3710  build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3711  tag, dev_data->pri_tlp);
3712 
3713  return iommu_queue_command(iommu, &cmd);
3714 }
3716 
3718 {
3719  struct protection_domain *domain;
3720 
3721  domain = get_domain(&pdev->dev);
3722  if (IS_ERR(domain))
3723  return NULL;
3724 
3725  /* Only return IOMMUv2 domains */
3726  if (!(domain->flags & PD_IOMMUV2_MASK))
3727  return NULL;
3728 
3729  return domain->iommu_domain;
3730 }
3732 
3733 void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3734 {
3735  struct iommu_dev_data *dev_data;
3736 
3737  if (!amd_iommu_v2_supported())
3738  return;
3739 
3740  dev_data = get_dev_data(&pdev->dev);
3741  dev_data->errata |= (1 << erratum);
3742 }
3744 
3746  struct amd_iommu_device_info *info)
3747 {
3748  int max_pasids;
3749  int pos;
3750 
3751  if (pdev == NULL || info == NULL)
3752  return -EINVAL;
3753 
3754  if (!amd_iommu_v2_supported())
3755  return -EINVAL;
3756 
3757  memset(info, 0, sizeof(*info));
3758 
3760  if (pos)
3761  info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3762 
3764  if (pos)
3765  info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3766 
3768  if (pos) {
3769  int features;
3770 
3771  max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3772  max_pasids = min(max_pasids, (1 << 20));
3773 
3774  info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3775  info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3776 
3777  features = pci_pasid_features(pdev);
3778  if (features & PCI_PASID_CAP_EXEC)
3779  info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3780  if (features & PCI_PASID_CAP_PRIV)
3781  info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3782  }
3783 
3784  return 0;
3785 }
3787 
3788 #ifdef CONFIG_IRQ_REMAP
3789 
3790 /*****************************************************************************
3791  *
3792  * Interrupt Remapping Implementation
3793  *
3794  *****************************************************************************/
3795 
3796 union irte {
3797  u32 val;
3798  struct {
3799  u32 valid : 1,
3800  no_fault : 1,
3801  int_type : 3,
3802  rq_eoi : 1,
3803  dm : 1,
3804  rsvd_1 : 1,
3805  destination : 8,
3806  vector : 8,
3807  rsvd_2 : 8;
3808  } fields;
3809 };
3810 
3811 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3812 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3813 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3814 #define DTE_IRQ_REMAP_ENABLE 1ULL
3815 
3816 static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3817 {
3818  u64 dte;
3819 
3820  dte = amd_iommu_dev_table[devid].data[2];
3821  dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3822  dte |= virt_to_phys(table->table);
3823  dte |= DTE_IRQ_REMAP_INTCTL;
3824  dte |= DTE_IRQ_TABLE_LEN;
3825  dte |= DTE_IRQ_REMAP_ENABLE;
3826 
3827  amd_iommu_dev_table[devid].data[2] = dte;
3828 }
3829 
3830 #define IRTE_ALLOCATED (~1U)
3831 
3832 static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3833 {
3834  struct irq_remap_table *table = NULL;
3835  struct amd_iommu *iommu;
3836  unsigned long flags;
3837  u16 alias;
3838 
3839  write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3840 
3841  iommu = amd_iommu_rlookup_table[devid];
3842  if (!iommu)
3843  goto out_unlock;
3844 
3845  table = irq_lookup_table[devid];
3846  if (table)
3847  goto out;
3848 
3849  alias = amd_iommu_alias_table[devid];
3850  table = irq_lookup_table[alias];
3851  if (table) {
3853  set_dte_irq_entry(devid, table);
3854  iommu_flush_dte(iommu, devid);
3855  goto out;
3856  }
3857 
3858  /* Nothing there yet, allocate new irq remapping table */
3859  table = kzalloc(sizeof(*table), GFP_ATOMIC);
3860  if (!table)
3861  goto out;
3862 
3863  if (ioapic)
3864  /* Keep the first 32 indexes free for IOAPIC interrupts */
3865  table->min_index = 32;
3866 
3867  table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3868  if (!table->table) {
3869  kfree(table);
3870  table = NULL;
3871  goto out;
3872  }
3873 
3874  memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3875 
3876  if (ioapic) {
3877  int i;
3878 
3879  for (i = 0; i < 32; ++i)
3880  table->table[i] = IRTE_ALLOCATED;
3881  }
3882 
3884  set_dte_irq_entry(devid, table);
3885  iommu_flush_dte(iommu, devid);
3886  if (devid != alias) {
3888  set_dte_irq_entry(devid, table);
3889  iommu_flush_dte(iommu, alias);
3890  }
3891 
3892 out:
3893  iommu_completion_wait(iommu);
3894 
3895 out_unlock:
3896  write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3897 
3898  return table;
3899 }
3900 
3901 static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3902 {
3903  struct irq_remap_table *table;
3904  unsigned long flags;
3905  int index, c;
3906 
3907  table = get_irq_table(devid, false);
3908  if (!table)
3909  return -ENODEV;
3910 
3911  spin_lock_irqsave(&table->lock, flags);
3912 
3913  /* Scan table for free entries */
3914  for (c = 0, index = table->min_index;
3915  index < MAX_IRQS_PER_TABLE;
3916  ++index) {
3917  if (table->table[index] == 0)
3918  c += 1;
3919  else
3920  c = 0;
3921 
3922  if (c == count) {
3923  struct irq_2_iommu *irte_info;
3924 
3925  for (; c != 0; --c)
3926  table->table[index - c + 1] = IRTE_ALLOCATED;
3927 
3928  index -= count - 1;
3929 
3930  irte_info = &cfg->irq_2_iommu;
3931  irte_info->sub_handle = devid;
3932  irte_info->irte_index = index;
3933  irte_info->iommu = (void *)cfg;
3934 
3935  goto out;
3936  }
3937  }
3938 
3939  index = -ENOSPC;
3940 
3941 out:
3942  spin_unlock_irqrestore(&table->lock, flags);
3943 
3944  return index;
3945 }
3946 
3947 static int get_irte(u16 devid, int index, union irte *irte)
3948 {
3949  struct irq_remap_table *table;
3950  unsigned long flags;
3951 
3952  table = get_irq_table(devid, false);
3953  if (!table)
3954  return -ENOMEM;
3955 
3956  spin_lock_irqsave(&table->lock, flags);
3957  irte->val = table->table[index];
3958  spin_unlock_irqrestore(&table->lock, flags);
3959 
3960  return 0;
3961 }
3962 
3963 static int modify_irte(u16 devid, int index, union irte irte)
3964 {
3965  struct irq_remap_table *table;
3966  struct amd_iommu *iommu;
3967  unsigned long flags;
3968 
3969  iommu = amd_iommu_rlookup_table[devid];
3970  if (iommu == NULL)
3971  return -EINVAL;
3972 
3973  table = get_irq_table(devid, false);
3974  if (!table)
3975  return -ENOMEM;
3976 
3977  spin_lock_irqsave(&table->lock, flags);
3978  table->table[index] = irte.val;
3979  spin_unlock_irqrestore(&table->lock, flags);
3980 
3981  iommu_flush_irt(iommu, devid);
3982  iommu_completion_wait(iommu);
3983 
3984  return 0;
3985 }
3986 
3987 static void free_irte(u16 devid, int index)
3988 {
3989  struct irq_remap_table *table;
3990  struct amd_iommu *iommu;
3991  unsigned long flags;
3992 
3993  iommu = amd_iommu_rlookup_table[devid];
3994  if (iommu == NULL)
3995  return;
3996 
3997  table = get_irq_table(devid, false);
3998  if (!table)
3999  return;
4000 
4001  spin_lock_irqsave(&table->lock, flags);
4002  table->table[index] = 0;
4003  spin_unlock_irqrestore(&table->lock, flags);
4004 
4005  iommu_flush_irt(iommu, devid);
4006  iommu_completion_wait(iommu);
4007 }
4008 
4009 static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4010  unsigned int destination, int vector,
4011  struct io_apic_irq_attr *attr)
4012 {
4013  struct irq_remap_table *table;
4014  struct irq_2_iommu *irte_info;
4015  struct irq_cfg *cfg;
4016  union irte irte;
4017  int ioapic_id;
4018  int index;
4019  int devid;
4020  int ret;
4021 
4022  cfg = irq_get_chip_data(irq);
4023  if (!cfg)
4024  return -EINVAL;
4025 
4026  irte_info = &cfg->irq_2_iommu;
4027  ioapic_id = mpc_ioapic_id(attr->ioapic);
4028  devid = get_ioapic_devid(ioapic_id);
4029 
4030  if (devid < 0)
4031  return devid;
4032 
4033  table = get_irq_table(devid, true);
4034  if (table == NULL)
4035  return -ENOMEM;
4036 
4037  index = attr->ioapic_pin;
4038 
4039  /* Setup IRQ remapping info */
4040  irte_info->sub_handle = devid;
4041  irte_info->irte_index = index;
4042  irte_info->iommu = (void *)cfg;
4043 
4044  /* Setup IRTE for IOMMU */
4045  irte.val = 0;
4046  irte.fields.vector = vector;
4047  irte.fields.int_type = apic->irq_delivery_mode;
4048  irte.fields.destination = destination;
4049  irte.fields.dm = apic->irq_dest_mode;
4050  irte.fields.valid = 1;
4051 
4052  ret = modify_irte(devid, index, irte);
4053  if (ret)
4054  return ret;
4055 
4056  /* Setup IOAPIC entry */
4057  memset(entry, 0, sizeof(*entry));
4058 
4059  entry->vector = index;
4060  entry->mask = 0;
4061  entry->trigger = attr->trigger;
4062  entry->polarity = attr->polarity;
4063 
4064  /*
4065  * Mask level triggered irqs.
4066  */
4067  if (attr->trigger)
4068  entry->mask = 1;
4069 
4070  return 0;
4071 }
4072 
4073 static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4074  bool force)
4075 {
4076  struct irq_2_iommu *irte_info;
4077  unsigned int dest, irq;
4078  struct irq_cfg *cfg;
4079  union irte irte;
4080  int err;
4081 
4082  if (!config_enabled(CONFIG_SMP))
4083  return -1;
4084 
4085  cfg = data->chip_data;
4086  irq = data->irq;
4087  irte_info = &cfg->irq_2_iommu;
4088 
4089  if (!cpumask_intersects(mask, cpu_online_mask))
4090  return -EINVAL;
4091 
4092  if (get_irte(irte_info->sub_handle, irte_info->irte_index, &irte))
4093  return -EBUSY;
4094 
4095  if (assign_irq_vector(irq, cfg, mask))
4096  return -EBUSY;
4097 
4098  err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4099  if (err) {
4100  if (assign_irq_vector(irq, cfg, data->affinity))
4101  pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4102  return err;
4103  }
4104 
4105  irte.fields.vector = cfg->vector;
4106  irte.fields.destination = dest;
4107 
4108  modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
4109 
4110  if (cfg->move_in_progress)
4111  send_cleanup_vector(cfg);
4112 
4113  cpumask_copy(data->affinity, mask);
4114 
4115  return 0;
4116 }
4117 
4118 static int free_irq(int irq)
4119 {
4120  struct irq_2_iommu *irte_info;
4121  struct irq_cfg *cfg;
4122 
4123  cfg = irq_get_chip_data(irq);
4124  if (!cfg)
4125  return -EINVAL;
4126 
4127  irte_info = &cfg->irq_2_iommu;
4128 
4129  free_irte(irte_info->sub_handle, irte_info->irte_index);
4130 
4131  return 0;
4132 }
4133 
4134 static void compose_msi_msg(struct pci_dev *pdev,
4135  unsigned int irq, unsigned int dest,
4136  struct msi_msg *msg, u8 hpet_id)
4137 {
4138  struct irq_2_iommu *irte_info;
4139  struct irq_cfg *cfg;
4140  union irte irte;
4141 
4142  cfg = irq_get_chip_data(irq);
4143  if (!cfg)
4144  return;
4145 
4146  irte_info = &cfg->irq_2_iommu;
4147 
4148  irte.val = 0;
4149  irte.fields.vector = cfg->vector;
4150  irte.fields.int_type = apic->irq_delivery_mode;
4151  irte.fields.destination = dest;
4152  irte.fields.dm = apic->irq_dest_mode;
4153  irte.fields.valid = 1;
4154 
4155  modify_irte(irte_info->sub_handle, irte_info->irte_index, irte);
4156 
4159  msg->data = irte_info->irte_index;
4160 }
4161 
4162 static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4163 {
4164  struct irq_cfg *cfg;
4165  int index;
4166  u16 devid;
4167 
4168  if (!pdev)
4169  return -EINVAL;
4170 
4171  cfg = irq_get_chip_data(irq);
4172  if (!cfg)
4173  return -EINVAL;
4174 
4175  devid = get_device_id(&pdev->dev);
4176  index = alloc_irq_index(cfg, devid, nvec);
4177 
4178  return index < 0 ? MAX_IRQS_PER_TABLE : index;
4179 }
4180 
4181 static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4182  int index, int offset)
4183 {
4184  struct irq_2_iommu *irte_info;
4185  struct irq_cfg *cfg;
4186  u16 devid;
4187 
4188  if (!pdev)
4189  return -EINVAL;
4190 
4191  cfg = irq_get_chip_data(irq);
4192  if (!cfg)
4193  return -EINVAL;
4194 
4195  if (index >= MAX_IRQS_PER_TABLE)
4196  return 0;
4197 
4198  devid = get_device_id(&pdev->dev);
4199  irte_info = &cfg->irq_2_iommu;
4200 
4201  irte_info->sub_handle = devid;
4202  irte_info->irte_index = index + offset;
4203  irte_info->iommu = (void *)cfg;
4204 
4205  return 0;
4206 }
4207 
4208 static int setup_hpet_msi(unsigned int irq, unsigned int id)
4209 {
4210  struct irq_2_iommu *irte_info;
4211  struct irq_cfg *cfg;
4212  int index, devid;
4213 
4214  cfg = irq_get_chip_data(irq);
4215  if (!cfg)
4216  return -EINVAL;
4217 
4218  irte_info = &cfg->irq_2_iommu;
4219  devid = get_hpet_devid(id);
4220  if (devid < 0)
4221  return devid;
4222 
4223  index = alloc_irq_index(cfg, devid, 1);
4224  if (index < 0)
4225  return index;
4226 
4227  irte_info->sub_handle = devid;
4228  irte_info->irte_index = index;
4229  irte_info->iommu = (void *)cfg;
4230 
4231  return 0;
4232 }
4233 
4234 struct irq_remap_ops amd_iommu_irq_ops = {
4235  .supported = amd_iommu_supported,
4236  .prepare = amd_iommu_prepare,
4237  .enable = amd_iommu_enable,
4238  .disable = amd_iommu_disable,
4239  .reenable = amd_iommu_reenable,
4240  .enable_faulting = amd_iommu_enable_faulting,
4241  .setup_ioapic_entry = setup_ioapic_entry,
4242  .set_affinity = set_affinity,
4243  .free_irq = free_irq,
4244  .compose_msi_msg = compose_msi_msg,
4245  .msi_alloc_irq = msi_alloc_irq,
4246  .msi_setup_irq = msi_setup_irq,
4247  .setup_hpet_msi = setup_hpet_msi,
4248 };
4249 #endif