Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
main.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010 Broadcom Corporation
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
11  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
13  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
14  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/pci_ids.h>
20 #include <linux/if_ether.h>
21 #include <net/cfg80211.h>
22 #include <net/mac80211.h>
23 #include <brcm_hw_ids.h>
24 #include <aiutils.h>
25 #include <chipcommon.h>
26 #include "rate.h"
27 #include "scb.h"
28 #include "phy/phy_hal.h"
29 #include "channel.h"
30 #include "antsel.h"
31 #include "stf.h"
32 #include "ampdu.h"
33 #include "mac80211_if.h"
34 #include "ucode_loader.h"
35 #include "main.h"
36 #include "soc.h"
37 
38 /*
39  * Indication for txflowcontrol that all priority bits in
40  * TXQ_STOP_FOR_PRIOFC_MASK are to be considered.
41  */
42 #define ALLPRIO -1
43 
44 /* watchdog timer, in unit of ms */
45 #define TIMER_INTERVAL_WATCHDOG 1000
46 /* radio monitor timer, in unit of ms */
47 #define TIMER_INTERVAL_RADIOCHK 800
48 
49 /* beacon interval, in unit of 1024TU */
50 #define BEACON_INTERVAL_DEFAULT 100
51 
52 /* n-mode support capability */
53 /* 2x2 includes both 1x1 & 2x2 devices
54  * reserved #define 2 for future when we want to separate 1x1 & 2x2 and
55  * control it independently
56  */
57 #define WL_11N_2x2 1
58 #define WL_11N_3x3 3
59 #define WL_11N_4x4 4
60 
61 #define EDCF_ACI_MASK 0x60
62 #define EDCF_ACI_SHIFT 5
63 #define EDCF_ECWMIN_MASK 0x0f
64 #define EDCF_ECWMAX_SHIFT 4
65 #define EDCF_AIFSN_MASK 0x0f
66 #define EDCF_AIFSN_MAX 15
67 #define EDCF_ECWMAX_MASK 0xf0
68 
69 #define EDCF_AC_BE_TXOP_STA 0x0000
70 #define EDCF_AC_BK_TXOP_STA 0x0000
71 #define EDCF_AC_VO_ACI_STA 0x62
72 #define EDCF_AC_VO_ECW_STA 0x32
73 #define EDCF_AC_VI_ACI_STA 0x42
74 #define EDCF_AC_VI_ECW_STA 0x43
75 #define EDCF_AC_BK_ECW_STA 0xA4
76 #define EDCF_AC_VI_TXOP_STA 0x005e
77 #define EDCF_AC_VO_TXOP_STA 0x002f
78 #define EDCF_AC_BE_ACI_STA 0x03
79 #define EDCF_AC_BE_ECW_STA 0xA4
80 #define EDCF_AC_BK_ACI_STA 0x27
81 #define EDCF_AC_VO_TXOP_AP 0x002f
82 
83 #define EDCF_TXOP2USEC(txop) ((txop) << 5)
84 #define EDCF_ECW2CW(exp) ((1 << (exp)) - 1)
85 
86 #define APHY_SYMBOL_TIME 4
87 #define APHY_PREAMBLE_TIME 16
88 #define APHY_SIGNAL_TIME 4
89 #define APHY_SIFS_TIME 16
90 #define APHY_SERVICE_NBITS 16
91 #define APHY_TAIL_NBITS 6
92 #define BPHY_SIFS_TIME 10
93 #define BPHY_PLCP_SHORT_TIME 96
94 
95 #define PREN_PREAMBLE 24
96 #define PREN_MM_EXT 12
97 #define PREN_PREAMBLE_EXT 4
98 
99 #define DOT11_MAC_HDR_LEN 24
100 #define DOT11_ACK_LEN 10
101 #define DOT11_BA_LEN 4
102 #define DOT11_OFDM_SIGNAL_EXTENSION 6
103 #define DOT11_MIN_FRAG_LEN 256
104 #define DOT11_RTS_LEN 16
105 #define DOT11_CTS_LEN 10
106 #define DOT11_BA_BITMAP_LEN 128
107 #define DOT11_MIN_BEACON_PERIOD 1
108 #define DOT11_MAX_BEACON_PERIOD 0xFFFF
109 #define DOT11_MAXNUMFRAGS 16
110 #define DOT11_MAX_FRAG_LEN 2346
111 
112 #define BPHY_PLCP_TIME 192
113 #define RIFS_11N_TIME 2
114 
115 /* length of the BCN template area */
116 #define BCN_TMPL_LEN 512
117 
118 /* brcms_bss_info flag bit values */
119 #define BRCMS_BSS_HT 0x0020 /* BSS is HT (MIMO) capable */
120 
121 /* chip rx buffer offset */
122 #define BRCMS_HWRXOFF 38
123 
124 /* rfdisable delay timer 500 ms, runs of ALP clock */
125 #define RFDISABLE_DEFAULT 10000000
126 
127 #define BRCMS_TEMPSENSE_PERIOD 10 /* 10 second timeout */
128 
129 /* precedences numbers for wlc queues. These are twice as may levels as
130  * 802.1D priorities.
131  * Odd numbers are used for HI priority traffic at same precedence levels
132  * These constants are used ONLY by wlc_prio2prec_map. Do not use them
133  * elsewhere.
134  */
135 #define _BRCMS_PREC_NONE 0 /* None = - */
136 #define _BRCMS_PREC_BK 2 /* BK - Background */
137 #define _BRCMS_PREC_BE 4 /* BE - Best-effort */
138 #define _BRCMS_PREC_EE 6 /* EE - Excellent-effort */
139 #define _BRCMS_PREC_CL 8 /* CL - Controlled Load */
140 #define _BRCMS_PREC_VI 10 /* Vi - Video */
141 #define _BRCMS_PREC_VO 12 /* Vo - Voice */
142 #define _BRCMS_PREC_NC 14 /* NC - Network Control */
143 
144 /* synthpu_dly times in us */
145 #define SYNTHPU_DLY_APHY_US 3700
146 #define SYNTHPU_DLY_BPHY_US 1050
147 #define SYNTHPU_DLY_NPHY_US 2048
148 #define SYNTHPU_DLY_LPPHY_US 300
149 
150 #define ANTCNT 10 /* vanilla M_MAX_ANTCNT val */
151 
152 /* Per-AC retry limit register definitions; uses defs.h bitfield macros */
153 #define EDCF_SHORT_S 0
154 #define EDCF_SFB_S 4
155 #define EDCF_LONG_S 8
156 #define EDCF_LFB_S 12
157 #define EDCF_SHORT_M BITFIELD_MASK(4)
158 #define EDCF_SFB_M BITFIELD_MASK(4)
159 #define EDCF_LONG_M BITFIELD_MASK(4)
160 #define EDCF_LFB_M BITFIELD_MASK(4)
161 
162 #define RETRY_SHORT_DEF 7 /* Default Short retry Limit */
163 #define RETRY_SHORT_MAX 255 /* Maximum Short retry Limit */
164 #define RETRY_LONG_DEF 4 /* Default Long retry count */
165 #define RETRY_SHORT_FB 3 /* Short count for fb rate */
166 #define RETRY_LONG_FB 2 /* Long count for fb rate */
167 
168 #define APHY_CWMIN 15
169 #define PHY_CWMAX 1023
170 
171 #define EDCF_AIFSN_MIN 1
172 
173 #define FRAGNUM_MASK 0xF
174 
175 #define APHY_SLOT_TIME 9
176 #define BPHY_SLOT_TIME 20
177 
178 #define WL_SPURAVOID_OFF 0
179 #define WL_SPURAVOID_ON1 1
180 #define WL_SPURAVOID_ON2 2
181 
182 /* invalid core flags, use the saved coreflags */
183 #define BRCMS_USE_COREFLAGS 0xffffffff
184 
185 /* values for PLCPHdr_override */
186 #define BRCMS_PLCP_AUTO -1
187 #define BRCMS_PLCP_SHORT 0
188 #define BRCMS_PLCP_LONG 1
189 
190 /* values for g_protection_override and n_protection_override */
191 #define BRCMS_PROTECTION_AUTO -1
192 #define BRCMS_PROTECTION_OFF 0
193 #define BRCMS_PROTECTION_ON 1
194 #define BRCMS_PROTECTION_MMHDR_ONLY 2
195 #define BRCMS_PROTECTION_CTS_ONLY 3
196 
197 /* values for g_protection_control and n_protection_control */
198 #define BRCMS_PROTECTION_CTL_OFF 0
199 #define BRCMS_PROTECTION_CTL_LOCAL 1
200 #define BRCMS_PROTECTION_CTL_OVERLAP 2
201 
202 /* values for n_protection */
203 #define BRCMS_N_PROTECTION_OFF 0
204 #define BRCMS_N_PROTECTION_OPTIONAL 1
205 #define BRCMS_N_PROTECTION_20IN40 2
206 #define BRCMS_N_PROTECTION_MIXEDMODE 3
207 
208 /* values for band specific 40MHz capabilities */
209 #define BRCMS_N_BW_20ALL 0
210 #define BRCMS_N_BW_40ALL 1
211 #define BRCMS_N_BW_20IN2G_40IN5G 2
212 
213 /* bitflags for SGI support (sgi_rx iovar) */
214 #define BRCMS_N_SGI_20 0x01
215 #define BRCMS_N_SGI_40 0x02
216 
217 /* defines used by the nrate iovar */
218 /* MSC in use,indicates b0-6 holds an mcs */
219 #define NRATE_MCS_INUSE 0x00000080
220 /* rate/mcs value */
221 #define NRATE_RATE_MASK 0x0000007f
222 /* stf mode mask: siso, cdd, stbc, sdm */
223 #define NRATE_STF_MASK 0x0000ff00
224 /* stf mode shift */
225 #define NRATE_STF_SHIFT 8
226 /* bit indicate to override mcs only */
227 #define NRATE_OVERRIDE_MCS_ONLY 0x40000000
228 #define NRATE_SGI_MASK 0x00800000 /* sgi mode */
229 #define NRATE_SGI_SHIFT 23 /* sgi mode */
230 #define NRATE_LDPC_CODING 0x00400000 /* adv coding in use */
231 #define NRATE_LDPC_SHIFT 22 /* ldpc shift */
232 
233 #define NRATE_STF_SISO 0 /* stf mode SISO */
234 #define NRATE_STF_CDD 1 /* stf mode CDD */
235 #define NRATE_STF_STBC 2 /* stf mode STBC */
236 #define NRATE_STF_SDM 3 /* stf mode SDM */
237 
238 #define MAX_DMA_SEGS 4
239 
240 /* Max # of entries in Tx FIFO based on 4kb page size */
241 #define NTXD 256
242 /* Max # of entries in Rx FIFO based on 4kb page size */
243 #define NRXD 256
244 
245 /* try to keep this # rbufs posted to the chip */
246 #define NRXBUFPOST 32
247 
248 /* data msg txq hiwat mark */
249 #define BRCMS_DATAHIWAT 50
250 
251 /* max # frames to process in brcms_c_recv() */
252 #define RXBND 8
253 /* max # tx status to process in wlc_txstatus() */
254 #define TXSBND 8
255 
256 /* brcmu_format_flags() bit description structure */
259  const char *name;
260 };
261 
262 /*
263  * The following table lists the buffer memory allocated to xmt fifos in HW.
264  * the size is in units of 256bytes(one block), total size is HW dependent
265  * ucode has default fifo partition, sw can overwrite if necessary
266  *
267  * This is documented in twiki under the topic UcodeTxFifo. Please ensure
268  * the twiki is updated before making changes.
269  */
270 
271 /* Starting corerev for the fifo size table */
272 #define XMTFIFOTBL_STARTREV 17
273 
274 struct d11init {
278 };
279 
280 struct edcf_acparam {
284 } __packed;
285 
286 const u8 prio2fifo[NUMPRIO] = {
287  TX_AC_BE_FIFO, /* 0 BE AC_BE Best Effort */
288  TX_AC_BK_FIFO, /* 1 BK AC_BK Background */
289  TX_AC_BK_FIFO, /* 2 -- AC_BK Background */
290  TX_AC_BE_FIFO, /* 3 EE AC_BE Best Effort */
291  TX_AC_VI_FIFO, /* 4 CL AC_VI Video */
292  TX_AC_VI_FIFO, /* 5 VI AC_VI Video */
293  TX_AC_VO_FIFO, /* 6 VO AC_VO Voice */
294  TX_AC_VO_FIFO /* 7 NC AC_VO Voice */
295 };
296 
297 /* debug/trace */
299 #if defined(DEBUG)
301 #else
302  0;
303 #endif /* DEBUG */
304 
305 /* TX FIFO number to WME/802.1E Access Category */
306 static const u8 wme_fifo2ac[] = {
312  IEEE80211_AC_BE
313 };
314 
315 /* ieee80211 Access Category to TX FIFO number */
316 static const u8 wme_ac2fifo[] = {
321 };
322 
323 /* 802.1D Priority to precedence queue mapping */
325  _BRCMS_PREC_BE, /* 0 BE - Best-effort */
326  _BRCMS_PREC_BK, /* 1 BK - Background */
327  _BRCMS_PREC_NONE, /* 2 None = - */
328  _BRCMS_PREC_EE, /* 3 EE - Excellent-effort */
329  _BRCMS_PREC_CL, /* 4 CL - Controlled Load */
330  _BRCMS_PREC_VI, /* 5 Vi - Video */
331  _BRCMS_PREC_VO, /* 6 Vo - Voice */
332  _BRCMS_PREC_NC, /* 7 NC - Network Control */
333 };
334 
335 static const u16 xmtfifo_sz[][NFIFO] = {
336  /* corerev 17: 5120, 49152, 49152, 5376, 4352, 1280 */
337  {20, 192, 192, 21, 17, 5},
338  /* corerev 18: */
339  {0, 0, 0, 0, 0, 0},
340  /* corerev 19: */
341  {0, 0, 0, 0, 0, 0},
342  /* corerev 20: 5120, 49152, 49152, 5376, 4352, 1280 */
343  {20, 192, 192, 21, 17, 5},
344  /* corerev 21: 2304, 14848, 5632, 3584, 3584, 1280 */
345  {9, 58, 22, 14, 14, 5},
346  /* corerev 22: 5120, 49152, 49152, 5376, 4352, 1280 */
347  {20, 192, 192, 21, 17, 5},
348  /* corerev 23: 5120, 49152, 49152, 5376, 4352, 1280 */
349  {20, 192, 192, 21, 17, 5},
350  /* corerev 24: 2304, 14848, 5632, 3584, 3584, 1280 */
351  {9, 58, 22, 14, 14, 5},
352  /* corerev 25: */
353  {0, 0, 0, 0, 0, 0},
354  /* corerev 26: */
355  {0, 0, 0, 0, 0, 0},
356  /* corerev 27: */
357  {0, 0, 0, 0, 0, 0},
358  /* corerev 28: 2304, 14848, 5632, 3584, 3584, 1280 */
359  {9, 58, 22, 14, 14, 5},
360 };
361 
362 #ifdef DEBUG
363 static const char * const fifo_names[] = {
364  "AC_BK", "AC_BE", "AC_VI", "AC_VO", "BCMC", "ATIM" };
365 #else
366 static const char fifo_names[6][0];
367 #endif
368 
369 #ifdef DEBUG
370 /* pointer to most recently allocated wl/wlc */
371 static struct brcms_c_info *wlc_info_dbg = (struct brcms_c_info *) (NULL);
372 #endif
373 
374 /* Find basic rate for a given rate */
375 static u8 brcms_basic_rate(struct brcms_c_info *wlc, u32 rspec)
376 {
377  if (is_mcs_rate(rspec))
378  return wlc->band->basic_rate[mcs_table[rspec & RSPEC_RATE_MASK]
379  .leg_ofdm];
380  return wlc->band->basic_rate[rspec & RSPEC_RATE_MASK];
381 }
382 
383 static u16 frametype(u32 rspec, u8 mimoframe)
384 {
385  if (is_mcs_rate(rspec))
386  return mimoframe;
387  return is_cck_rate(rspec) ? FT_CCK : FT_OFDM;
388 }
389 
390 /* currently the best mechanism for determining SIFS is the band in use */
391 static u16 get_sifs(struct brcms_band *band)
392 {
393  return band->bandtype == BRCM_BAND_5G ? APHY_SIFS_TIME :
395 }
396 
397 /*
398  * Detect Card removed.
399  * Even checking an sbconfig register read will not false trigger when the core
400  * is in reset it breaks CF address mechanism. Accessing gphy phyversion will
401  * cause SB error if aphy is in reset on 4306B0-DB. Need a simple accessible
402  * reg with fixed 0/1 pattern (some platforms return all 0).
403  * If clocks are present, call the sb routine which will figure out if the
404  * device is removed.
405  */
406 static bool brcms_deviceremoved(struct brcms_c_info *wlc)
407 {
408  u32 macctrl;
409 
410  if (!wlc->hw->clk)
411  return ai_deviceremoved(wlc->hw->sih);
412  macctrl = bcma_read32(wlc->hw->d11core,
413  D11REGOFFS(maccontrol));
414  return (macctrl & (MCTL_PSM_JMP_0 | MCTL_IHR_EN)) != MCTL_IHR_EN;
415 }
416 
417 /* sum the individual fifo tx pending packet counts */
418 static s16 brcms_txpktpendtot(struct brcms_c_info *wlc)
419 {
420  return wlc->core->txpktpend[0] + wlc->core->txpktpend[1] +
421  wlc->core->txpktpend[2] + wlc->core->txpktpend[3];
422 }
423 
424 static bool brcms_is_mband_unlocked(struct brcms_c_info *wlc)
425 {
426  return wlc->pub->_nbands > 1 && !wlc->bandlocked;
427 }
428 
429 static int brcms_chspec_bw(u16 chanspec)
430 {
431  if (CHSPEC_IS40(chanspec))
432  return BRCMS_40_MHZ;
433  if (CHSPEC_IS20(chanspec))
434  return BRCMS_20_MHZ;
435 
436  return BRCMS_10_MHZ;
437 }
438 
439 static void brcms_c_bsscfg_mfree(struct brcms_bss_cfg *cfg)
440 {
441  if (cfg == NULL)
442  return;
443 
444  kfree(cfg->current_bss);
445  kfree(cfg);
446 }
447 
448 static void brcms_c_detach_mfree(struct brcms_c_info *wlc)
449 {
450  if (wlc == NULL)
451  return;
452 
453  brcms_c_bsscfg_mfree(wlc->bsscfg);
454  kfree(wlc->pub);
455  kfree(wlc->modulecb);
456  kfree(wlc->default_bss);
457  kfree(wlc->protection);
458  kfree(wlc->stf);
459  kfree(wlc->bandstate[0]);
460  kfree(wlc->corestate->macstat_snapshot);
461  kfree(wlc->corestate);
462  kfree(wlc->hw->bandstate[0]);
463  kfree(wlc->hw);
464 
465  /* free the wlc */
466  kfree(wlc);
467  wlc = NULL;
468 }
469 
470 static struct brcms_bss_cfg *brcms_c_bsscfg_malloc(uint unit)
471 {
472  struct brcms_bss_cfg *cfg;
473 
474  cfg = kzalloc(sizeof(struct brcms_bss_cfg), GFP_ATOMIC);
475  if (cfg == NULL)
476  goto fail;
477 
478  cfg->current_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC);
479  if (cfg->current_bss == NULL)
480  goto fail;
481 
482  return cfg;
483 
484  fail:
485  brcms_c_bsscfg_mfree(cfg);
486  return NULL;
487 }
488 
489 static struct brcms_c_info *
490 brcms_c_attach_malloc(uint unit, uint *err, uint devid)
491 {
492  struct brcms_c_info *wlc;
493 
494  wlc = kzalloc(sizeof(struct brcms_c_info), GFP_ATOMIC);
495  if (wlc == NULL) {
496  *err = 1002;
497  goto fail;
498  }
499 
500  /* allocate struct brcms_c_pub state structure */
501  wlc->pub = kzalloc(sizeof(struct brcms_pub), GFP_ATOMIC);
502  if (wlc->pub == NULL) {
503  *err = 1003;
504  goto fail;
505  }
506  wlc->pub->wlc = wlc;
507 
508  /* allocate struct brcms_hardware state structure */
509 
510  wlc->hw = kzalloc(sizeof(struct brcms_hardware), GFP_ATOMIC);
511  if (wlc->hw == NULL) {
512  *err = 1005;
513  goto fail;
514  }
515  wlc->hw->wlc = wlc;
516 
517  wlc->hw->bandstate[0] =
518  kzalloc(sizeof(struct brcms_hw_band) * MAXBANDS, GFP_ATOMIC);
519  if (wlc->hw->bandstate[0] == NULL) {
520  *err = 1006;
521  goto fail;
522  } else {
523  int i;
524 
525  for (i = 1; i < MAXBANDS; i++)
526  wlc->hw->bandstate[i] = (struct brcms_hw_band *)
527  ((unsigned long)wlc->hw->bandstate[0] +
528  (sizeof(struct brcms_hw_band) * i));
529  }
530 
531  wlc->modulecb =
532  kzalloc(sizeof(struct modulecb) * BRCMS_MAXMODULES, GFP_ATOMIC);
533  if (wlc->modulecb == NULL) {
534  *err = 1009;
535  goto fail;
536  }
537 
538  wlc->default_bss = kzalloc(sizeof(struct brcms_bss_info), GFP_ATOMIC);
539  if (wlc->default_bss == NULL) {
540  *err = 1010;
541  goto fail;
542  }
543 
544  wlc->bsscfg = brcms_c_bsscfg_malloc(unit);
545  if (wlc->bsscfg == NULL) {
546  *err = 1011;
547  goto fail;
548  }
549 
550  wlc->protection = kzalloc(sizeof(struct brcms_protection),
551  GFP_ATOMIC);
552  if (wlc->protection == NULL) {
553  *err = 1016;
554  goto fail;
555  }
556 
557  wlc->stf = kzalloc(sizeof(struct brcms_stf), GFP_ATOMIC);
558  if (wlc->stf == NULL) {
559  *err = 1017;
560  goto fail;
561  }
562 
563  wlc->bandstate[0] =
564  kzalloc(sizeof(struct brcms_band)*MAXBANDS, GFP_ATOMIC);
565  if (wlc->bandstate[0] == NULL) {
566  *err = 1025;
567  goto fail;
568  } else {
569  int i;
570 
571  for (i = 1; i < MAXBANDS; i++)
572  wlc->bandstate[i] = (struct brcms_band *)
573  ((unsigned long)wlc->bandstate[0]
574  + (sizeof(struct brcms_band)*i));
575  }
576 
577  wlc->corestate = kzalloc(sizeof(struct brcms_core), GFP_ATOMIC);
578  if (wlc->corestate == NULL) {
579  *err = 1026;
580  goto fail;
581  }
582 
583  wlc->corestate->macstat_snapshot =
584  kzalloc(sizeof(struct macstat), GFP_ATOMIC);
585  if (wlc->corestate->macstat_snapshot == NULL) {
586  *err = 1027;
587  goto fail;
588  }
589 
590  return wlc;
591 
592  fail:
593  brcms_c_detach_mfree(wlc);
594  return NULL;
595 }
596 
597 /*
598  * Update the slot timing for standard 11b/g (20us slots)
599  * or shortslot 11g (9us slots)
600  * The PSM needs to be suspended for this call.
601  */
602 static void brcms_b_update_slot_timing(struct brcms_hardware *wlc_hw,
603  bool shortslot)
604 {
605  struct bcma_device *core = wlc_hw->d11core;
606 
607  if (shortslot) {
608  /* 11g short slot: 11a timing */
609  bcma_write16(core, D11REGOFFS(ifs_slot), 0x0207);
611  } else {
612  /* 11g long slot: 11b timing */
613  bcma_write16(core, D11REGOFFS(ifs_slot), 0x0212);
615  }
616 }
617 
618 /*
619  * calculate frame duration of a given rate and length, return
620  * time in usec unit
621  */
622 static uint brcms_c_calc_frame_time(struct brcms_c_info *wlc, u32 ratespec,
623  u8 preamble_type, uint mac_len)
624 {
625  uint nsyms, dur = 0, Ndps, kNdps;
626  uint rate = rspec2rate(ratespec);
627 
628  if (rate == 0) {
629  wiphy_err(wlc->wiphy, "wl%d: WAR: using rate of 1 mbps\n",
630  wlc->pub->unit);
631  rate = BRCM_RATE_1M;
632  }
633 
634  BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, len%d\n",
635  wlc->pub->unit, ratespec, preamble_type, mac_len);
636 
637  if (is_mcs_rate(ratespec)) {
638  uint mcs = ratespec & RSPEC_RATE_MASK;
639  int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec);
640 
641  dur = PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
642  if (preamble_type == BRCMS_MM_PREAMBLE)
643  dur += PREN_MM_EXT;
644  /* 1000Ndbps = kbps * 4 */
645  kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
646  rspec_issgi(ratespec)) * 4;
647 
648  if (rspec_stc(ratespec) == 0)
649  nsyms =
650  CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
651  APHY_TAIL_NBITS) * 1000, kNdps);
652  else
653  /* STBC needs to have even number of symbols */
654  nsyms =
655  2 *
656  CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
657  APHY_TAIL_NBITS) * 1000, 2 * kNdps);
658 
659  dur += APHY_SYMBOL_TIME * nsyms;
660  if (wlc->band->bandtype == BRCM_BAND_2G)
662  } else if (is_ofdm_rate(rate)) {
663  dur = APHY_PREAMBLE_TIME;
664  dur += APHY_SIGNAL_TIME;
665  /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
666  Ndps = rate * 2;
667  /* NSyms = CEILING((SERVICE + 8*NBytes + TAIL) / Ndbps) */
668  nsyms =
669  CEIL((APHY_SERVICE_NBITS + 8 * mac_len + APHY_TAIL_NBITS),
670  Ndps);
671  dur += APHY_SYMBOL_TIME * nsyms;
672  if (wlc->band->bandtype == BRCM_BAND_2G)
674  } else {
675  /*
676  * calc # bits * 2 so factor of 2 in rate (1/2 mbps)
677  * will divide out
678  */
679  mac_len = mac_len * 8 * 2;
680  /* calc ceiling of bits/rate = microseconds of air time */
681  dur = (mac_len + rate - 1) / rate;
682  if (preamble_type & BRCMS_SHORT_PREAMBLE)
683  dur += BPHY_PLCP_SHORT_TIME;
684  else
685  dur += BPHY_PLCP_TIME;
686  }
687  return dur;
688 }
689 
690 static void brcms_c_write_inits(struct brcms_hardware *wlc_hw,
691  const struct d11init *inits)
692 {
693  struct bcma_device *core = wlc_hw->d11core;
694  int i;
695  uint offset;
696  u16 size;
697  u32 value;
698 
699  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
700 
701  for (i = 0; inits[i].addr != cpu_to_le16(0xffff); i++) {
702  size = le16_to_cpu(inits[i].size);
703  offset = le16_to_cpu(inits[i].addr);
704  value = le32_to_cpu(inits[i].value);
705  if (size == 2)
706  bcma_write16(core, offset, value);
707  else if (size == 4)
708  bcma_write32(core, offset, value);
709  else
710  break;
711  }
712 }
713 
714 static void brcms_c_write_mhf(struct brcms_hardware *wlc_hw, u16 *mhfs)
715 {
716  u8 idx;
717  u16 addr[] = {
720  };
721 
722  for (idx = 0; idx < MHFMAX; idx++)
723  brcms_b_write_shm(wlc_hw, addr[idx], mhfs[idx]);
724 }
725 
726 static void brcms_c_ucode_bsinit(struct brcms_hardware *wlc_hw)
727 {
728  struct wiphy *wiphy = wlc_hw->wlc->wiphy;
729  struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
730 
731  /* init microcode host flags */
732  brcms_c_write_mhf(wlc_hw, wlc_hw->band->mhfs);
733 
734  /* do band-specific ucode IHR, SHM, and SCR inits */
735  if (D11REV_IS(wlc_hw->corerev, 23)) {
736  if (BRCMS_ISNPHY(wlc_hw->band))
737  brcms_c_write_inits(wlc_hw, ucode->d11n0bsinitvals16);
738  else
739  wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev"
740  " %d\n", __func__, wlc_hw->unit,
741  wlc_hw->corerev);
742  } else {
743  if (D11REV_IS(wlc_hw->corerev, 24)) {
744  if (BRCMS_ISLCNPHY(wlc_hw->band))
745  brcms_c_write_inits(wlc_hw,
746  ucode->d11lcn0bsinitvals24);
747  else
748  wiphy_err(wiphy, "%s: wl%d: unsupported phy in"
749  " core rev %d\n", __func__,
750  wlc_hw->unit, wlc_hw->corerev);
751  } else {
752  wiphy_err(wiphy, "%s: wl%d: unsupported corerev %d\n",
753  __func__, wlc_hw->unit, wlc_hw->corerev);
754  }
755  }
756 }
757 
758 static void brcms_b_core_ioctl(struct brcms_hardware *wlc_hw, u32 m, u32 v)
759 {
760  struct bcma_device *core = wlc_hw->d11core;
761  u32 ioctl = bcma_aread32(core, BCMA_IOCTL) & ~m;
762 
763  bcma_awrite32(core, BCMA_IOCTL, ioctl | v);
764 }
765 
766 static void brcms_b_core_phy_clk(struct brcms_hardware *wlc_hw, bool clk)
767 {
768  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: clk %d\n", wlc_hw->unit, clk);
769 
770  wlc_hw->phyclk = clk;
771 
772  if (OFF == clk) { /* clear gmode bit, put phy into reset */
773 
774  brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC | SICF_GMODE),
775  (SICF_PRST | SICF_FGC));
776  udelay(1);
777  brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_PRST);
778  udelay(1);
779 
780  } else { /* take phy out of reset */
781 
782  brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_FGC), SICF_FGC);
783  udelay(1);
784  brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0);
785  udelay(1);
786 
787  }
788 }
789 
790 /* low-level band switch utility routine */
791 static void brcms_c_setxband(struct brcms_hardware *wlc_hw, uint bandunit)
792 {
793  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit,
794  bandunit);
795 
796  wlc_hw->band = wlc_hw->bandstate[bandunit];
797 
798  /*
799  * BMAC_NOTE:
800  * until we eliminate need for wlc->band refs in low level code
801  */
802  wlc_hw->wlc->band = wlc_hw->wlc->bandstate[bandunit];
803 
804  /* set gmode core flag */
805  if (wlc_hw->sbclk && !wlc_hw->noreset) {
806  u32 gmode = 0;
807 
808  if (bandunit == 0)
809  gmode = SICF_GMODE;
810 
811  brcms_b_core_ioctl(wlc_hw, SICF_GMODE, gmode);
812  }
813 }
814 
815 /* switch to new band but leave it inactive */
816 static u32 brcms_c_setband_inact(struct brcms_c_info *wlc, uint bandunit)
817 {
818  struct brcms_hardware *wlc_hw = wlc->hw;
819  u32 macintmask;
820  u32 macctrl;
821 
822  BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit);
823  macctrl = bcma_read32(wlc_hw->d11core,
825  WARN_ON((macctrl & MCTL_EN_MAC) != 0);
826 
827  /* disable interrupts */
828  macintmask = brcms_intrsoff(wlc->wl);
829 
830  /* radio off */
831  wlc_phy_switch_radio(wlc_hw->band->pi, OFF);
832 
833  brcms_b_core_phy_clk(wlc_hw, OFF);
834 
835  brcms_c_setxband(wlc_hw, bandunit);
836 
837  return macintmask;
838 }
839 
840 /* process an individual struct tx_status */
841 static bool
842 brcms_c_dotxstatus(struct brcms_c_info *wlc, struct tx_status *txs)
843 {
844  struct sk_buff *p;
845  uint queue;
846  struct d11txh *txh;
847  struct scb *scb = NULL;
848  bool free_pdu;
849  int tx_rts, tx_frame_count, tx_rts_count;
850  uint totlen, supr_status;
851  bool lastframe;
852  struct ieee80211_hdr *h;
853  u16 mcl;
854  struct ieee80211_tx_info *tx_info;
855  struct ieee80211_tx_rate *txrate;
856  int i;
857 
858  /* discard intermediate indications for ucode with one legitimate case:
859  * e.g. if "useRTS" is set. ucode did a successful rts/cts exchange,
860  * but the subsequent tx of DATA failed. so it will start rts/cts
861  * from the beginning (resetting the rts transmission count)
862  */
863  if (!(txs->status & TX_STATUS_AMPDU)
864  && (txs->status & TX_STATUS_INTERMEDIATE)) {
865  BCMMSG(wlc->wiphy, "INTERMEDIATE but not AMPDU\n");
866  return false;
867  }
868 
869  queue = txs->frameid & TXFID_QUEUE_MASK;
870  if (queue >= NFIFO) {
871  p = NULL;
872  goto fatal;
873  }
874 
875  p = dma_getnexttxp(wlc->hw->di[queue], DMA_RANGE_TRANSMITTED);
876  if (p == NULL)
877  goto fatal;
878 
879  txh = (struct d11txh *) (p->data);
880  mcl = le16_to_cpu(txh->MacTxControlLow);
881 
882  if (txs->phyerr) {
884  wiphy_err(wlc->wiphy, "phyerr 0x%x, rate 0x%x\n",
885  txs->phyerr, txh->MainRates);
886  brcms_c_print_txdesc(txh);
887  }
889  }
890 
891  if (txs->frameid != le16_to_cpu(txh->TxFrameID))
892  goto fatal;
893  tx_info = IEEE80211_SKB_CB(p);
894  h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN);
895 
896  if (tx_info->rate_driver_data[0])
897  scb = &wlc->pri_scb;
898 
899  if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
900  brcms_c_ampdu_dotxstatus(wlc->ampdu, scb, p, txs);
901  return false;
902  }
903 
904  supr_status = txs->status & TX_STATUS_SUPR_MASK;
905  if (supr_status == TX_STATUS_SUPR_BADCH)
906  BCMMSG(wlc->wiphy,
907  "%s: Pkt tx suppressed, possibly channel %d\n",
908  __func__, CHSPEC_CHANNEL(wlc->default_bss->chanspec));
909 
910  tx_rts = le16_to_cpu(txh->MacTxControlLow) & TXC_SENDRTS;
911  tx_frame_count =
913  tx_rts_count =
915 
916  lastframe = !ieee80211_has_morefrags(h->frame_control);
917 
918  if (!lastframe) {
919  wiphy_err(wlc->wiphy, "Not last frame!\n");
920  } else {
921  /*
922  * Set information to be consumed by Minstrel ht.
923  *
924  * The "fallback limit" is the number of tx attempts a given
925  * MPDU is sent at the "primary" rate. Tx attempts beyond that
926  * limit are sent at the "secondary" rate.
927  * A 'short frame' does not exceed RTS treshold.
928  */
929  u16 sfbl, /* Short Frame Rate Fallback Limit */
930  lfbl, /* Long Frame Rate Fallback Limit */
931  fbl;
932 
933  if (queue < IEEE80211_NUM_ACS) {
934  sfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]],
935  EDCF_SFB);
936  lfbl = GFIELD(wlc->wme_retries[wme_fifo2ac[queue]],
937  EDCF_LFB);
938  } else {
939  sfbl = wlc->SFBL;
940  lfbl = wlc->LFBL;
941  }
942 
943  txrate = tx_info->status.rates;
944  if (txrate[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
945  fbl = lfbl;
946  else
947  fbl = sfbl;
948 
949  ieee80211_tx_info_clear_status(tx_info);
950 
951  if ((tx_frame_count > fbl) && (txrate[1].idx >= 0)) {
952  /*
953  * rate selection requested a fallback rate
954  * and we used it
955  */
956  txrate[0].count = fbl;
957  txrate[1].count = tx_frame_count - fbl;
958  } else {
959  /*
960  * rate selection did not request fallback rate, or
961  * we didn't need it
962  */
963  txrate[0].count = tx_frame_count;
964  /*
965  * rc80211_minstrel.c:minstrel_tx_status() expects
966  * unused rates to be marked with idx = -1
967  */
968  txrate[1].idx = -1;
969  txrate[1].count = 0;
970  }
971 
972  /* clear the rest of the rates */
973  for (i = 2; i < IEEE80211_TX_MAX_RATES; i++) {
974  txrate[i].idx = -1;
975  txrate[i].count = 0;
976  }
977 
978  if (txs->status & TX_STATUS_ACK_RCV)
979  tx_info->flags |= IEEE80211_TX_STAT_ACK;
980  }
981 
982  totlen = p->len;
983  free_pdu = true;
984 
985  brcms_c_txfifo_complete(wlc, queue, 1);
986 
987  if (lastframe) {
988  /* remove PLCP & Broadcom tx descriptor header */
990  skb_pull(p, D11_TXH_LEN);
991  ieee80211_tx_status_irqsafe(wlc->pub->ieee_hw, p);
992  } else {
993  wiphy_err(wlc->wiphy, "%s: Not last frame => not calling "
994  "tx_status\n", __func__);
995  }
996 
997  return false;
998 
999  fatal:
1000  if (p)
1002 
1003  return true;
1004 
1005 }
1006 
1007 /* process tx completion events in BMAC
1008  * Return true if more tx status need to be processed. false otherwise.
1009  */
1010 static bool
1011 brcms_b_txstatus(struct brcms_hardware *wlc_hw, bool bound, bool *fatal)
1012 {
1013  bool morepending = false;
1014  struct brcms_c_info *wlc = wlc_hw->wlc;
1015  struct bcma_device *core;
1016  struct tx_status txstatus, *txs;
1017  u32 s1, s2;
1018  uint n = 0;
1019  /*
1020  * Param 'max_tx_num' indicates max. # tx status to process before
1021  * break out.
1022  */
1023  uint max_tx_num = bound ? TXSBND : -1;
1024 
1025  BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit);
1026 
1027  txs = &txstatus;
1028  core = wlc_hw->d11core;
1029  *fatal = false;
1030  s1 = bcma_read32(core, D11REGOFFS(frmtxstatus));
1031  while (!(*fatal)
1032  && (s1 & TXS_V)) {
1033 
1034  if (s1 == 0xffffffff) {
1035  wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n",
1036  wlc_hw->unit, __func__);
1037  return morepending;
1038  }
1039  s2 = bcma_read32(core, D11REGOFFS(frmtxstatus2));
1040 
1041  txs->status = s1 & TXS_STATUS_MASK;
1042  txs->frameid = (s1 & TXS_FID_MASK) >> TXS_FID_SHIFT;
1043  txs->sequence = s2 & TXS_SEQ_MASK;
1044  txs->phyerr = (s2 & TXS_PTX_MASK) >> TXS_PTX_SHIFT;
1045  txs->lasttxtime = 0;
1046 
1047  *fatal = brcms_c_dotxstatus(wlc_hw->wlc, txs);
1048 
1049  /* !give others some time to run! */
1050  if (++n >= max_tx_num)
1051  break;
1052  s1 = bcma_read32(core, D11REGOFFS(frmtxstatus));
1053  }
1054 
1055  if (*fatal)
1056  return 0;
1057 
1058  if (n >= max_tx_num)
1059  morepending = true;
1060 
1061  if (!pktq_empty(&wlc->pkt_queue->q))
1062  brcms_c_send_q(wlc);
1063 
1064  return morepending;
1065 }
1066 
1067 static void brcms_c_tbtt(struct brcms_c_info *wlc)
1068 {
1069  if (!wlc->bsscfg->BSS)
1070  /*
1071  * DirFrmQ is now valid...defer setting until end
1072  * of ATIM window
1073  */
1074  wlc->qvalid |= MCMD_DIRFRMQVAL;
1075 }
1076 
1077 /* set initial host flags value */
1078 static void
1079 brcms_c_mhfdef(struct brcms_c_info *wlc, u16 *mhfs, u16 mhf2_init)
1080 {
1081  struct brcms_hardware *wlc_hw = wlc->hw;
1082 
1083  memset(mhfs, 0, MHFMAX * sizeof(u16));
1084 
1085  mhfs[MHF2] |= mhf2_init;
1086 
1087  /* prohibit use of slowclock on multifunction boards */
1088  if (wlc_hw->boardflags & BFL_NOPLLDOWN)
1089  mhfs[MHF1] |= MHF1_FORCEFASTCLK;
1090 
1091  if (BRCMS_ISNPHY(wlc_hw->band) && NREV_LT(wlc_hw->band->phyrev, 2)) {
1092  mhfs[MHF2] |= MHF2_NPHY40MHZ_WAR;
1093  mhfs[MHF1] |= MHF1_IQSWAP_WAR;
1094  }
1095 }
1096 
1097 static uint
1098 dmareg(uint direction, uint fifonum)
1099 {
1100  if (direction == DMA_TX)
1101  return offsetof(struct d11regs, fifo64regs[fifonum].dmaxmt);
1102  return offsetof(struct d11regs, fifo64regs[fifonum].dmarcv);
1103 }
1104 
1105 static bool brcms_b_attach_dmapio(struct brcms_c_info *wlc, uint j, bool wme)
1106 {
1107  uint i;
1108  char name[8];
1109  /*
1110  * ucode host flag 2 needed for pio mode, independent of band and fifo
1111  */
1112  u16 pio_mhf2 = 0;
1113  struct brcms_hardware *wlc_hw = wlc->hw;
1114  uint unit = wlc_hw->unit;
1115  struct wiphy *wiphy = wlc->wiphy;
1116 
1117  /* name and offsets for dma_attach */
1118  snprintf(name, sizeof(name), "wl%d", unit);
1119 
1120  if (wlc_hw->di[0] == NULL) { /* Init FIFOs */
1121  int dma_attach_err = 0;
1122 
1123  /*
1124  * FIFO 0
1125  * TX: TX_AC_BK_FIFO (TX AC Background data packets)
1126  * RX: RX_FIFO (RX data packets)
1127  */
1128  wlc_hw->di[0] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core,
1129  (wme ? dmareg(DMA_TX, 0) : 0),
1130  dmareg(DMA_RX, 0),
1131  (wme ? NTXD : 0), NRXD,
1132  RXBUFSZ, -1, NRXBUFPOST,
1134  dma_attach_err |= (NULL == wlc_hw->di[0]);
1135 
1136  /*
1137  * FIFO 1
1138  * TX: TX_AC_BE_FIFO (TX AC Best-Effort data packets)
1139  * (legacy) TX_DATA_FIFO (TX data packets)
1140  * RX: UNUSED
1141  */
1142  wlc_hw->di[1] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core,
1143  dmareg(DMA_TX, 1), 0,
1144  NTXD, 0, 0, -1, 0, 0,
1145  &brcm_msg_level);
1146  dma_attach_err |= (NULL == wlc_hw->di[1]);
1147 
1148  /*
1149  * FIFO 2
1150  * TX: TX_AC_VI_FIFO (TX AC Video data packets)
1151  * RX: UNUSED
1152  */
1153  wlc_hw->di[2] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core,
1154  dmareg(DMA_TX, 2), 0,
1155  NTXD, 0, 0, -1, 0, 0,
1156  &brcm_msg_level);
1157  dma_attach_err |= (NULL == wlc_hw->di[2]);
1158  /*
1159  * FIFO 3
1160  * TX: TX_AC_VO_FIFO (TX AC Voice data packets)
1161  * (legacy) TX_CTL_FIFO (TX control & mgmt packets)
1162  */
1163  wlc_hw->di[3] = dma_attach(name, wlc_hw->sih, wlc_hw->d11core,
1164  dmareg(DMA_TX, 3),
1165  0, NTXD, 0, 0, -1,
1166  0, 0, &brcm_msg_level);
1167  dma_attach_err |= (NULL == wlc_hw->di[3]);
1168 /* Cleaner to leave this as if with AP defined */
1169 
1170  if (dma_attach_err) {
1171  wiphy_err(wiphy, "wl%d: wlc_attach: dma_attach failed"
1172  "\n", unit);
1173  return false;
1174  }
1175 
1176  /* get pointer to dma engine tx flow control variable */
1177  for (i = 0; i < NFIFO; i++)
1178  if (wlc_hw->di[i])
1179  wlc_hw->txavail[i] =
1180  (uint *) dma_getvar(wlc_hw->di[i],
1181  "&txavail");
1182  }
1183 
1184  /* initial ucode host flags */
1185  brcms_c_mhfdef(wlc, wlc_hw->band->mhfs, pio_mhf2);
1186 
1187  return true;
1188 }
1189 
1190 static void brcms_b_detach_dmapio(struct brcms_hardware *wlc_hw)
1191 {
1192  uint j;
1193 
1194  for (j = 0; j < NFIFO; j++) {
1195  if (wlc_hw->di[j]) {
1196  dma_detach(wlc_hw->di[j]);
1197  wlc_hw->di[j] = NULL;
1198  }
1199  }
1200 }
1201 
1202 /*
1203  * Initialize brcms_c_info default values ...
1204  * may get overrides later in this function
1205  * BMAC_NOTES, move low out and resolve the dangling ones
1206  */
1207 static void brcms_b_info_init(struct brcms_hardware *wlc_hw)
1208 {
1209  struct brcms_c_info *wlc = wlc_hw->wlc;
1210 
1211  /* set default sw macintmask value */
1213 
1214  /* various 802.11g modes */
1215  wlc_hw->shortslot = false;
1216 
1217  wlc_hw->SFBL = RETRY_SHORT_FB;
1218  wlc_hw->LFBL = RETRY_LONG_FB;
1219 
1220  /* default mac retry limits */
1221  wlc_hw->SRL = RETRY_SHORT_DEF;
1222  wlc_hw->LRL = RETRY_LONG_DEF;
1223  wlc_hw->chanspec = ch20mhz_chspec(1);
1224 }
1225 
1226 static void brcms_b_wait_for_wake(struct brcms_hardware *wlc_hw)
1227 {
1228  /* delay before first read of ucode state */
1229  udelay(40);
1230 
1231  /* wait until ucode is no longer asleep */
1233  DBGST_ASLEEP), wlc_hw->wlc->fastpwrup_dly);
1234 }
1235 
1236 /* control chip clock to save power, enable dynamic clock or force fast clock */
1237 static void brcms_b_clkctl_clk(struct brcms_hardware *wlc_hw, enum bcma_clkmode mode)
1238 {
1239  if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU) {
1240  /* new chips with PMU, CCS_FORCEHT will distribute the HT clock
1241  * on backplane, but mac core will still run on ALP(not HT) when
1242  * it enters powersave mode, which means the FCA bit may not be
1243  * set. Should wakeup mac if driver wants it to run on HT.
1244  */
1245 
1246  if (wlc_hw->clk) {
1247  if (mode == BCMA_CLKMODE_FAST) {
1248  bcma_set32(wlc_hw->d11core,
1249  D11REGOFFS(clk_ctl_st),
1250  CCS_FORCEHT);
1251 
1252  udelay(64);
1253 
1254  SPINWAIT(
1255  ((bcma_read32(wlc_hw->d11core,
1256  D11REGOFFS(clk_ctl_st)) &
1257  CCS_HTAVAIL) == 0),
1259  WARN_ON(!(bcma_read32(wlc_hw->d11core,
1260  D11REGOFFS(clk_ctl_st)) &
1261  CCS_HTAVAIL));
1262  } else {
1263  if ((ai_get_pmurev(wlc_hw->sih) == 0) &&
1264  (bcma_read32(wlc_hw->d11core,
1265  D11REGOFFS(clk_ctl_st)) &
1266  (CCS_FORCEHT | CCS_HTAREQ)))
1267  SPINWAIT(
1268  ((bcma_read32(wlc_hw->d11core,
1269  offsetof(struct d11regs,
1270  clk_ctl_st)) &
1271  CCS_HTAVAIL) == 0),
1273  bcma_mask32(wlc_hw->d11core,
1274  D11REGOFFS(clk_ctl_st),
1275  ~CCS_FORCEHT);
1276  }
1277  }
1278  wlc_hw->forcefastclk = (mode == BCMA_CLKMODE_FAST);
1279  } else {
1280 
1281  /* old chips w/o PMU, force HT through cc,
1282  * then use FCA to verify mac is running fast clock
1283  */
1284 
1285  wlc_hw->forcefastclk = ai_clkctl_cc(wlc_hw->sih, mode);
1286 
1287  /* check fast clock is available (if core is not in reset) */
1288  if (wlc_hw->forcefastclk && wlc_hw->clk)
1289  WARN_ON(!(bcma_aread32(wlc_hw->d11core, BCMA_IOST) &
1290  SISF_FCLKA));
1291 
1292  /*
1293  * keep the ucode wake bit on if forcefastclk is on since we
1294  * do not want ucode to put us back to slow clock when it dozes
1295  * for PM mode. Code below matches the wake override bit with
1296  * current forcefastclk state. Only setting bit in wake_override
1297  * instead of waking ucode immediately since old code had this
1298  * behavior. Older code set wlc->forcefastclk but only had the
1299  * wake happen if the wakup_ucode work (protected by an up
1300  * check) was executed just below.
1301  */
1302  if (wlc_hw->forcefastclk)
1303  mboolset(wlc_hw->wake_override,
1305  else
1306  mboolclr(wlc_hw->wake_override,
1308  }
1309 }
1310 
1311 /* set or clear ucode host flag bits
1312  * it has an optimization for no-change write
1313  * it only writes through shared memory when the core has clock;
1314  * pre-CLK changes should use wlc_write_mhf to get around the optimization
1315  *
1316  *
1317  * bands values are: BRCM_BAND_AUTO <--- Current band only
1318  * BRCM_BAND_5G <--- 5G band only
1319  * BRCM_BAND_2G <--- 2G band only
1320  * BRCM_BAND_ALL <--- All bands
1321  */
1322 void
1323 brcms_b_mhf(struct brcms_hardware *wlc_hw, u8 idx, u16 mask, u16 val,
1324  int bands)
1325 {
1326  u16 save;
1327  u16 addr[MHFMAX] = {
1330  };
1331  struct brcms_hw_band *band;
1332 
1333  if ((val & ~mask) || idx >= MHFMAX)
1334  return; /* error condition */
1335 
1336  switch (bands) {
1337  /* Current band only or all bands,
1338  * then set the band to current band
1339  */
1340  case BRCM_BAND_AUTO:
1341  case BRCM_BAND_ALL:
1342  band = wlc_hw->band;
1343  break;
1344  case BRCM_BAND_5G:
1345  band = wlc_hw->bandstate[BAND_5G_INDEX];
1346  break;
1347  case BRCM_BAND_2G:
1348  band = wlc_hw->bandstate[BAND_2G_INDEX];
1349  break;
1350  default:
1351  band = NULL; /* error condition */
1352  }
1353 
1354  if (band) {
1355  save = band->mhfs[idx];
1356  band->mhfs[idx] = (band->mhfs[idx] & ~mask) | val;
1357 
1358  /* optimization: only write through if changed, and
1359  * changed band is the current band
1360  */
1361  if (wlc_hw->clk && (band->mhfs[idx] != save)
1362  && (band == wlc_hw->band))
1363  brcms_b_write_shm(wlc_hw, addr[idx],
1364  (u16) band->mhfs[idx]);
1365  }
1366 
1367  if (bands == BRCM_BAND_ALL) {
1368  wlc_hw->bandstate[0]->mhfs[idx] =
1369  (wlc_hw->bandstate[0]->mhfs[idx] & ~mask) | val;
1370  wlc_hw->bandstate[1]->mhfs[idx] =
1371  (wlc_hw->bandstate[1]->mhfs[idx] & ~mask) | val;
1372  }
1373 }
1374 
1375 /* set the maccontrol register to desired reset state and
1376  * initialize the sw cache of the register
1377  */
1378 static void brcms_c_mctrl_reset(struct brcms_hardware *wlc_hw)
1379 {
1380  /* IHR accesses are always enabled, PSM disabled, HPS off and WAKE on */
1381  wlc_hw->maccontrol = 0;
1382  wlc_hw->suspended_fifos = 0;
1383  wlc_hw->wake_override = 0;
1384  wlc_hw->mute_override = 0;
1385  brcms_b_mctrl(wlc_hw, ~0, MCTL_IHR_EN | MCTL_WAKE);
1386 }
1387 
1388 /*
1389  * write the software state of maccontrol and
1390  * overrides to the maccontrol register
1391  */
1392 static void brcms_c_mctrl_write(struct brcms_hardware *wlc_hw)
1393 {
1394  u32 maccontrol = wlc_hw->maccontrol;
1395 
1396  /* OR in the wake bit if overridden */
1397  if (wlc_hw->wake_override)
1398  maccontrol |= MCTL_WAKE;
1399 
1400  /* set AP and INFRA bits for mute if needed */
1401  if (wlc_hw->mute_override) {
1402  maccontrol &= ~(MCTL_AP);
1403  maccontrol |= MCTL_INFRA;
1404  }
1405 
1406  bcma_write32(wlc_hw->d11core, D11REGOFFS(maccontrol),
1407  maccontrol);
1408 }
1409 
1410 /* set or clear maccontrol bits */
1411 void brcms_b_mctrl(struct brcms_hardware *wlc_hw, u32 mask, u32 val)
1412 {
1413  u32 maccontrol;
1414  u32 new_maccontrol;
1415 
1416  if (val & ~mask)
1417  return; /* error condition */
1418  maccontrol = wlc_hw->maccontrol;
1419  new_maccontrol = (maccontrol & ~mask) | val;
1420 
1421  /* if the new maccontrol value is the same as the old, nothing to do */
1422  if (new_maccontrol == maccontrol)
1423  return;
1424 
1425  /* something changed, cache the new value */
1426  wlc_hw->maccontrol = new_maccontrol;
1427 
1428  /* write the new values with overrides applied */
1429  brcms_c_mctrl_write(wlc_hw);
1430 }
1431 
1433  u32 override_bit)
1434 {
1435  if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE)) {
1436  mboolset(wlc_hw->wake_override, override_bit);
1437  return;
1438  }
1439 
1440  mboolset(wlc_hw->wake_override, override_bit);
1441 
1442  brcms_c_mctrl_write(wlc_hw);
1443  brcms_b_wait_for_wake(wlc_hw);
1444 }
1445 
1447  u32 override_bit)
1448 {
1449  mboolclr(wlc_hw->wake_override, override_bit);
1450 
1451  if (wlc_hw->wake_override || (wlc_hw->maccontrol & MCTL_WAKE))
1452  return;
1453 
1454  brcms_c_mctrl_write(wlc_hw);
1455 }
1456 
1457 /* When driver needs ucode to stop beaconing, it has to make sure that
1458  * MCTL_AP is clear and MCTL_INFRA is set
1459  * Mode MCTL_AP MCTL_INFRA
1460  * AP 1 1
1461  * STA 0 1 <--- This will ensure no beacons
1462  * IBSS 0 0
1463  */
1464 static void brcms_c_ucode_mute_override_set(struct brcms_hardware *wlc_hw)
1465 {
1466  wlc_hw->mute_override = 1;
1467 
1468  /* if maccontrol already has AP == 0 and INFRA == 1 without this
1469  * override, then there is no change to write
1470  */
1471  if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA)
1472  return;
1473 
1474  brcms_c_mctrl_write(wlc_hw);
1475 }
1476 
1477 /* Clear the override on AP and INFRA bits */
1478 static void brcms_c_ucode_mute_override_clear(struct brcms_hardware *wlc_hw)
1479 {
1480  if (wlc_hw->mute_override == 0)
1481  return;
1482 
1483  wlc_hw->mute_override = 0;
1484 
1485  /* if maccontrol already has AP == 0 and INFRA == 1 without this
1486  * override, then there is no change to write
1487  */
1488  if ((wlc_hw->maccontrol & (MCTL_AP | MCTL_INFRA)) == MCTL_INFRA)
1489  return;
1490 
1491  brcms_c_mctrl_write(wlc_hw);
1492 }
1493 
1494 /*
1495  * Write a MAC address to the given match reg offset in the RXE match engine.
1496  */
1497 static void
1498 brcms_b_set_addrmatch(struct brcms_hardware *wlc_hw, int match_reg_offset,
1499  const u8 *addr)
1500 {
1501  struct bcma_device *core = wlc_hw->d11core;
1502  u16 mac_l;
1503  u16 mac_m;
1504  u16 mac_h;
1505 
1506  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: brcms_b_set_addrmatch\n",
1507  wlc_hw->unit);
1508 
1509  mac_l = addr[0] | (addr[1] << 8);
1510  mac_m = addr[2] | (addr[3] << 8);
1511  mac_h = addr[4] | (addr[5] << 8);
1512 
1513  /* enter the MAC addr into the RXE match registers */
1514  bcma_write16(core, D11REGOFFS(rcm_ctl),
1515  RCM_INC_DATA | match_reg_offset);
1516  bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_l);
1517  bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_m);
1518  bcma_write16(core, D11REGOFFS(rcm_mat_data), mac_h);
1519 }
1520 
1521 void
1522 brcms_b_write_template_ram(struct brcms_hardware *wlc_hw, int offset, int len,
1523  void *buf)
1524 {
1525  struct bcma_device *core = wlc_hw->d11core;
1526  u32 word;
1527  __le32 word_le;
1528  __be32 word_be;
1529  bool be_bit;
1530  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
1531 
1532  bcma_write32(core, D11REGOFFS(tplatewrptr), offset);
1533 
1534  /* if MCTL_BIGEND bit set in mac control register,
1535  * the chip swaps data in fifo, as well as data in
1536  * template ram
1537  */
1538  be_bit = (bcma_read32(core, D11REGOFFS(maccontrol)) & MCTL_BIGEND) != 0;
1539 
1540  while (len > 0) {
1541  memcpy(&word, buf, sizeof(u32));
1542 
1543  if (be_bit) {
1544  word_be = cpu_to_be32(word);
1545  word = *(u32 *)&word_be;
1546  } else {
1547  word_le = cpu_to_le32(word);
1548  word = *(u32 *)&word_le;
1549  }
1550 
1551  bcma_write32(core, D11REGOFFS(tplatewrdata), word);
1552 
1553  buf = (u8 *) buf + sizeof(u32);
1554  len -= sizeof(u32);
1555  }
1556 }
1557 
1558 static void brcms_b_set_cwmin(struct brcms_hardware *wlc_hw, u16 newmin)
1559 {
1560  wlc_hw->band->CWmin = newmin;
1561 
1562  bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
1564  (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
1565  bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmin);
1566 }
1567 
1568 static void brcms_b_set_cwmax(struct brcms_hardware *wlc_hw, u16 newmax)
1569 {
1570  wlc_hw->band->CWmax = newmax;
1571 
1572  bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
1574  (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
1575  bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), newmax);
1576 }
1577 
1578 void brcms_b_bw_set(struct brcms_hardware *wlc_hw, u16 bw)
1579 {
1580  bool fastclk;
1581 
1582  /* request FAST clock if not on */
1583  fastclk = wlc_hw->forcefastclk;
1584  if (!fastclk)
1585  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
1586 
1587  wlc_phy_bw_state_set(wlc_hw->band->pi, bw);
1588 
1589  brcms_b_phy_reset(wlc_hw);
1590  wlc_phy_init(wlc_hw->band->pi, wlc_phy_chanspec_get(wlc_hw->band->pi));
1591 
1592  /* restore the clk */
1593  if (!fastclk)
1594  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
1595 }
1596 
1597 static void brcms_b_upd_synthpu(struct brcms_hardware *wlc_hw)
1598 {
1599  u16 v;
1600  struct brcms_c_info *wlc = wlc_hw->wlc;
1601  /* update SYNTHPU_DLY */
1602 
1603  if (BRCMS_ISLCNPHY(wlc->band))
1605  else if (BRCMS_ISNPHY(wlc->band) && (NREV_GE(wlc->band->phyrev, 3)))
1606  v = SYNTHPU_DLY_NPHY_US;
1607  else
1608  v = SYNTHPU_DLY_BPHY_US;
1609 
1610  brcms_b_write_shm(wlc_hw, M_SYNTHPU_DLY, v);
1611 }
1612 
1613 static void brcms_c_ucode_txant_set(struct brcms_hardware *wlc_hw)
1614 {
1615  u16 phyctl;
1616  u16 phytxant = wlc_hw->bmac_phytxant;
1618 
1619  /* set the Probe Response frame phy control word */
1620  phyctl = brcms_b_read_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS);
1621  phyctl = (phyctl & ~mask) | phytxant;
1622  brcms_b_write_shm(wlc_hw, M_CTXPRS_BLK + C_CTX_PCTLWD_POS, phyctl);
1623 
1624  /* set the Response (ACK/CTS) frame phy control word */
1625  phyctl = brcms_b_read_shm(wlc_hw, M_RSP_PCTLWD);
1626  phyctl = (phyctl & ~mask) | phytxant;
1627  brcms_b_write_shm(wlc_hw, M_RSP_PCTLWD, phyctl);
1628 }
1629 
1630 static u16 brcms_b_ofdm_ratetable_offset(struct brcms_hardware *wlc_hw,
1631  u8 rate)
1632 {
1633  uint i;
1634  u8 plcp_rate = 0;
1635  struct plcp_signal_rate_lookup {
1636  u8 rate;
1637  u8 signal_rate;
1638  };
1639  /* OFDM RATE sub-field of PLCP SIGNAL field, per 802.11 sec 17.3.4.1 */
1640  const struct plcp_signal_rate_lookup rate_lookup[] = {
1641  {BRCM_RATE_6M, 0xB},
1642  {BRCM_RATE_9M, 0xF},
1643  {BRCM_RATE_12M, 0xA},
1644  {BRCM_RATE_18M, 0xE},
1645  {BRCM_RATE_24M, 0x9},
1646  {BRCM_RATE_36M, 0xD},
1647  {BRCM_RATE_48M, 0x8},
1648  {BRCM_RATE_54M, 0xC}
1649  };
1650 
1651  for (i = 0; i < ARRAY_SIZE(rate_lookup); i++) {
1652  if (rate == rate_lookup[i].rate) {
1653  plcp_rate = rate_lookup[i].signal_rate;
1654  break;
1655  }
1656  }
1657 
1658  /* Find the SHM pointer to the rate table entry by looking in the
1659  * Direct-map Table
1660  */
1661  return 2 * brcms_b_read_shm(wlc_hw, M_RT_DIRMAP_A + (plcp_rate * 2));
1662 }
1663 
1664 static void brcms_upd_ofdm_pctl1_table(struct brcms_hardware *wlc_hw)
1665 {
1666  u8 rate;
1667  u8 rates[8] = {
1670  };
1671  u16 entry_ptr;
1672  u16 pctl1;
1673  uint i;
1674 
1675  if (!BRCMS_PHY_11N_CAP(wlc_hw->band))
1676  return;
1677 
1678  /* walk the phy rate table and update the entries */
1679  for (i = 0; i < ARRAY_SIZE(rates); i++) {
1680  rate = rates[i];
1681 
1682  entry_ptr = brcms_b_ofdm_ratetable_offset(wlc_hw, rate);
1683 
1684  /* read the SHM Rate Table entry OFDM PCTL1 values */
1685  pctl1 =
1686  brcms_b_read_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS);
1687 
1688  /* modify the value */
1689  pctl1 &= ~PHY_TXC1_MODE_MASK;
1690  pctl1 |= (wlc_hw->hw_stf_ss_opmode << PHY_TXC1_MODE_SHIFT);
1691 
1692  /* Update the SHM Rate Table entry OFDM PCTL1 values */
1693  brcms_b_write_shm(wlc_hw, entry_ptr + M_RT_OFDM_PCTL1_POS,
1694  pctl1);
1695  }
1696 }
1697 
1698 /* band-specific init */
1699 static void brcms_b_bsinit(struct brcms_c_info *wlc, u16 chanspec)
1700 {
1701  struct brcms_hardware *wlc_hw = wlc->hw;
1702 
1703  BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit,
1704  wlc_hw->band->bandunit);
1705 
1706  brcms_c_ucode_bsinit(wlc_hw);
1707 
1708  wlc_phy_init(wlc_hw->band->pi, chanspec);
1709 
1710  brcms_c_ucode_txant_set(wlc_hw);
1711 
1712  /*
1713  * cwmin is band-specific, update hardware
1714  * with value for current band
1715  */
1716  brcms_b_set_cwmin(wlc_hw, wlc_hw->band->CWmin);
1717  brcms_b_set_cwmax(wlc_hw, wlc_hw->band->CWmax);
1718 
1719  brcms_b_update_slot_timing(wlc_hw,
1720  wlc_hw->band->bandtype == BRCM_BAND_5G ?
1721  true : wlc_hw->shortslot);
1722 
1723  /* write phytype and phyvers */
1724  brcms_b_write_shm(wlc_hw, M_PHYTYPE, (u16) wlc_hw->band->phytype);
1725  brcms_b_write_shm(wlc_hw, M_PHYVER, (u16) wlc_hw->band->phyrev);
1726 
1727  /*
1728  * initialize the txphyctl1 rate table since
1729  * shmem is shared between bands
1730  */
1731  brcms_upd_ofdm_pctl1_table(wlc_hw);
1732 
1733  brcms_b_upd_synthpu(wlc_hw);
1734 }
1735 
1736 /* Perform a soft reset of the PHY PLL */
1738 {
1739  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
1740 
1741  ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_addr),
1742  ~0, 0);
1743  udelay(1);
1744  ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
1745  0x4, 0);
1746  udelay(1);
1747  ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
1748  0x4, 4);
1749  udelay(1);
1750  ai_cc_reg(wlc_hw->sih, offsetof(struct chipcregs, chipcontrol_data),
1751  0x4, 0);
1752  udelay(1);
1753 }
1754 
1755 /* light way to turn on phy clock without reset for NPHY only
1756  * refer to brcms_b_core_phy_clk for full version
1757  */
1758 void brcms_b_phyclk_fgc(struct brcms_hardware *wlc_hw, bool clk)
1759 {
1760  /* support(necessary for NPHY and HYPHY) only */
1761  if (!BRCMS_ISNPHY(wlc_hw->band))
1762  return;
1763 
1764  if (ON == clk)
1765  brcms_b_core_ioctl(wlc_hw, SICF_FGC, SICF_FGC);
1766  else
1767  brcms_b_core_ioctl(wlc_hw, SICF_FGC, 0);
1768 
1769 }
1770 
1771 void brcms_b_macphyclk_set(struct brcms_hardware *wlc_hw, bool clk)
1772 {
1773  if (ON == clk)
1774  brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, SICF_MPCLKE);
1775  else
1776  brcms_b_core_ioctl(wlc_hw, SICF_MPCLKE, 0);
1777 }
1778 
1779 void brcms_b_phy_reset(struct brcms_hardware *wlc_hw)
1780 {
1781  struct brcms_phy_pub *pih = wlc_hw->band->pi;
1782  u32 phy_bw_clkbits;
1783  bool phy_in_reset = false;
1784 
1785  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
1786 
1787  if (pih == NULL)
1788  return;
1789 
1790  phy_bw_clkbits = wlc_phy_clk_bwbits(wlc_hw->band->pi);
1791 
1792  /* Specific reset sequence required for NPHY rev 3 and 4 */
1793  if (BRCMS_ISNPHY(wlc_hw->band) && NREV_GE(wlc_hw->band->phyrev, 3) &&
1794  NREV_LE(wlc_hw->band->phyrev, 4)) {
1795  /* Set the PHY bandwidth */
1796  brcms_b_core_ioctl(wlc_hw, SICF_BWMASK, phy_bw_clkbits);
1797 
1798  udelay(1);
1799 
1800  /* Perform a soft reset of the PHY PLL */
1801  brcms_b_core_phypll_reset(wlc_hw);
1802 
1803  /* reset the PHY */
1804  brcms_b_core_ioctl(wlc_hw, (SICF_PRST | SICF_PCLKE),
1805  (SICF_PRST | SICF_PCLKE));
1806  phy_in_reset = true;
1807  } else {
1808  brcms_b_core_ioctl(wlc_hw,
1810  (SICF_PRST | SICF_PCLKE | phy_bw_clkbits));
1811  }
1812 
1813  udelay(2);
1814  brcms_b_core_phy_clk(wlc_hw, ON);
1815 
1816  if (pih)
1817  wlc_phy_anacore(pih, ON);
1818 }
1819 
1820 /* switch to and initialize new band */
1821 static void brcms_b_setband(struct brcms_hardware *wlc_hw, uint bandunit,
1822  u16 chanspec) {
1823  struct brcms_c_info *wlc = wlc_hw->wlc;
1824  u32 macintmask;
1825 
1826  /* Enable the d11 core before accessing it */
1827  if (!bcma_core_is_enabled(wlc_hw->d11core)) {
1828  bcma_core_enable(wlc_hw->d11core, 0);
1829  brcms_c_mctrl_reset(wlc_hw);
1830  }
1831 
1832  macintmask = brcms_c_setband_inact(wlc, bandunit);
1833 
1834  if (!wlc_hw->up)
1835  return;
1836 
1837  brcms_b_core_phy_clk(wlc_hw, ON);
1838 
1839  /* band-specific initializations */
1840  brcms_b_bsinit(wlc, chanspec);
1841 
1842  /*
1843  * If there are any pending software interrupt bits,
1844  * then replace these with a harmless nonzero value
1845  * so brcms_c_dpc() will re-enable interrupts when done.
1846  */
1847  if (wlc->macintstatus)
1848  wlc->macintstatus = MI_DMAINT;
1849 
1850  /* restore macintmask */
1851  brcms_intrsrestore(wlc->wl, macintmask);
1852 
1853  /* ucode should still be suspended.. */
1854  WARN_ON((bcma_read32(wlc_hw->d11core, D11REGOFFS(maccontrol)) &
1855  MCTL_EN_MAC) != 0);
1856 }
1857 
1858 static bool brcms_c_isgoodchip(struct brcms_hardware *wlc_hw)
1859 {
1860 
1861  /* reject unsupported corerev */
1862  if (!CONF_HAS(D11CONF, wlc_hw->corerev)) {
1863  wiphy_err(wlc_hw->wlc->wiphy, "unsupported core rev %d\n",
1864  wlc_hw->corerev);
1865  return false;
1866  }
1867 
1868  return true;
1869 }
1870 
1871 /* Validate some board info parameters */
1872 static bool brcms_c_validboardtype(struct brcms_hardware *wlc_hw)
1873 {
1874  uint boardrev = wlc_hw->boardrev;
1875 
1876  /* 4 bits each for board type, major, minor, and tiny version */
1877  uint brt = (boardrev & 0xf000) >> 12;
1878  uint b0 = (boardrev & 0xf00) >> 8;
1879  uint b1 = (boardrev & 0xf0) >> 4;
1880  uint b2 = boardrev & 0xf;
1881 
1882  /* voards from other vendors are always considered valid */
1883  if (ai_get_boardvendor(wlc_hw->sih) != PCI_VENDOR_ID_BROADCOM)
1884  return true;
1885 
1886  /* do some boardrev sanity checks when boardvendor is Broadcom */
1887  if (boardrev == 0)
1888  return false;
1889 
1890  if (boardrev <= 0xff)
1891  return true;
1892 
1893  if ((brt > 2) || (brt == 0) || (b0 > 9) || (b0 == 0) || (b1 > 9)
1894  || (b2 > 9))
1895  return false;
1896 
1897  return true;
1898 }
1899 
1900 static void brcms_c_get_macaddr(struct brcms_hardware *wlc_hw, u8 etheraddr[ETH_ALEN])
1901 {
1902  struct ssb_sprom *sprom = &wlc_hw->d11core->bus->sprom;
1903 
1904  /* If macaddr exists, use it (Sromrev4, CIS, ...). */
1905  if (!is_zero_ether_addr(sprom->il0mac)) {
1906  memcpy(etheraddr, sprom->il0mac, 6);
1907  return;
1908  }
1909 
1910  if (wlc_hw->_nbands > 1)
1911  memcpy(etheraddr, sprom->et1mac, 6);
1912  else
1913  memcpy(etheraddr, sprom->il0mac, 6);
1914 }
1915 
1916 /* power both the pll and external oscillator on/off */
1917 static void brcms_b_xtal(struct brcms_hardware *wlc_hw, bool want)
1918 {
1919  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: want %d\n", wlc_hw->unit, want);
1920 
1921  /*
1922  * dont power down if plldown is false or
1923  * we must poll hw radio disable
1924  */
1925  if (!want && wlc_hw->pllreq)
1926  return;
1927 
1928  wlc_hw->sbclk = want;
1929  if (!wlc_hw->sbclk) {
1930  wlc_hw->clk = false;
1931  if (wlc_hw->band && wlc_hw->band->pi)
1932  wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
1933  }
1934 }
1935 
1936 /*
1937  * Return true if radio is disabled, otherwise false.
1938  * hw radio disable signal is an external pin, users activate it asynchronously
1939  * this function could be called when driver is down and w/o clock
1940  * it operates on different registers depending on corerev and boardflag.
1941  */
1942 static bool brcms_b_radio_read_hwdisabled(struct brcms_hardware *wlc_hw)
1943 {
1944  bool v, clk, xtal;
1945  u32 flags = 0;
1946 
1947  xtal = wlc_hw->sbclk;
1948  if (!xtal)
1949  brcms_b_xtal(wlc_hw, ON);
1950 
1951  /* may need to take core out of reset first */
1952  clk = wlc_hw->clk;
1953  if (!clk) {
1954  /*
1955  * mac no longer enables phyclk automatically when driver
1956  * accesses phyreg throughput mac. This can be skipped since
1957  * only mac reg is accessed below
1958  */
1959  if (D11REV_GE(wlc_hw->corerev, 18))
1960  flags |= SICF_PCLKE;
1961 
1962  /*
1963  * TODO: test suspend/resume
1964  *
1965  * AI chip doesn't restore bar0win2 on
1966  * hibernation/resume, need sw fixup
1967  */
1968 
1969  bcma_core_enable(wlc_hw->d11core, flags);
1970  brcms_c_mctrl_reset(wlc_hw);
1971  }
1972 
1973  v = ((bcma_read32(wlc_hw->d11core,
1974  D11REGOFFS(phydebug)) & PDBG_RFD) != 0);
1975 
1976  /* put core back into reset */
1977  if (!clk)
1978  bcma_core_disable(wlc_hw->d11core, 0);
1979 
1980  if (!xtal)
1981  brcms_b_xtal(wlc_hw, OFF);
1982 
1983  return v;
1984 }
1985 
1986 static bool wlc_dma_rxreset(struct brcms_hardware *wlc_hw, uint fifo)
1987 {
1988  struct dma_pub *di = wlc_hw->di[fifo];
1989  return dma_rxreset(di);
1990 }
1991 
1992 /* d11 core reset
1993  * ensure fask clock during reset
1994  * reset dma
1995  * reset d11(out of reset)
1996  * reset phy(out of reset)
1997  * clear software macintstatus for fresh new start
1998  * one testing hack wlc_hw->noreset will bypass the d11/phy reset
1999  */
2000 void brcms_b_corereset(struct brcms_hardware *wlc_hw, u32 flags)
2001 {
2002  uint i;
2003  bool fastclk;
2004 
2005  if (flags == BRCMS_USE_COREFLAGS)
2006  flags = (wlc_hw->band->pi ? wlc_hw->band->core_flags : 0);
2007 
2008  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
2009 
2010  /* request FAST clock if not on */
2011  fastclk = wlc_hw->forcefastclk;
2012  if (!fastclk)
2013  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
2014 
2015  /* reset the dma engines except first time thru */
2016  if (bcma_core_is_enabled(wlc_hw->d11core)) {
2017  for (i = 0; i < NFIFO; i++)
2018  if ((wlc_hw->di[i]) && (!dma_txreset(wlc_hw->di[i])))
2019  wiphy_err(wlc_hw->wlc->wiphy, "wl%d: %s: "
2020  "dma_txreset[%d]: cannot stop dma\n",
2021  wlc_hw->unit, __func__, i);
2022 
2023  if ((wlc_hw->di[RX_FIFO])
2024  && (!wlc_dma_rxreset(wlc_hw, RX_FIFO)))
2025  wiphy_err(wlc_hw->wlc->wiphy, "wl%d: %s: dma_rxreset"
2026  "[%d]: cannot stop dma\n",
2027  wlc_hw->unit, __func__, RX_FIFO);
2028  }
2029  /* if noreset, just stop the psm and return */
2030  if (wlc_hw->noreset) {
2031  wlc_hw->wlc->macintstatus = 0; /* skip wl_dpc after down */
2032  brcms_b_mctrl(wlc_hw, MCTL_PSM_RUN | MCTL_EN_MAC, 0);
2033  return;
2034  }
2035 
2036  /*
2037  * mac no longer enables phyclk automatically when driver accesses
2038  * phyreg throughput mac, AND phy_reset is skipped at early stage when
2039  * band->pi is invalid. need to enable PHY CLK
2040  */
2041  if (D11REV_GE(wlc_hw->corerev, 18))
2042  flags |= SICF_PCLKE;
2043 
2044  /*
2045  * reset the core
2046  * In chips with PMU, the fastclk request goes through d11 core
2047  * reg 0x1e0, which is cleared by the core_reset. have to re-request it.
2048  *
2049  * This adds some delay and we can optimize it by also requesting
2050  * fastclk through chipcommon during this period if necessary. But
2051  * that has to work coordinate with other driver like mips/arm since
2052  * they may touch chipcommon as well.
2053  */
2054  wlc_hw->clk = false;
2055  bcma_core_enable(wlc_hw->d11core, flags);
2056  wlc_hw->clk = true;
2057  if (wlc_hw->band && wlc_hw->band->pi)
2058  wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, true);
2059 
2060  brcms_c_mctrl_reset(wlc_hw);
2061 
2062  if (ai_get_cccaps(wlc_hw->sih) & CC_CAP_PMU)
2063  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
2064 
2065  brcms_b_phy_reset(wlc_hw);
2066 
2067  /* turn on PHY_PLL */
2068  brcms_b_core_phypll_ctl(wlc_hw, true);
2069 
2070  /* clear sw intstatus */
2071  wlc_hw->wlc->macintstatus = 0;
2072 
2073  /* restore the clk setting */
2074  if (!fastclk)
2075  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
2076 }
2077 
2078 /* txfifo sizes needs to be modified(increased) since the newer cores
2079  * have more memory.
2080  */
2081 static void brcms_b_corerev_fifofixup(struct brcms_hardware *wlc_hw)
2082 {
2083  struct bcma_device *core = wlc_hw->d11core;
2084  u16 fifo_nu;
2085  u16 txfifo_startblk = TXFIFO_START_BLK, txfifo_endblk;
2086  u16 txfifo_def, txfifo_def1;
2087  u16 txfifo_cmd;
2088 
2089  /* tx fifos start at TXFIFO_START_BLK from the Base address */
2090  txfifo_startblk = TXFIFO_START_BLK;
2091 
2092  /* sequence of operations: reset fifo, set fifo size, reset fifo */
2093  for (fifo_nu = 0; fifo_nu < NFIFO; fifo_nu++) {
2094 
2095  txfifo_endblk = txfifo_startblk + wlc_hw->xmtfifo_sz[fifo_nu];
2096  txfifo_def = (txfifo_startblk & 0xff) |
2097  (((txfifo_endblk - 1) & 0xff) << TXFIFO_FIFOTOP_SHIFT);
2098  txfifo_def1 = ((txfifo_startblk >> 8) & 0x1) |
2099  ((((txfifo_endblk -
2100  1) >> 8) & 0x1) << TXFIFO_FIFOTOP_SHIFT);
2101  txfifo_cmd =
2103 
2104  bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd);
2105  bcma_write16(core, D11REGOFFS(xmtfifodef), txfifo_def);
2106  bcma_write16(core, D11REGOFFS(xmtfifodef1), txfifo_def1);
2107 
2108  bcma_write16(core, D11REGOFFS(xmtfifocmd), txfifo_cmd);
2109 
2110  txfifo_startblk += wlc_hw->xmtfifo_sz[fifo_nu];
2111  }
2112  /*
2113  * need to propagate to shm location to be in sync since ucode/hw won't
2114  * do this
2115  */
2117  wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]);
2119  wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]);
2121  ((wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO] << 8) | wlc_hw->
2122  xmtfifo_sz[TX_AC_BK_FIFO]));
2124  ((wlc_hw->xmtfifo_sz[TX_ATIM_FIFO] << 8) | wlc_hw->
2125  xmtfifo_sz[TX_BCMC_FIFO]));
2126 }
2127 
2128 /* This function is used for changing the tsf frac register
2129  * If spur avoidance mode is off, the mac freq will be 80/120/160Mhz
2130  * If spur avoidance mode is on1, the mac freq will be 82/123/164Mhz
2131  * If spur avoidance mode is on2, the mac freq will be 84/126/168Mhz
2132  * HTPHY Formula is 2^26/freq(MHz) e.g.
2133  * For spuron2 - 126MHz -> 2^26/126 = 532610.0
2134  * - 532610 = 0x82082 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x2082
2135  * For spuron: 123MHz -> 2^26/123 = 545600.5
2136  * - 545601 = 0x85341 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x5341
2137  * For spur off: 120MHz -> 2^26/120 = 559240.5
2138  * - 559241 = 0x88889 => tsf_clk_frac_h = 0x8, tsf_clk_frac_l = 0x8889
2139  */
2140 
2141 void brcms_b_switch_macfreq(struct brcms_hardware *wlc_hw, u8 spurmode)
2142 {
2143  struct bcma_device *core = wlc_hw->d11core;
2144 
2145  if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43224) ||
2146  (ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225)) {
2147  if (spurmode == WL_SPURAVOID_ON2) { /* 126Mhz */
2148  bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x2082);
2149  bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
2150  } else if (spurmode == WL_SPURAVOID_ON1) { /* 123Mhz */
2151  bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x5341);
2152  bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
2153  } else { /* 120Mhz */
2154  bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x8889);
2155  bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0x8);
2156  }
2157  } else if (BRCMS_ISLCNPHY(wlc_hw->band)) {
2158  if (spurmode == WL_SPURAVOID_ON1) { /* 82Mhz */
2159  bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0x7CE0);
2160  bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC);
2161  } else { /* 80Mhz */
2162  bcma_write16(core, D11REGOFFS(tsf_clk_frac_l), 0xCCCD);
2163  bcma_write16(core, D11REGOFFS(tsf_clk_frac_h), 0xC);
2164  }
2165  }
2166 }
2167 
2168 /* Initialize GPIOs that are controlled by D11 core */
2169 static void brcms_c_gpio_init(struct brcms_c_info *wlc)
2170 {
2171  struct brcms_hardware *wlc_hw = wlc->hw;
2172  u32 gc, gm;
2173 
2174  /* use GPIO select 0 to get all gpio signals from the gpio out reg */
2175  brcms_b_mctrl(wlc_hw, MCTL_GPOUT_SEL_MASK, 0);
2176 
2177  /*
2178  * Common GPIO setup:
2179  * G0 = LED 0 = WLAN Activity
2180  * G1 = LED 1 = WLAN 2.4 GHz Radio State
2181  * G2 = LED 2 = WLAN 5 GHz Radio State
2182  * G4 = radio disable input (HI enabled, LO disabled)
2183  */
2184 
2185  gc = gm = 0;
2186 
2187  /* Allocate GPIOs for mimo antenna diversity feature */
2188  if (wlc_hw->antsel_type == ANTSEL_2x3) {
2189  /* Enable antenna diversity, use 2x3 mode */
2190  brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN,
2194 
2195  /* init superswitch control */
2196  wlc_phy_antsel_init(wlc_hw->band->pi, false);
2197 
2198  } else if (wlc_hw->antsel_type == ANTSEL_2x4) {
2199  gm |= gc |= (BOARD_GPIO_12 | BOARD_GPIO_13);
2200  /*
2201  * The board itself is powered by these GPIOs
2202  * (when not sending pattern) so set them high
2203  */
2204  bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_oe),
2206  bcma_set16(wlc_hw->d11core, D11REGOFFS(psm_gpio_out),
2208 
2209  /* Enable antenna diversity, use 2x4 mode */
2210  brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_EN,
2212  brcms_b_mhf(wlc_hw, MHF3, MHF3_ANTSEL_MODE, 0,
2213  BRCM_BAND_ALL);
2214 
2215  /* Configure the desired clock to be 4Mhz */
2218  }
2219 
2220  /*
2221  * gpio 9 controls the PA. ucode is responsible
2222  * for wiggling out and oe
2223  */
2224  if (wlc_hw->boardflags & BFL_PACTRL)
2225  gm |= gc |= BOARD_GPIO_PACTRL;
2226 
2227  /* apply to gpiocontrol register */
2228  bcma_chipco_gpio_control(&wlc_hw->d11core->bus->drv_cc, gm, gc);
2229 }
2230 
2231 static void brcms_ucode_write(struct brcms_hardware *wlc_hw,
2232  const __le32 ucode[], const size_t nbytes)
2233 {
2234  struct bcma_device *core = wlc_hw->d11core;
2235  uint i;
2236  uint count;
2237 
2238  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
2239 
2240  count = (nbytes / sizeof(u32));
2241 
2242  bcma_write32(core, D11REGOFFS(objaddr),
2244  (void)bcma_read32(core, D11REGOFFS(objaddr));
2245  for (i = 0; i < count; i++)
2246  bcma_write32(core, D11REGOFFS(objdata), le32_to_cpu(ucode[i]));
2247 
2248 }
2249 
2250 static void brcms_ucode_download(struct brcms_hardware *wlc_hw)
2251 {
2252  struct brcms_c_info *wlc;
2253  struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
2254 
2255  wlc = wlc_hw->wlc;
2256 
2257  if (wlc_hw->ucode_loaded)
2258  return;
2259 
2260  if (D11REV_IS(wlc_hw->corerev, 23)) {
2261  if (BRCMS_ISNPHY(wlc_hw->band)) {
2262  brcms_ucode_write(wlc_hw, ucode->bcm43xx_16_mimo,
2263  ucode->bcm43xx_16_mimosz);
2264  wlc_hw->ucode_loaded = true;
2265  } else
2266  wiphy_err(wlc->wiphy, "%s: wl%d: unsupported phy in "
2267  "corerev %d\n",
2268  __func__, wlc_hw->unit, wlc_hw->corerev);
2269  } else if (D11REV_IS(wlc_hw->corerev, 24)) {
2270  if (BRCMS_ISLCNPHY(wlc_hw->band)) {
2271  brcms_ucode_write(wlc_hw, ucode->bcm43xx_24_lcn,
2272  ucode->bcm43xx_24_lcnsz);
2273  wlc_hw->ucode_loaded = true;
2274  } else {
2275  wiphy_err(wlc->wiphy, "%s: wl%d: unsupported phy in "
2276  "corerev %d\n",
2277  __func__, wlc_hw->unit, wlc_hw->corerev);
2278  }
2279  }
2280 }
2281 
2282 void brcms_b_txant_set(struct brcms_hardware *wlc_hw, u16 phytxant)
2283 {
2284  /* update sw state */
2285  wlc_hw->bmac_phytxant = phytxant;
2286 
2287  /* push to ucode if up */
2288  if (!wlc_hw->up)
2289  return;
2290  brcms_c_ucode_txant_set(wlc_hw);
2291 
2292 }
2293 
2295 {
2296  return (u16) wlc_hw->wlc->stf->txant;
2297 }
2298 
2299 void brcms_b_antsel_type_set(struct brcms_hardware *wlc_hw, u8 antsel_type)
2300 {
2301  wlc_hw->antsel_type = antsel_type;
2302 
2303  /* Update the antsel type for phy module to use */
2304  wlc_phy_antsel_type_set(wlc_hw->band->pi, antsel_type);
2305 }
2306 
2307 static void brcms_b_fifoerrors(struct brcms_hardware *wlc_hw)
2308 {
2309  bool fatal = false;
2310  uint unit;
2311  uint intstatus, idx;
2312  struct bcma_device *core = wlc_hw->d11core;
2313  struct wiphy *wiphy = wlc_hw->wlc->wiphy;
2314 
2315  unit = wlc_hw->unit;
2316 
2317  for (idx = 0; idx < NFIFO; idx++) {
2318  /* read intstatus register and ignore any non-error bits */
2319  intstatus =
2320  bcma_read32(core,
2321  D11REGOFFS(intctrlregs[idx].intstatus)) &
2322  I_ERRORS;
2323  if (!intstatus)
2324  continue;
2325 
2326  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: intstatus%d 0x%x\n",
2327  unit, idx, intstatus);
2328 
2329  if (intstatus & I_RO) {
2330  wiphy_err(wiphy, "wl%d: fifo %d: receive fifo "
2331  "overflow\n", unit, idx);
2332  fatal = true;
2333  }
2334 
2335  if (intstatus & I_PC) {
2336  wiphy_err(wiphy, "wl%d: fifo %d: descriptor error\n",
2337  unit, idx);
2338  fatal = true;
2339  }
2340 
2341  if (intstatus & I_PD) {
2342  wiphy_err(wiphy, "wl%d: fifo %d: data error\n", unit,
2343  idx);
2344  fatal = true;
2345  }
2346 
2347  if (intstatus & I_DE) {
2348  wiphy_err(wiphy, "wl%d: fifo %d: descriptor protocol "
2349  "error\n", unit, idx);
2350  fatal = true;
2351  }
2352 
2353  if (intstatus & I_RU)
2354  wiphy_err(wiphy, "wl%d: fifo %d: receive descriptor "
2355  "underflow\n", idx, unit);
2356 
2357  if (intstatus & I_XU) {
2358  wiphy_err(wiphy, "wl%d: fifo %d: transmit fifo "
2359  "underflow\n", idx, unit);
2360  fatal = true;
2361  }
2362 
2363  if (fatal) {
2364  brcms_fatal_error(wlc_hw->wlc->wl); /* big hammer */
2365  break;
2366  } else
2367  bcma_write32(core,
2368  D11REGOFFS(intctrlregs[idx].intstatus),
2369  intstatus);
2370  }
2371 }
2372 
2374 {
2375  struct brcms_hardware *wlc_hw = wlc->hw;
2376  wlc->macintmask = wlc->defmacintmask;
2377  bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask);
2378 }
2379 
2381 {
2382  struct brcms_hardware *wlc_hw = wlc->hw;
2383  u32 macintmask;
2384 
2385  if (!wlc_hw->clk)
2386  return 0;
2387 
2388  macintmask = wlc->macintmask; /* isr can still happen */
2389 
2390  bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), 0);
2391  (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(macintmask));
2392  udelay(1); /* ensure int line is no longer driven */
2393  wlc->macintmask = 0;
2394 
2395  /* return previous macintmask; resolve race between us and our isr */
2396  return wlc->macintstatus ? 0 : macintmask;
2397 }
2398 
2399 void brcms_c_intrsrestore(struct brcms_c_info *wlc, u32 macintmask)
2400 {
2401  struct brcms_hardware *wlc_hw = wlc->hw;
2402  if (!wlc_hw->clk)
2403  return;
2404 
2405  wlc->macintmask = macintmask;
2406  bcma_write32(wlc_hw->d11core, D11REGOFFS(macintmask), wlc->macintmask);
2407 }
2408 
2409 /* assumes that the d11 MAC is enabled */
2410 static void brcms_b_tx_fifo_suspend(struct brcms_hardware *wlc_hw,
2411  uint tx_fifo)
2412 {
2413  u8 fifo = 1 << tx_fifo;
2414 
2415  /* Two clients of this code, 11h Quiet period and scanning. */
2416 
2417  /* only suspend if not already suspended */
2418  if ((wlc_hw->suspended_fifos & fifo) == fifo)
2419  return;
2420 
2421  /* force the core awake only if not already */
2422  if (wlc_hw->suspended_fifos == 0)
2425 
2426  wlc_hw->suspended_fifos |= fifo;
2427 
2428  if (wlc_hw->di[tx_fifo]) {
2429  /*
2430  * Suspending AMPDU transmissions in the middle can cause
2431  * underflow which may result in mismatch between ucode and
2432  * driver so suspend the mac before suspending the FIFO
2433  */
2434  if (BRCMS_PHY_11N_CAP(wlc_hw->band))
2436 
2437  dma_txsuspend(wlc_hw->di[tx_fifo]);
2438 
2439  if (BRCMS_PHY_11N_CAP(wlc_hw->band))
2440  brcms_c_enable_mac(wlc_hw->wlc);
2441  }
2442 }
2443 
2444 static void brcms_b_tx_fifo_resume(struct brcms_hardware *wlc_hw,
2445  uint tx_fifo)
2446 {
2447  /* BMAC_NOTE: BRCMS_TX_FIFO_ENAB is done in brcms_c_dpc() for DMA case
2448  * but need to be done here for PIO otherwise the watchdog will catch
2449  * the inconsistency and fire
2450  */
2451  /* Two clients of this code, 11h Quiet period and scanning. */
2452  if (wlc_hw->di[tx_fifo])
2453  dma_txresume(wlc_hw->di[tx_fifo]);
2454 
2455  /* allow core to sleep again */
2456  if (wlc_hw->suspended_fifos == 0)
2457  return;
2458  else {
2459  wlc_hw->suspended_fifos &= ~(1 << tx_fifo);
2460  if (wlc_hw->suspended_fifos == 0)
2463  }
2464 }
2465 
2466 /* precondition: requires the mac core to be enabled */
2467 static void brcms_b_mute(struct brcms_hardware *wlc_hw, bool mute_tx)
2468 {
2469  static const u8 null_ether_addr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2470 
2471  if (mute_tx) {
2472  /* suspend tx fifos */
2473  brcms_b_tx_fifo_suspend(wlc_hw, TX_DATA_FIFO);
2474  brcms_b_tx_fifo_suspend(wlc_hw, TX_CTL_FIFO);
2475  brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_BK_FIFO);
2476  brcms_b_tx_fifo_suspend(wlc_hw, TX_AC_VI_FIFO);
2477 
2478  /* zero the address match register so we do not send ACKs */
2479  brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET,
2480  null_ether_addr);
2481  } else {
2482  /* resume tx fifos */
2483  brcms_b_tx_fifo_resume(wlc_hw, TX_DATA_FIFO);
2484  brcms_b_tx_fifo_resume(wlc_hw, TX_CTL_FIFO);
2485  brcms_b_tx_fifo_resume(wlc_hw, TX_AC_BK_FIFO);
2486  brcms_b_tx_fifo_resume(wlc_hw, TX_AC_VI_FIFO);
2487 
2488  /* Restore address */
2489  brcms_b_set_addrmatch(wlc_hw, RCM_MAC_OFFSET,
2490  wlc_hw->etheraddr);
2491  }
2492 
2493  wlc_phy_mute_upd(wlc_hw->band->pi, mute_tx, 0);
2494 
2495  if (mute_tx)
2496  brcms_c_ucode_mute_override_set(wlc_hw);
2497  else
2498  brcms_c_ucode_mute_override_clear(wlc_hw);
2499 }
2500 
2501 void
2502 brcms_c_mute(struct brcms_c_info *wlc, bool mute_tx)
2503 {
2504  brcms_b_mute(wlc->hw, mute_tx);
2505 }
2506 
2507 /*
2508  * Read and clear macintmask and macintstatus and intstatus registers.
2509  * This routine should be called with interrupts off
2510  * Return:
2511  * -1 if brcms_deviceremoved(wlc) evaluates to true;
2512  * 0 if the interrupt is not for us, or we are in some special cases;
2513  * device interrupt status bits otherwise.
2514  */
2515 static inline u32 wlc_intstatus(struct brcms_c_info *wlc, bool in_isr)
2516 {
2517  struct brcms_hardware *wlc_hw = wlc->hw;
2518  struct bcma_device *core = wlc_hw->d11core;
2519  u32 macintstatus;
2520 
2521  /* macintstatus includes a DMA interrupt summary bit */
2522  macintstatus = bcma_read32(core, D11REGOFFS(macintstatus));
2523 
2524  BCMMSG(wlc->wiphy, "wl%d: macintstatus: 0x%x\n", wlc_hw->unit,
2525  macintstatus);
2526 
2527  /* detect cardbus removed, in power down(suspend) and in reset */
2528  if (brcms_deviceremoved(wlc))
2529  return -1;
2530 
2531  /* brcms_deviceremoved() succeeds even when the core is still resetting,
2532  * handle that case here.
2533  */
2534  if (macintstatus == 0xffffffff)
2535  return 0;
2536 
2537  /* defer unsolicited interrupts */
2538  macintstatus &= (in_isr ? wlc->macintmask : wlc->defmacintmask);
2539 
2540  /* if not for us */
2541  if (macintstatus == 0)
2542  return 0;
2543 
2544  /* interrupts are already turned off for CFE build
2545  * Caution: For CFE Turning off the interrupts again has some undesired
2546  * consequences
2547  */
2548  /* turn off the interrupts */
2549  bcma_write32(core, D11REGOFFS(macintmask), 0);
2550  (void)bcma_read32(core, D11REGOFFS(macintmask));
2551  wlc->macintmask = 0;
2552 
2553  /* clear device interrupts */
2554  bcma_write32(core, D11REGOFFS(macintstatus), macintstatus);
2555 
2556  /* MI_DMAINT is indication of non-zero intstatus */
2557  if (macintstatus & MI_DMAINT)
2558  /*
2559  * only fifo interrupt enabled is I_RI in
2560  * RX_FIFO. If MI_DMAINT is set, assume it
2561  * is set and clear the interrupt.
2562  */
2563  bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intstatus),
2564  DEF_RXINTMASK);
2565 
2566  return macintstatus;
2567 }
2568 
2569 /* Update wlc->macintstatus and wlc->intstatus[]. */
2570 /* Return true if they are updated successfully. false otherwise */
2572 {
2573  u32 macintstatus;
2574 
2575  /* read and clear macintstatus and intstatus registers */
2576  macintstatus = wlc_intstatus(wlc, false);
2577 
2578  /* device is removed */
2579  if (macintstatus == 0xffffffff)
2580  return false;
2581 
2582  /* update interrupt status in software */
2583  wlc->macintstatus |= macintstatus;
2584 
2585  return true;
2586 }
2587 
2588 /*
2589  * First-level interrupt processing.
2590  * Return true if this was our interrupt, false otherwise.
2591  * *wantdpc will be set to true if further brcms_c_dpc() processing is required,
2592  * false otherwise.
2593  */
2594 bool brcms_c_isr(struct brcms_c_info *wlc, bool *wantdpc)
2595 {
2596  struct brcms_hardware *wlc_hw = wlc->hw;
2597  u32 macintstatus;
2598 
2599  *wantdpc = false;
2600 
2601  if (!wlc_hw->up || !wlc->macintmask)
2602  return false;
2603 
2604  /* read and clear macintstatus and intstatus registers */
2605  macintstatus = wlc_intstatus(wlc, true);
2606 
2607  if (macintstatus == 0xffffffff)
2608  wiphy_err(wlc->wiphy, "DEVICEREMOVED detected in the ISR code"
2609  " path\n");
2610 
2611  /* it is not for us */
2612  if (macintstatus == 0)
2613  return false;
2614 
2615  *wantdpc = true;
2616 
2617  /* save interrupt status bits */
2618  wlc->macintstatus = macintstatus;
2619 
2620  return true;
2621 
2622 }
2623 
2625 {
2626  struct brcms_hardware *wlc_hw = wlc->hw;
2627  struct bcma_device *core = wlc_hw->d11core;
2628  u32 mc, mi;
2629  struct wiphy *wiphy = wlc->wiphy;
2630 
2631  BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit,
2632  wlc_hw->band->bandunit);
2633 
2634  /*
2635  * Track overlapping suspend requests
2636  */
2637  wlc_hw->mac_suspend_depth++;
2638  if (wlc_hw->mac_suspend_depth > 1)
2639  return;
2640 
2641  /* force the core awake */
2643 
2644  mc = bcma_read32(core, D11REGOFFS(maccontrol));
2645 
2646  if (mc == 0xffffffff) {
2647  wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit,
2648  __func__);
2649  brcms_down(wlc->wl);
2650  return;
2651  }
2652  WARN_ON(mc & MCTL_PSM_JMP_0);
2653  WARN_ON(!(mc & MCTL_PSM_RUN));
2654  WARN_ON(!(mc & MCTL_EN_MAC));
2655 
2656  mi = bcma_read32(core, D11REGOFFS(macintstatus));
2657  if (mi == 0xffffffff) {
2658  wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit,
2659  __func__);
2660  brcms_down(wlc->wl);
2661  return;
2662  }
2663  WARN_ON(mi & MI_MACSSPNDD);
2664 
2665  brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, 0);
2666 
2667  SPINWAIT(!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD),
2669 
2670  if (!(bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD)) {
2671  wiphy_err(wiphy, "wl%d: wlc_suspend_mac_and_wait: waited %d uS"
2672  " and MI_MACSSPNDD is still not on.\n",
2673  wlc_hw->unit, BRCMS_MAX_MAC_SUSPEND);
2674  wiphy_err(wiphy, "wl%d: psmdebug 0x%08x, phydebug 0x%08x, "
2675  "psm_brc 0x%04x\n", wlc_hw->unit,
2676  bcma_read32(core, D11REGOFFS(psmdebug)),
2677  bcma_read32(core, D11REGOFFS(phydebug)),
2678  bcma_read16(core, D11REGOFFS(psm_brc)));
2679  }
2680 
2681  mc = bcma_read32(core, D11REGOFFS(maccontrol));
2682  if (mc == 0xffffffff) {
2683  wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit,
2684  __func__);
2685  brcms_down(wlc->wl);
2686  return;
2687  }
2688  WARN_ON(mc & MCTL_PSM_JMP_0);
2689  WARN_ON(!(mc & MCTL_PSM_RUN));
2690  WARN_ON(mc & MCTL_EN_MAC);
2691 }
2692 
2694 {
2695  struct brcms_hardware *wlc_hw = wlc->hw;
2696  struct bcma_device *core = wlc_hw->d11core;
2697  u32 mc, mi;
2698 
2699  BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n", wlc_hw->unit,
2700  wlc->band->bandunit);
2701 
2702  /*
2703  * Track overlapping suspend requests
2704  */
2705  wlc_hw->mac_suspend_depth--;
2706  if (wlc_hw->mac_suspend_depth > 0)
2707  return;
2708 
2709  mc = bcma_read32(core, D11REGOFFS(maccontrol));
2710  WARN_ON(mc & MCTL_PSM_JMP_0);
2711  WARN_ON(mc & MCTL_EN_MAC);
2712  WARN_ON(!(mc & MCTL_PSM_RUN));
2713 
2714  brcms_b_mctrl(wlc_hw, MCTL_EN_MAC, MCTL_EN_MAC);
2715  bcma_write32(core, D11REGOFFS(macintstatus), MI_MACSSPNDD);
2716 
2717  mc = bcma_read32(core, D11REGOFFS(maccontrol));
2718  WARN_ON(mc & MCTL_PSM_JMP_0);
2719  WARN_ON(!(mc & MCTL_EN_MAC));
2720  WARN_ON(!(mc & MCTL_PSM_RUN));
2721 
2722  mi = bcma_read32(core, D11REGOFFS(macintstatus));
2723  WARN_ON(mi & MI_MACSSPNDD);
2724 
2727 }
2728 
2729 void brcms_b_band_stf_ss_set(struct brcms_hardware *wlc_hw, u8 stf_mode)
2730 {
2731  wlc_hw->hw_stf_ss_opmode = stf_mode;
2732 
2733  if (wlc_hw->clk)
2734  brcms_upd_ofdm_pctl1_table(wlc_hw);
2735 }
2736 
2737 static bool brcms_b_validate_chip_access(struct brcms_hardware *wlc_hw)
2738 {
2739  struct bcma_device *core = wlc_hw->d11core;
2740  u32 w, val;
2741  struct wiphy *wiphy = wlc_hw->wlc->wiphy;
2742 
2743  BCMMSG(wiphy, "wl%d\n", wlc_hw->unit);
2744 
2745  /* Validate dchip register access */
2746 
2747  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2748  (void)bcma_read32(core, D11REGOFFS(objaddr));
2749  w = bcma_read32(core, D11REGOFFS(objdata));
2750 
2751  /* Can we write and read back a 32bit register? */
2752  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2753  (void)bcma_read32(core, D11REGOFFS(objaddr));
2754  bcma_write32(core, D11REGOFFS(objdata), (u32) 0xaa5555aa);
2755 
2756  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2757  (void)bcma_read32(core, D11REGOFFS(objaddr));
2758  val = bcma_read32(core, D11REGOFFS(objdata));
2759  if (val != (u32) 0xaa5555aa) {
2760  wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, "
2761  "expected 0xaa5555aa\n", wlc_hw->unit, val);
2762  return false;
2763  }
2764 
2765  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2766  (void)bcma_read32(core, D11REGOFFS(objaddr));
2767  bcma_write32(core, D11REGOFFS(objdata), (u32) 0x55aaaa55);
2768 
2769  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2770  (void)bcma_read32(core, D11REGOFFS(objaddr));
2771  val = bcma_read32(core, D11REGOFFS(objdata));
2772  if (val != (u32) 0x55aaaa55) {
2773  wiphy_err(wiphy, "wl%d: validate_chip_access: SHM = 0x%x, "
2774  "expected 0x55aaaa55\n", wlc_hw->unit, val);
2775  return false;
2776  }
2777 
2778  bcma_write32(core, D11REGOFFS(objaddr), OBJADDR_SHM_SEL | 0);
2779  (void)bcma_read32(core, D11REGOFFS(objaddr));
2780  bcma_write32(core, D11REGOFFS(objdata), w);
2781 
2782  /* clear CFPStart */
2783  bcma_write32(core, D11REGOFFS(tsf_cfpstart), 0);
2784 
2785  w = bcma_read32(core, D11REGOFFS(maccontrol));
2786  if ((w != (MCTL_IHR_EN | MCTL_WAKE)) &&
2787  (w != (MCTL_IHR_EN | MCTL_GMODE | MCTL_WAKE))) {
2788  wiphy_err(wiphy, "wl%d: validate_chip_access: maccontrol = "
2789  "0x%x, expected 0x%x or 0x%x\n", wlc_hw->unit, w,
2790  (MCTL_IHR_EN | MCTL_WAKE),
2792  return false;
2793  }
2794 
2795  return true;
2796 }
2797 
2798 #define PHYPLL_WAIT_US 100000
2799 
2800 void brcms_b_core_phypll_ctl(struct brcms_hardware *wlc_hw, bool on)
2801 {
2802  struct bcma_device *core = wlc_hw->d11core;
2803  u32 tmp;
2804 
2805  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
2806 
2807  tmp = 0;
2808 
2809  if (on) {
2810  if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) {
2811  bcma_set32(core, D11REGOFFS(clk_ctl_st),
2815  SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) &
2816  CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT,
2817  PHYPLL_WAIT_US);
2818 
2819  tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st));
2820  if ((tmp & CCS_ERSRC_AVAIL_HT) != CCS_ERSRC_AVAIL_HT)
2821  wiphy_err(wlc_hw->wlc->wiphy, "%s: turn on PHY"
2822  " PLL failed\n", __func__);
2823  } else {
2824  bcma_set32(core, D11REGOFFS(clk_ctl_st),
2825  tmp | CCS_ERSRC_REQ_D11PLL |
2827  SPINWAIT((bcma_read32(core, D11REGOFFS(clk_ctl_st)) &
2832 
2833  tmp = bcma_read32(core, D11REGOFFS(clk_ctl_st));
2834  if ((tmp &
2836  !=
2838  wiphy_err(wlc_hw->wlc->wiphy, "%s: turn on "
2839  "PHY PLL failed\n", __func__);
2840  }
2841  } else {
2842  /*
2843  * Since the PLL may be shared, other cores can still
2844  * be requesting it; so we'll deassert the request but
2845  * not wait for status to comply.
2846  */
2847  bcma_mask32(core, D11REGOFFS(clk_ctl_st),
2849  (void)bcma_read32(core, D11REGOFFS(clk_ctl_st));
2850  }
2851 }
2852 
2853 static void brcms_c_coredisable(struct brcms_hardware *wlc_hw)
2854 {
2855  bool dev_gone;
2856 
2857  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
2858 
2859  dev_gone = brcms_deviceremoved(wlc_hw->wlc);
2860 
2861  if (dev_gone)
2862  return;
2863 
2864  if (wlc_hw->noreset)
2865  return;
2866 
2867  /* radio off */
2868  wlc_phy_switch_radio(wlc_hw->band->pi, OFF);
2869 
2870  /* turn off analog core */
2871  wlc_phy_anacore(wlc_hw->band->pi, OFF);
2872 
2873  /* turn off PHYPLL to save power */
2874  brcms_b_core_phypll_ctl(wlc_hw, false);
2875 
2876  wlc_hw->clk = false;
2877  bcma_core_disable(wlc_hw->d11core, 0);
2878  wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
2879 }
2880 
2881 static void brcms_c_flushqueues(struct brcms_c_info *wlc)
2882 {
2883  struct brcms_hardware *wlc_hw = wlc->hw;
2884  uint i;
2885 
2886  /* free any posted tx packets */
2887  for (i = 0; i < NFIFO; i++)
2888  if (wlc_hw->di[i]) {
2889  dma_txreclaim(wlc_hw->di[i], DMA_RANGE_ALL);
2890  wlc->core->txpktpend[i] = 0;
2891  BCMMSG(wlc->wiphy, "pktpend fifo %d clrd\n", i);
2892  }
2893 
2894  /* free any posted rx packets */
2895  dma_rxreclaim(wlc_hw->di[RX_FIFO]);
2896 }
2897 
2898 static u16
2899 brcms_b_read_objmem(struct brcms_hardware *wlc_hw, uint offset, u32 sel)
2900 {
2901  struct bcma_device *core = wlc_hw->d11core;
2902  u16 objoff = D11REGOFFS(objdata);
2903 
2904  bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2));
2905  (void)bcma_read32(core, D11REGOFFS(objaddr));
2906  if (offset & 2)
2907  objoff += 2;
2908 
2909  return bcma_read16(core, objoff);
2910 }
2911 
2912 static void
2913 brcms_b_write_objmem(struct brcms_hardware *wlc_hw, uint offset, u16 v,
2914  u32 sel)
2915 {
2916  struct bcma_device *core = wlc_hw->d11core;
2917  u16 objoff = D11REGOFFS(objdata);
2918 
2919  bcma_write32(core, D11REGOFFS(objaddr), sel | (offset >> 2));
2920  (void)bcma_read32(core, D11REGOFFS(objaddr));
2921  if (offset & 2)
2922  objoff += 2;
2923 
2924  bcma_write16(core, objoff, v);
2925 }
2926 
2927 /*
2928  * Read a single u16 from shared memory.
2929  * SHM 'offset' needs to be an even address
2930  */
2931 u16 brcms_b_read_shm(struct brcms_hardware *wlc_hw, uint offset)
2932 {
2933  return brcms_b_read_objmem(wlc_hw, offset, OBJADDR_SHM_SEL);
2934 }
2935 
2936 /*
2937  * Write a single u16 to shared memory.
2938  * SHM 'offset' needs to be an even address
2939  */
2940 void brcms_b_write_shm(struct brcms_hardware *wlc_hw, uint offset, u16 v)
2941 {
2942  brcms_b_write_objmem(wlc_hw, offset, v, OBJADDR_SHM_SEL);
2943 }
2944 
2945 /*
2946  * Copy a buffer to shared memory of specified type .
2947  * SHM 'offset' needs to be an even address and
2948  * Buffer length 'len' must be an even number of bytes
2949  * 'sel' selects the type of memory
2950  */
2951 void
2953  const void *buf, int len, u32 sel)
2954 {
2955  u16 v;
2956  const u8 *p = (const u8 *)buf;
2957  int i;
2958 
2959  if (len <= 0 || (offset & 1) || (len & 1))
2960  return;
2961 
2962  for (i = 0; i < len; i += 2) {
2963  v = p[i] | (p[i + 1] << 8);
2964  brcms_b_write_objmem(wlc_hw, offset + i, v, sel);
2965  }
2966 }
2967 
2968 /*
2969  * Copy a piece of shared memory of specified type to a buffer .
2970  * SHM 'offset' needs to be an even address and
2971  * Buffer length 'len' must be an even number of bytes
2972  * 'sel' selects the type of memory
2973  */
2974 void
2975 brcms_b_copyfrom_objmem(struct brcms_hardware *wlc_hw, uint offset, void *buf,
2976  int len, u32 sel)
2977 {
2978  u16 v;
2979  u8 *p = (u8 *) buf;
2980  int i;
2981 
2982  if (len <= 0 || (offset & 1) || (len & 1))
2983  return;
2984 
2985  for (i = 0; i < len; i += 2) {
2986  v = brcms_b_read_objmem(wlc_hw, offset + i, sel);
2987  p[i] = v & 0xFF;
2988  p[i + 1] = (v >> 8) & 0xFF;
2989  }
2990 }
2991 
2992 /* Copy a buffer to shared memory.
2993  * SHM 'offset' needs to be an even address and
2994  * Buffer length 'len' must be an even number of bytes
2995  */
2996 static void brcms_c_copyto_shm(struct brcms_c_info *wlc, uint offset,
2997  const void *buf, int len)
2998 {
2999  brcms_b_copyto_objmem(wlc->hw, offset, buf, len, OBJADDR_SHM_SEL);
3000 }
3001 
3002 static void brcms_b_retrylimit_upd(struct brcms_hardware *wlc_hw,
3003  u16 SRL, u16 LRL)
3004 {
3005  wlc_hw->SRL = SRL;
3006  wlc_hw->LRL = LRL;
3007 
3008  /* write retry limit to SCR, shouldn't need to suspend */
3009  if (wlc_hw->up) {
3010  bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
3012  (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
3013  bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->SRL);
3014  bcma_write32(wlc_hw->d11core, D11REGOFFS(objaddr),
3016  (void)bcma_read32(wlc_hw->d11core, D11REGOFFS(objaddr));
3017  bcma_write32(wlc_hw->d11core, D11REGOFFS(objdata), wlc_hw->LRL);
3018  }
3019 }
3020 
3021 static void brcms_b_pllreq(struct brcms_hardware *wlc_hw, bool set, u32 req_bit)
3022 {
3023  if (set) {
3024  if (mboolisset(wlc_hw->pllreq, req_bit))
3025  return;
3026 
3027  mboolset(wlc_hw->pllreq, req_bit);
3028 
3029  if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) {
3030  if (!wlc_hw->sbclk)
3031  brcms_b_xtal(wlc_hw, ON);
3032  }
3033  } else {
3034  if (!mboolisset(wlc_hw->pllreq, req_bit))
3035  return;
3036 
3037  mboolclr(wlc_hw->pllreq, req_bit);
3038 
3039  if (mboolisset(wlc_hw->pllreq, BRCMS_PLLREQ_FLIP)) {
3040  if (wlc_hw->sbclk)
3041  brcms_b_xtal(wlc_hw, OFF);
3042  }
3043  }
3044 }
3045 
3046 static void brcms_b_antsel_set(struct brcms_hardware *wlc_hw, u32 antsel_avail)
3047 {
3048  wlc_hw->antsel_avail = antsel_avail;
3049 }
3050 
3051 /*
3052  * conditions under which the PM bit should be set in outgoing frames
3053  * and STAY_AWAKE is meaningful
3054  */
3055 static bool brcms_c_ps_allowed(struct brcms_c_info *wlc)
3056 {
3057  struct brcms_bss_cfg *cfg = wlc->bsscfg;
3058 
3059  /* disallow PS when one of the following global conditions meets */
3060  if (!wlc->pub->associated)
3061  return false;
3062 
3063  /* disallow PS when one of these meets when not scanning */
3064  if (wlc->filter_flags & FIF_PROMISC_IN_BSS)
3065  return false;
3066 
3067  if (cfg->associated) {
3068  /*
3069  * disallow PS when one of the following
3070  * bsscfg specific conditions meets
3071  */
3072  if (!cfg->BSS)
3073  return false;
3074 
3075  return false;
3076  }
3077 
3078  return true;
3079 }
3080 
3081 static void brcms_c_statsupd(struct brcms_c_info *wlc)
3082 {
3083  int i;
3084  struct macstat macstats;
3085 #ifdef DEBUG
3086  u16 delta;
3087  u16 rxf0ovfl;
3088  u16 txfunfl[NFIFO];
3089 #endif /* DEBUG */
3090 
3091  /* if driver down, make no sense to update stats */
3092  if (!wlc->pub->up)
3093  return;
3094 
3095 #ifdef DEBUG
3096  /* save last rx fifo 0 overflow count */
3097  rxf0ovfl = wlc->core->macstat_snapshot->rxf0ovfl;
3098 
3099  /* save last tx fifo underflow count */
3100  for (i = 0; i < NFIFO; i++)
3101  txfunfl[i] = wlc->core->macstat_snapshot->txfunfl[i];
3102 #endif /* DEBUG */
3103 
3104  /* Read mac stats from contiguous shared memory */
3105  brcms_b_copyfrom_objmem(wlc->hw, M_UCODE_MACSTAT, &macstats,
3106  sizeof(struct macstat), OBJADDR_SHM_SEL);
3107 
3108 #ifdef DEBUG
3109  /* check for rx fifo 0 overflow */
3110  delta = (u16) (wlc->core->macstat_snapshot->rxf0ovfl - rxf0ovfl);
3111  if (delta)
3112  wiphy_err(wlc->wiphy, "wl%d: %u rx fifo 0 overflows!\n",
3113  wlc->pub->unit, delta);
3114 
3115  /* check for tx fifo underflows */
3116  for (i = 0; i < NFIFO; i++) {
3117  delta =
3118  (u16) (wlc->core->macstat_snapshot->txfunfl[i] -
3119  txfunfl[i]);
3120  if (delta)
3121  wiphy_err(wlc->wiphy, "wl%d: %u tx fifo %d underflows!"
3122  "\n", wlc->pub->unit, delta, i);
3123  }
3124 #endif /* DEBUG */
3125 
3126  /* merge counters from dma module */
3127  for (i = 0; i < NFIFO; i++) {
3128  if (wlc->hw->di[i])
3129  dma_counterreset(wlc->hw->di[i]);
3130  }
3131 }
3132 
3133 static void brcms_b_reset(struct brcms_hardware *wlc_hw)
3134 {
3135  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
3136 
3137  /* reset the core */
3138  if (!brcms_deviceremoved(wlc_hw->wlc))
3140 
3141  /* purge the dma rings */
3142  brcms_c_flushqueues(wlc_hw->wlc);
3143 }
3144 
3145 void brcms_c_reset(struct brcms_c_info *wlc)
3146 {
3147  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
3148 
3149  /* slurp up hw mac counters before core reset */
3150  brcms_c_statsupd(wlc);
3151 
3152  /* reset our snapshot of macstat counters */
3153  memset((char *)wlc->core->macstat_snapshot, 0,
3154  sizeof(struct macstat));
3155 
3156  brcms_b_reset(wlc->hw);
3157 }
3158 
3159 void brcms_c_init_scb(struct scb *scb)
3160 {
3161  int i;
3162 
3163  memset(scb, 0, sizeof(struct scb));
3164  scb->flags = SCB_WMECAP | SCB_HTCAP;
3165  for (i = 0; i < NUMPRIO; i++) {
3166  scb->seqnum[i] = 0;
3167  scb->seqctl[i] = 0xFFFF;
3168  }
3169 
3170  scb->seqctl_nonqos = 0xFFFF;
3171  scb->magic = SCB_MAGIC;
3172 }
3173 
3174 /* d11 core init
3175  * reset PSM
3176  * download ucode/PCM
3177  * let ucode run to suspended
3178  * download ucode inits
3179  * config other core registers
3180  * init dma
3181  */
3182 static void brcms_b_coreinit(struct brcms_c_info *wlc)
3183 {
3184  struct brcms_hardware *wlc_hw = wlc->hw;
3185  struct bcma_device *core = wlc_hw->d11core;
3186  u32 sflags;
3187  u32 bcnint_us;
3188  uint i = 0;
3189  bool fifosz_fixup = false;
3190  int err = 0;
3191  u16 buf[NFIFO];
3192  struct wiphy *wiphy = wlc->wiphy;
3193  struct brcms_ucode *ucode = &wlc_hw->wlc->wl->ucode;
3194 
3195  BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit);
3196 
3197  /* reset PSM */
3199 
3200  brcms_ucode_download(wlc_hw);
3201  /*
3202  * FIFOSZ fixup. driver wants to controls the fifo allocation.
3203  */
3204  fifosz_fixup = true;
3205 
3206  /* let the PSM run to the suspended state, set mode to BSS STA */
3207  bcma_write32(core, D11REGOFFS(macintstatus), -1);
3208  brcms_b_mctrl(wlc_hw, ~0,
3210 
3211  /* wait for ucode to self-suspend after auto-init */
3212  SPINWAIT(((bcma_read32(core, D11REGOFFS(macintstatus)) &
3213  MI_MACSSPNDD) == 0), 1000 * 1000);
3214  if ((bcma_read32(core, D11REGOFFS(macintstatus)) & MI_MACSSPNDD) == 0)
3215  wiphy_err(wiphy, "wl%d: wlc_coreinit: ucode did not self-"
3216  "suspend!\n", wlc_hw->unit);
3217 
3218  brcms_c_gpio_init(wlc);
3219 
3220  sflags = bcma_aread32(core, BCMA_IOST);
3221 
3222  if (D11REV_IS(wlc_hw->corerev, 23)) {
3223  if (BRCMS_ISNPHY(wlc_hw->band))
3224  brcms_c_write_inits(wlc_hw, ucode->d11n0initvals16);
3225  else
3226  wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev"
3227  " %d\n", __func__, wlc_hw->unit,
3228  wlc_hw->corerev);
3229  } else if (D11REV_IS(wlc_hw->corerev, 24)) {
3230  if (BRCMS_ISLCNPHY(wlc_hw->band))
3231  brcms_c_write_inits(wlc_hw, ucode->d11lcn0initvals24);
3232  else
3233  wiphy_err(wiphy, "%s: wl%d: unsupported phy in corerev"
3234  " %d\n", __func__, wlc_hw->unit,
3235  wlc_hw->corerev);
3236  } else {
3237  wiphy_err(wiphy, "%s: wl%d: unsupported corerev %d\n",
3238  __func__, wlc_hw->unit, wlc_hw->corerev);
3239  }
3240 
3241  /* For old ucode, txfifo sizes needs to be modified(increased) */
3242  if (fifosz_fixup)
3243  brcms_b_corerev_fifofixup(wlc_hw);
3244 
3245  /* check txfifo allocations match between ucode and driver */
3246  buf[TX_AC_BE_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE0);
3247  if (buf[TX_AC_BE_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BE_FIFO]) {
3248  i = TX_AC_BE_FIFO;
3249  err = -1;
3250  }
3251  buf[TX_AC_VI_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE1);
3252  if (buf[TX_AC_VI_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VI_FIFO]) {
3253  i = TX_AC_VI_FIFO;
3254  err = -1;
3255  }
3256  buf[TX_AC_BK_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE2);
3257  buf[TX_AC_VO_FIFO] = (buf[TX_AC_BK_FIFO] >> 8) & 0xff;
3258  buf[TX_AC_BK_FIFO] &= 0xff;
3259  if (buf[TX_AC_BK_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_BK_FIFO]) {
3260  i = TX_AC_BK_FIFO;
3261  err = -1;
3262  }
3263  if (buf[TX_AC_VO_FIFO] != wlc_hw->xmtfifo_sz[TX_AC_VO_FIFO]) {
3264  i = TX_AC_VO_FIFO;
3265  err = -1;
3266  }
3267  buf[TX_BCMC_FIFO] = brcms_b_read_shm(wlc_hw, M_FIFOSIZE3);
3268  buf[TX_ATIM_FIFO] = (buf[TX_BCMC_FIFO] >> 8) & 0xff;
3269  buf[TX_BCMC_FIFO] &= 0xff;
3270  if (buf[TX_BCMC_FIFO] != wlc_hw->xmtfifo_sz[TX_BCMC_FIFO]) {
3271  i = TX_BCMC_FIFO;
3272  err = -1;
3273  }
3274  if (buf[TX_ATIM_FIFO] != wlc_hw->xmtfifo_sz[TX_ATIM_FIFO]) {
3275  i = TX_ATIM_FIFO;
3276  err = -1;
3277  }
3278  if (err != 0)
3279  wiphy_err(wiphy, "wlc_coreinit: txfifo mismatch: ucode size %d"
3280  " driver size %d index %d\n", buf[i],
3281  wlc_hw->xmtfifo_sz[i], i);
3282 
3283  /* make sure we can still talk to the mac */
3284  WARN_ON(bcma_read32(core, D11REGOFFS(maccontrol)) == 0xffffffff);
3285 
3286  /* band-specific inits done by wlc_bsinit() */
3287 
3288  /* Set up frame burst size and antenna swap threshold init values */
3291 
3292  /* enable one rx interrupt per received frame */
3293  bcma_write32(core, D11REGOFFS(intrcvlazy[0]), (1 << IRL_FC_SHIFT));
3294 
3295  /* set the station mode (BSS STA) */
3296  brcms_b_mctrl(wlc_hw,
3299 
3300  /* set up Beacon interval */
3301  bcnint_us = 0x8000 << 10;
3302  bcma_write32(core, D11REGOFFS(tsf_cfprep),
3303  (bcnint_us << CFPREP_CBI_SHIFT));
3304  bcma_write32(core, D11REGOFFS(tsf_cfpstart), bcnint_us);
3305  bcma_write32(core, D11REGOFFS(macintstatus), MI_GP1);
3306 
3307  /* write interrupt mask */
3308  bcma_write32(core, D11REGOFFS(intctrlregs[RX_FIFO].intmask),
3309  DEF_RXINTMASK);
3310 
3311  /* allow the MAC to control the PHY clock (dynamic on/off) */
3312  brcms_b_macphyclk_set(wlc_hw, ON);
3313 
3314  /* program dynamic clock control fast powerup delay register */
3316  bcma_write16(core, D11REGOFFS(scc_fastpwrup_dly), wlc->fastpwrup_dly);
3317 
3318  /* tell the ucode the corerev */
3319  brcms_b_write_shm(wlc_hw, M_MACHW_VER, (u16) wlc_hw->corerev);
3320 
3321  /* tell the ucode MAC capabilities */
3323  (u16) (wlc_hw->machwcap & 0xffff));
3325  (u16) ((wlc_hw->
3326  machwcap >> 16) & 0xffff));
3327 
3328  /* write retry limits to SCR, this done after PSM init */
3329  bcma_write32(core, D11REGOFFS(objaddr),
3331  (void)bcma_read32(core, D11REGOFFS(objaddr));
3332  bcma_write32(core, D11REGOFFS(objdata), wlc_hw->SRL);
3333  bcma_write32(core, D11REGOFFS(objaddr),
3335  (void)bcma_read32(core, D11REGOFFS(objaddr));
3336  bcma_write32(core, D11REGOFFS(objdata), wlc_hw->LRL);
3337 
3338  /* write rate fallback retry limits */
3339  brcms_b_write_shm(wlc_hw, M_SFRMTXCNTFBRTHSD, wlc_hw->SFBL);
3340  brcms_b_write_shm(wlc_hw, M_LFRMTXCNTFBRTHSD, wlc_hw->LFBL);
3341 
3342  bcma_mask16(core, D11REGOFFS(ifs_ctl), 0x0FFF);
3343  bcma_write16(core, D11REGOFFS(ifs_aifsn), EDCF_AIFSN_MIN);
3344 
3345  /* init the tx dma engines */
3346  for (i = 0; i < NFIFO; i++) {
3347  if (wlc_hw->di[i])
3348  dma_txinit(wlc_hw->di[i]);
3349  }
3350 
3351  /* init the rx dma engine(s) and post receive buffers */
3352  dma_rxinit(wlc_hw->di[RX_FIFO]);
3353  dma_rxfill(wlc_hw->di[RX_FIFO]);
3354 }
3355 
3356 void
3357 static brcms_b_init(struct brcms_hardware *wlc_hw, u16 chanspec) {
3358  u32 macintmask;
3359  bool fastclk;
3360  struct brcms_c_info *wlc = wlc_hw->wlc;
3361 
3362  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
3363 
3364  /* request FAST clock if not on */
3365  fastclk = wlc_hw->forcefastclk;
3366  if (!fastclk)
3367  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
3368 
3369  /* disable interrupts */
3370  macintmask = brcms_intrsoff(wlc->wl);
3371 
3372  /* set up the specified band and chanspec */
3373  brcms_c_setxband(wlc_hw, chspec_bandunit(chanspec));
3374  wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec);
3375 
3376  /* do one-time phy inits and calibration */
3377  wlc_phy_cal_init(wlc_hw->band->pi);
3378 
3379  /* core-specific initialization */
3380  brcms_b_coreinit(wlc);
3381 
3382  /* band-specific inits */
3383  brcms_b_bsinit(wlc, chanspec);
3384 
3385  /* restore macintmask */
3386  brcms_intrsrestore(wlc->wl, macintmask);
3387 
3388  /* seed wake_override with BRCMS_WAKE_OVERRIDE_MACSUSPEND since the mac
3389  * is suspended and brcms_c_enable_mac() will clear this override bit.
3390  */
3392 
3393  /*
3394  * initialize mac_suspend_depth to 1 to match ucode
3395  * initial suspended state
3396  */
3397  wlc_hw->mac_suspend_depth = 1;
3398 
3399  /* restore the clk */
3400  if (!fastclk)
3401  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
3402 }
3403 
3404 static void brcms_c_set_phy_chanspec(struct brcms_c_info *wlc,
3405  u16 chanspec)
3406 {
3407  /* Save our copy of the chanspec */
3408  wlc->chanspec = chanspec;
3409 
3410  /* Set the chanspec and power limits for this locale */
3412 
3413  if (wlc->stf->ss_algosel_auto)
3414  brcms_c_stf_ss_algo_channel_get(wlc, &wlc->stf->ss_algo_channel,
3415  chanspec);
3416 
3417  brcms_c_stf_ss_update(wlc, wlc->band);
3418 }
3419 
3420 static void
3421 brcms_default_rateset(struct brcms_c_info *wlc, struct brcms_c_rateset *rs)
3422 {
3423  brcms_c_rateset_default(rs, NULL, wlc->band->phytype,
3424  wlc->band->bandtype, false, BRCMS_RATE_MASK_FULL,
3425  (bool) (wlc->pub->_n_enab & SUPPORT_11N),
3426  brcms_chspec_bw(wlc->default_bss->chanspec),
3427  wlc->stf->txstreams);
3428 }
3429 
3430 /* derive wlc->band->basic_rate[] table from 'rateset' */
3431 static void brcms_c_rate_lookup_init(struct brcms_c_info *wlc,
3432  struct brcms_c_rateset *rateset)
3433 {
3434  u8 rate;
3435  u8 mandatory;
3436  u8 cck_basic = 0;
3437  u8 ofdm_basic = 0;
3438  u8 *br = wlc->band->basic_rate;
3439  uint i;
3440 
3441  /* incoming rates are in 500kbps units as in 802.11 Supported Rates */
3442  memset(br, 0, BRCM_MAXRATE + 1);
3443 
3444  /* For each basic rate in the rates list, make an entry in the
3445  * best basic lookup.
3446  */
3447  for (i = 0; i < rateset->count; i++) {
3448  /* only make an entry for a basic rate */
3449  if (!(rateset->rates[i] & BRCMS_RATE_FLAG))
3450  continue;
3451 
3452  /* mask off basic bit */
3453  rate = (rateset->rates[i] & BRCMS_RATE_MASK);
3454 
3455  if (rate > BRCM_MAXRATE) {
3456  wiphy_err(wlc->wiphy, "brcms_c_rate_lookup_init: "
3457  "invalid rate 0x%X in rate set\n",
3458  rateset->rates[i]);
3459  continue;
3460  }
3461 
3462  br[rate] = rate;
3463  }
3464 
3465  /* The rate lookup table now has non-zero entries for each
3466  * basic rate, equal to the basic rate: br[basicN] = basicN
3467  *
3468  * To look up the best basic rate corresponding to any
3469  * particular rate, code can use the basic_rate table
3470  * like this
3471  *
3472  * basic_rate = wlc->band->basic_rate[tx_rate]
3473  *
3474  * Make sure there is a best basic rate entry for
3475  * every rate by walking up the table from low rates
3476  * to high, filling in holes in the lookup table
3477  */
3478 
3479  for (i = 0; i < wlc->band->hw_rateset.count; i++) {
3480  rate = wlc->band->hw_rateset.rates[i];
3481 
3482  if (br[rate] != 0) {
3483  /* This rate is a basic rate.
3484  * Keep track of the best basic rate so far by
3485  * modulation type.
3486  */
3487  if (is_ofdm_rate(rate))
3488  ofdm_basic = rate;
3489  else
3490  cck_basic = rate;
3491 
3492  continue;
3493  }
3494 
3495  /* This rate is not a basic rate so figure out the
3496  * best basic rate less than this rate and fill in
3497  * the hole in the table
3498  */
3499 
3500  br[rate] = is_ofdm_rate(rate) ? ofdm_basic : cck_basic;
3501 
3502  if (br[rate] != 0)
3503  continue;
3504 
3505  if (is_ofdm_rate(rate)) {
3506  /*
3507  * In 11g and 11a, the OFDM mandatory rates
3508  * are 6, 12, and 24 Mbps
3509  */
3510  if (rate >= BRCM_RATE_24M)
3511  mandatory = BRCM_RATE_24M;
3512  else if (rate >= BRCM_RATE_12M)
3513  mandatory = BRCM_RATE_12M;
3514  else
3515  mandatory = BRCM_RATE_6M;
3516  } else {
3517  /* In 11b, all CCK rates are mandatory 1 - 11 Mbps */
3518  mandatory = rate;
3519  }
3520 
3521  br[rate] = mandatory;
3522  }
3523 }
3524 
3525 static void brcms_c_bandinit_ordered(struct brcms_c_info *wlc,
3526  u16 chanspec)
3527 {
3528  struct brcms_c_rateset default_rateset;
3529  uint parkband;
3530  uint i, band_order[2];
3531 
3532  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
3533  /*
3534  * We might have been bandlocked during down and the chip
3535  * power-cycled (hibernate). Figure out the right band to park on
3536  */
3537  if (wlc->bandlocked || wlc->pub->_nbands == 1) {
3538  /* updated in brcms_c_bandlock() */
3539  parkband = wlc->band->bandunit;
3540  band_order[0] = band_order[1] = parkband;
3541  } else {
3542  /* park on the band of the specified chanspec */
3543  parkband = chspec_bandunit(chanspec);
3544 
3545  /* order so that parkband initialize last */
3546  band_order[0] = parkband ^ 1;
3547  band_order[1] = parkband;
3548  }
3549 
3550  /* make each band operational, software state init */
3551  for (i = 0; i < wlc->pub->_nbands; i++) {
3552  uint j = band_order[i];
3553 
3554  wlc->band = wlc->bandstate[j];
3555 
3556  brcms_default_rateset(wlc, &default_rateset);
3557 
3558  /* fill in hw_rate */
3559  brcms_c_rateset_filter(&default_rateset, &wlc->band->hw_rateset,
3561  (bool) (wlc->pub->_n_enab & SUPPORT_11N));
3562 
3563  /* init basic rate lookup */
3564  brcms_c_rate_lookup_init(wlc, &default_rateset);
3565  }
3566 
3567  /* sync up phy/radio chanspec */
3568  brcms_c_set_phy_chanspec(wlc, chanspec);
3569 }
3570 
3571 /*
3572  * Set or clear filtering related maccontrol bits based on
3573  * specified filter flags
3574  */
3575 void brcms_c_mac_promisc(struct brcms_c_info *wlc, uint filter_flags)
3576 {
3577  u32 promisc_bits = 0;
3578 
3579  wlc->filter_flags = filter_flags;
3580 
3581  if (filter_flags & (FIF_PROMISC_IN_BSS | FIF_OTHER_BSS))
3582  promisc_bits |= MCTL_PROMISC;
3583 
3584  if (filter_flags & FIF_BCN_PRBRESP_PROMISC)
3585  promisc_bits |= MCTL_BCNS_PROMISC;
3586 
3587  if (filter_flags & FIF_FCSFAIL)
3588  promisc_bits |= MCTL_KEEPBADFCS;
3589 
3590  if (filter_flags & (FIF_CONTROL | FIF_PSPOLL))
3591  promisc_bits |= MCTL_KEEPCONTROL;
3592 
3593  brcms_b_mctrl(wlc->hw,
3596  promisc_bits);
3597 }
3598 
3599 /*
3600  * ucode, hwmac update
3601  * Channel dependent updates for ucode and hw
3602  */
3603 static void brcms_c_ucode_mac_upd(struct brcms_c_info *wlc)
3604 {
3605  /* enable or disable any active IBSSs depending on whether or not
3606  * we are on the home channel
3607  */
3608  if (wlc->home_chanspec == wlc_phy_chanspec_get(wlc->band->pi)) {
3609  if (wlc->pub->associated) {
3610  /*
3611  * BMAC_NOTE: This is something that should be fixed
3612  * in ucode inits. I think that the ucode inits set
3613  * up the bcn templates and shm values with a bogus
3614  * beacon. This should not be done in the inits. If
3615  * ucode needs to set up a beacon for testing, the
3616  * test routines should write it down, not expect the
3617  * inits to populate a bogus beacon.
3618  */
3619  if (BRCMS_PHY_11N_CAP(wlc->band))
3620  brcms_b_write_shm(wlc->hw,
3621  M_BCN_TXTSF_OFFSET, 0);
3622  }
3623  } else {
3624  /* disable an active IBSS if we are not on the home channel */
3625  }
3626 }
3627 
3628 static void brcms_c_write_rate_shm(struct brcms_c_info *wlc, u8 rate,
3629  u8 basic_rate)
3630 {
3631  u8 phy_rate, index;
3632  u8 basic_phy_rate, basic_index;
3633  u16 dir_table, basic_table;
3634  u16 basic_ptr;
3635 
3636  /* Shared memory address for the table we are reading */
3637  dir_table = is_ofdm_rate(basic_rate) ? M_RT_DIRMAP_A : M_RT_DIRMAP_B;
3638 
3639  /* Shared memory address for the table we are writing */
3640  basic_table = is_ofdm_rate(rate) ? M_RT_BBRSMAP_A : M_RT_BBRSMAP_B;
3641 
3642  /*
3643  * for a given rate, the LS-nibble of the PLCP SIGNAL field is
3644  * the index into the rate table.
3645  */
3646  phy_rate = rate_info[rate] & BRCMS_RATE_MASK;
3647  basic_phy_rate = rate_info[basic_rate] & BRCMS_RATE_MASK;
3648  index = phy_rate & 0xf;
3649  basic_index = basic_phy_rate & 0xf;
3650 
3651  /* Find the SHM pointer to the ACK rate entry by looking in the
3652  * Direct-map Table
3653  */
3654  basic_ptr = brcms_b_read_shm(wlc->hw, (dir_table + basic_index * 2));
3655 
3656  /* Update the SHM BSS-basic-rate-set mapping table with the pointer
3657  * to the correct basic rate for the given incoming rate
3658  */
3659  brcms_b_write_shm(wlc->hw, (basic_table + index * 2), basic_ptr);
3660 }
3661 
3662 static const struct brcms_c_rateset *
3663 brcms_c_rateset_get_hwrs(struct brcms_c_info *wlc)
3664 {
3665  const struct brcms_c_rateset *rs_dflt;
3666 
3667  if (BRCMS_PHY_11N_CAP(wlc->band)) {
3668  if (wlc->band->bandtype == BRCM_BAND_5G)
3669  rs_dflt = &ofdm_mimo_rates;
3670  else
3671  rs_dflt = &cck_ofdm_mimo_rates;
3672  } else if (wlc->band->gmode)
3673  rs_dflt = &cck_ofdm_rates;
3674  else
3675  rs_dflt = &cck_rates;
3676 
3677  return rs_dflt;
3678 }
3679 
3680 static void brcms_c_set_ratetable(struct brcms_c_info *wlc)
3681 {
3682  const struct brcms_c_rateset *rs_dflt;
3683  struct brcms_c_rateset rs;
3684  u8 rate, basic_rate;
3685  uint i;
3686 
3687  rs_dflt = brcms_c_rateset_get_hwrs(wlc);
3688 
3689  brcms_c_rateset_copy(rs_dflt, &rs);
3690  brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
3691 
3692  /* walk the phy rate table and update SHM basic rate lookup table */
3693  for (i = 0; i < rs.count; i++) {
3694  rate = rs.rates[i] & BRCMS_RATE_MASK;
3695 
3696  /* for a given rate brcms_basic_rate returns the rate at
3697  * which a response ACK/CTS should be sent.
3698  */
3699  basic_rate = brcms_basic_rate(wlc, rate);
3700  if (basic_rate == 0)
3701  /* This should only happen if we are using a
3702  * restricted rateset.
3703  */
3704  basic_rate = rs.rates[0] & BRCMS_RATE_MASK;
3705 
3706  brcms_c_write_rate_shm(wlc, rate, basic_rate);
3707  }
3708 }
3709 
3710 /* band-specific init */
3711 static void brcms_c_bsinit(struct brcms_c_info *wlc)
3712 {
3713  BCMMSG(wlc->wiphy, "wl%d: bandunit %d\n",
3714  wlc->pub->unit, wlc->band->bandunit);
3715 
3716  /* write ucode ACK/CTS rate table */
3717  brcms_c_set_ratetable(wlc);
3718 
3719  /* update some band specific mac configuration */
3720  brcms_c_ucode_mac_upd(wlc);
3721 
3722  /* init antenna selection */
3723  brcms_c_antsel_init(wlc->asi);
3724 
3725 }
3726 
3727 /* formula: IDLE_BUSY_RATIO_X_16 = (100-duty_cycle)/duty_cycle*16 */
3728 static int
3729 brcms_c_duty_cycle_set(struct brcms_c_info *wlc, int duty_cycle, bool isOFDM,
3730  bool writeToShm)
3731 {
3732  int idle_busy_ratio_x_16 = 0;
3733  uint offset =
3736  if (duty_cycle > 100 || duty_cycle < 0) {
3737  wiphy_err(wlc->wiphy, "wl%d: duty cycle value off limit\n",
3738  wlc->pub->unit);
3739  return -EINVAL;
3740  }
3741  if (duty_cycle)
3742  idle_busy_ratio_x_16 = (100 - duty_cycle) * 16 / duty_cycle;
3743  /* Only write to shared memory when wl is up */
3744  if (writeToShm)
3745  brcms_b_write_shm(wlc->hw, offset, (u16) idle_busy_ratio_x_16);
3746 
3747  if (isOFDM)
3748  wlc->tx_duty_cycle_ofdm = (u16) duty_cycle;
3749  else
3750  wlc->tx_duty_cycle_cck = (u16) duty_cycle;
3751 
3752  return 0;
3753 }
3754 
3755 /*
3756  * Initialize the base precedence map for dequeueing
3757  * from txq based on WME settings
3758  */
3759 static void brcms_c_tx_prec_map_init(struct brcms_c_info *wlc)
3760 {
3762  memset(wlc->fifo2prec_map, 0, NFIFO * sizeof(u16));
3763 
3768 }
3769 
3770 static void
3771 brcms_c_txflowcontrol_signal(struct brcms_c_info *wlc,
3772  struct brcms_txq_info *qi, bool on, int prio)
3773 {
3774  /* transmit flowcontrol is not yet implemented */
3775 }
3776 
3777 static void brcms_c_txflowcontrol_reset(struct brcms_c_info *wlc)
3778 {
3779  struct brcms_txq_info *qi;
3780 
3781  for (qi = wlc->tx_queues; qi != NULL; qi = qi->next) {
3782  if (qi->stopped) {
3783  brcms_c_txflowcontrol_signal(wlc, qi, OFF, ALLPRIO);
3784  qi->stopped = 0;
3785  }
3786  }
3787 }
3788 
3789 /* push sw hps and wake state through hardware */
3790 static void brcms_c_set_ps_ctrl(struct brcms_c_info *wlc)
3791 {
3792  u32 v1, v2;
3793  bool hps;
3794  bool awake_before;
3795 
3796  hps = brcms_c_ps_allowed(wlc);
3797 
3798  BCMMSG(wlc->wiphy, "wl%d: hps %d\n", wlc->pub->unit, hps);
3799 
3800  v1 = bcma_read32(wlc->hw->d11core, D11REGOFFS(maccontrol));
3801  v2 = MCTL_WAKE;
3802  if (hps)
3803  v2 |= MCTL_HPS;
3804 
3805  brcms_b_mctrl(wlc->hw, MCTL_WAKE | MCTL_HPS, v2);
3806 
3807  awake_before = ((v1 & MCTL_WAKE) || ((v1 & MCTL_HPS) == 0));
3808 
3809  if (!awake_before)
3810  brcms_b_wait_for_wake(wlc->hw);
3811 }
3812 
3813 /*
3814  * Write this BSS config's MAC address to core.
3815  * Updates RXE match engine.
3816  */
3817 static int brcms_c_set_mac(struct brcms_bss_cfg *bsscfg)
3818 {
3819  int err = 0;
3820  struct brcms_c_info *wlc = bsscfg->wlc;
3821 
3822  /* enter the MAC addr into the RXE match registers */
3824 
3826 
3827  return err;
3828 }
3829 
3830 /* Write the BSS config's BSSID address to core (set_bssid in d11procs.tcl).
3831  * Updates RXE match engine.
3832  */
3833 static void brcms_c_set_bssid(struct brcms_bss_cfg *bsscfg)
3834 {
3835  /* we need to update BSSID in RXE match registers */
3836  brcms_c_set_addrmatch(bsscfg->wlc, RCM_BSSID_OFFSET, bsscfg->BSSID);
3837 }
3838 
3839 static void brcms_b_set_shortslot(struct brcms_hardware *wlc_hw, bool shortslot)
3840 {
3841  wlc_hw->shortslot = shortslot;
3842 
3843  if (wlc_hw->band->bandtype == BRCM_BAND_2G && wlc_hw->up) {
3845  brcms_b_update_slot_timing(wlc_hw, shortslot);
3846  brcms_c_enable_mac(wlc_hw->wlc);
3847  }
3848 }
3849 
3850 /*
3851  * Suspend the the MAC and update the slot timing
3852  * for standard 11b/g (20us slots) or shortslot 11g (9us slots).
3853  */
3854 static void brcms_c_switch_shortslot(struct brcms_c_info *wlc, bool shortslot)
3855 {
3856  /* use the override if it is set */
3858  shortslot = (wlc->shortslot_override == BRCMS_SHORTSLOT_ON);
3859 
3860  if (wlc->shortslot == shortslot)
3861  return;
3862 
3863  wlc->shortslot = shortslot;
3864 
3865  brcms_b_set_shortslot(wlc->hw, shortslot);
3866 }
3867 
3868 static void brcms_c_set_home_chanspec(struct brcms_c_info *wlc, u16 chanspec)
3869 {
3870  if (wlc->home_chanspec != chanspec) {
3871  wlc->home_chanspec = chanspec;
3872 
3873  if (wlc->bsscfg->associated)
3874  wlc->bsscfg->current_bss->chanspec = chanspec;
3875  }
3876 }
3877 
3878 void
3879 brcms_b_set_chanspec(struct brcms_hardware *wlc_hw, u16 chanspec,
3880  bool mute_tx, struct txpwr_limits *txpwr)
3881 {
3882  uint bandunit;
3883 
3884  BCMMSG(wlc_hw->wlc->wiphy, "wl%d: 0x%x\n", wlc_hw->unit, chanspec);
3885 
3886  wlc_hw->chanspec = chanspec;
3887 
3888  /* Switch bands if necessary */
3889  if (wlc_hw->_nbands > 1) {
3890  bandunit = chspec_bandunit(chanspec);
3891  if (wlc_hw->band->bandunit != bandunit) {
3892  /* brcms_b_setband disables other bandunit,
3893  * use light band switch if not up yet
3894  */
3895  if (wlc_hw->up) {
3897  bandstate[bandunit]->
3898  pi, chanspec);
3899  brcms_b_setband(wlc_hw, bandunit, chanspec);
3900  } else {
3901  brcms_c_setxband(wlc_hw, bandunit);
3902  }
3903  }
3904  }
3905 
3906  wlc_phy_initcal_enable(wlc_hw->band->pi, !mute_tx);
3907 
3908  if (!wlc_hw->up) {
3909  if (wlc_hw->clk)
3910  wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr,
3911  chanspec);
3912  wlc_phy_chanspec_radio_set(wlc_hw->band->pi, chanspec);
3913  } else {
3914  wlc_phy_chanspec_set(wlc_hw->band->pi, chanspec);
3915  wlc_phy_txpower_limit_set(wlc_hw->band->pi, txpwr, chanspec);
3916 
3917  /* Update muting of the channel */
3918  brcms_b_mute(wlc_hw, mute_tx);
3919  }
3920 }
3921 
3922 /* switch to and initialize new band */
3923 static void brcms_c_setband(struct brcms_c_info *wlc,
3924  uint bandunit)
3925 {
3926  wlc->band = wlc->bandstate[bandunit];
3927 
3928  if (!wlc->pub->up)
3929  return;
3930 
3931  /* wait for at least one beacon before entering sleeping state */
3932  brcms_c_set_ps_ctrl(wlc);
3933 
3934  /* band-specific initializations */
3935  brcms_c_bsinit(wlc);
3936 }
3937 
3938 static void brcms_c_set_chanspec(struct brcms_c_info *wlc, u16 chanspec)
3939 {
3940  uint bandunit;
3941  bool switchband = false;
3942  u16 old_chanspec = wlc->chanspec;
3943 
3944  if (!brcms_c_valid_chanspec_db(wlc->cmi, chanspec)) {
3945  wiphy_err(wlc->wiphy, "wl%d: %s: Bad channel %d\n",
3946  wlc->pub->unit, __func__, CHSPEC_CHANNEL(chanspec));
3947  return;
3948  }
3949 
3950  /* Switch bands if necessary */
3951  if (wlc->pub->_nbands > 1) {
3952  bandunit = chspec_bandunit(chanspec);
3953  if (wlc->band->bandunit != bandunit || wlc->bandinit_pending) {
3954  switchband = true;
3955  if (wlc->bandlocked) {
3956  wiphy_err(wlc->wiphy, "wl%d: %s: chspec %d "
3957  "band is locked!\n",
3958  wlc->pub->unit, __func__,
3959  CHSPEC_CHANNEL(chanspec));
3960  return;
3961  }
3962  /*
3963  * should the setband call come after the
3964  * brcms_b_chanspec() ? if the setband updates
3965  * (brcms_c_bsinit) use low level calls to inspect and
3966  * set state, the state inspected may be from the wrong
3967  * band, or the following brcms_b_set_chanspec() may
3968  * undo the work.
3969  */
3970  brcms_c_setband(wlc, bandunit);
3971  }
3972  }
3973 
3974  /* sync up phy/radio chanspec */
3975  brcms_c_set_phy_chanspec(wlc, chanspec);
3976 
3977  /* init antenna selection */
3978  if (brcms_chspec_bw(old_chanspec) != brcms_chspec_bw(chanspec)) {
3979  brcms_c_antsel_init(wlc->asi);
3980 
3981  /* Fix the hardware rateset based on bw.
3982  * Mainly add MCS32 for 40Mhz, remove MCS 32 for 20Mhz
3983  */
3984  brcms_c_rateset_bw_mcs_filter(&wlc->band->hw_rateset,
3985  wlc->band->mimo_cap_40 ? brcms_chspec_bw(chanspec) : 0);
3986  }
3987 
3988  /* update some mac configuration since chanspec changed */
3989  brcms_c_ucode_mac_upd(wlc);
3990 }
3991 
3992 /*
3993  * This function changes the phytxctl for beacon based on current
3994  * beacon ratespec AND txant setting as per this table:
3995  * ratespec CCK ant = wlc->stf->txant
3996  * OFDM ant = 3
3997  */
3999  u32 bcn_rspec)
4000 {
4001  u16 phyctl;
4002  u16 phytxant = wlc->stf->phytxant;
4004 
4005  /* for non-siso rates or default setting, use the available chains */
4006  if (BRCMS_PHY_11N_CAP(wlc->band))
4007  phytxant = brcms_c_stf_phytxchain_sel(wlc, bcn_rspec);
4008 
4009  phyctl = brcms_b_read_shm(wlc->hw, M_BCN_PCTLWD);
4010  phyctl = (phyctl & ~mask) | phytxant;
4011  brcms_b_write_shm(wlc->hw, M_BCN_PCTLWD, phyctl);
4012 }
4013 
4014 /*
4015  * centralized protection config change function to simplify debugging, no
4016  * consistency checking this should be called only on changes to avoid overhead
4017  * in periodic function
4018  */
4019 void brcms_c_protection_upd(struct brcms_c_info *wlc, uint idx, int val)
4020 {
4021  BCMMSG(wlc->wiphy, "idx %d, val %d\n", idx, val);
4022 
4023  switch (idx) {
4024  case BRCMS_PROT_G_SPEC:
4025  wlc->protection->_g = (bool) val;
4026  break;
4027  case BRCMS_PROT_G_OVR:
4028  wlc->protection->g_override = (s8) val;
4029  break;
4030  case BRCMS_PROT_G_USER:
4031  wlc->protection->gmode_user = (u8) val;
4032  break;
4033  case BRCMS_PROT_OVERLAP:
4034  wlc->protection->overlap = (s8) val;
4035  break;
4036  case BRCMS_PROT_N_USER:
4037  wlc->protection->nmode_user = (s8) val;
4038  break;
4039  case BRCMS_PROT_N_CFG:
4040  wlc->protection->n_cfg = (s8) val;
4041  break;
4042  case BRCMS_PROT_N_CFG_OVR:
4043  wlc->protection->n_cfg_override = (s8) val;
4044  break;
4045  case BRCMS_PROT_N_NONGF:
4046  wlc->protection->nongf = (bool) val;
4047  break;
4049  wlc->protection->nongf_override = (s8) val;
4050  break;
4051  case BRCMS_PROT_N_PAM_OVR:
4052  wlc->protection->n_pam_override = (s8) val;
4053  break;
4054  case BRCMS_PROT_N_OBSS:
4055  wlc->protection->n_obss = (bool) val;
4056  break;
4057 
4058  default:
4059  break;
4060  }
4061 
4062 }
4063 
4064 static void brcms_c_ht_update_sgi_rx(struct brcms_c_info *wlc, int val)
4065 {
4066  if (wlc->pub->up) {
4067  brcms_c_update_beacon(wlc);
4068  brcms_c_update_probe_resp(wlc, true);
4069  }
4070 }
4071 
4072 static void brcms_c_ht_update_ldpc(struct brcms_c_info *wlc, s8 val)
4073 {
4074  wlc->stf->ldpc = val;
4075 
4076  if (wlc->pub->up) {
4077  brcms_c_update_beacon(wlc);
4078  brcms_c_update_probe_resp(wlc, true);
4079  wlc_phy_ldpc_override_set(wlc->band->pi, (val ? true : false));
4080  }
4081 }
4082 
4084  const struct ieee80211_tx_queue_params *params,
4085  bool suspend)
4086 {
4087  int i;
4088  struct shm_acparams acp_shm;
4089  u16 *shm_entry;
4090 
4091  /* Only apply params if the core is out of reset and has clocks */
4092  if (!wlc->clk) {
4093  wiphy_err(wlc->wiphy, "wl%d: %s : no-clock\n", wlc->pub->unit,
4094  __func__);
4095  return;
4096  }
4097 
4098  memset((char *)&acp_shm, 0, sizeof(struct shm_acparams));
4099  /* fill in shm ac params struct */
4100  acp_shm.txop = params->txop;
4101  /* convert from units of 32us to us for ucode */
4102  wlc->edcf_txop[aci & 0x3] = acp_shm.txop =
4103  EDCF_TXOP2USEC(acp_shm.txop);
4104  acp_shm.aifs = (params->aifs & EDCF_AIFSN_MASK);
4105 
4106  if (aci == IEEE80211_AC_VI && acp_shm.txop == 0
4107  && acp_shm.aifs < EDCF_AIFSN_MAX)
4108  acp_shm.aifs++;
4109 
4110  if (acp_shm.aifs < EDCF_AIFSN_MIN
4111  || acp_shm.aifs > EDCF_AIFSN_MAX) {
4112  wiphy_err(wlc->wiphy, "wl%d: edcf_setparams: bad "
4113  "aifs %d\n", wlc->pub->unit, acp_shm.aifs);
4114  } else {
4115  acp_shm.cwmin = params->cw_min;
4116  acp_shm.cwmax = params->cw_max;
4117  acp_shm.cwcur = acp_shm.cwmin;
4118  acp_shm.bslots =
4119  bcma_read16(wlc->hw->d11core, D11REGOFFS(tsf_random)) &
4120  acp_shm.cwcur;
4121  acp_shm.reggap = acp_shm.bslots + acp_shm.aifs;
4122  /* Indicate the new params to the ucode */
4123  acp_shm.status = brcms_b_read_shm(wlc->hw, (M_EDCF_QINFO +
4124  wme_ac2fifo[aci] *
4125  M_EDCF_QLEN +
4127  acp_shm.status |= WME_STATUS_NEWAC;
4128 
4129  /* Fill in shm acparam table */
4130  shm_entry = (u16 *) &acp_shm;
4131  for (i = 0; i < (int)sizeof(struct shm_acparams); i += 2)
4132  brcms_b_write_shm(wlc->hw,
4133  M_EDCF_QINFO +
4134  wme_ac2fifo[aci] * M_EDCF_QLEN + i,
4135  *shm_entry++);
4136  }
4137 
4138  if (suspend) {
4140  brcms_c_enable_mac(wlc);
4141  }
4142 }
4143 
4144 static void brcms_c_edcf_setparams(struct brcms_c_info *wlc, bool suspend)
4145 {
4146  u16 aci;
4147  int i_ac;
4148  struct ieee80211_tx_queue_params txq_pars;
4149  static const struct edcf_acparam default_edcf_acparams[] = {
4154  }; /* ucode needs these parameters during its initialization */
4155  const struct edcf_acparam *edcf_acp = &default_edcf_acparams[0];
4156 
4157  for (i_ac = 0; i_ac < IEEE80211_NUM_ACS; i_ac++, edcf_acp++) {
4158  /* find out which ac this set of params applies to */
4159  aci = (edcf_acp->ACI & EDCF_ACI_MASK) >> EDCF_ACI_SHIFT;
4160 
4161  /* fill in shm ac params struct */
4162  txq_pars.txop = edcf_acp->TXOP;
4163  txq_pars.aifs = edcf_acp->ACI;
4164 
4165  /* CWmin = 2^(ECWmin) - 1 */
4166  txq_pars.cw_min = EDCF_ECW2CW(edcf_acp->ECW & EDCF_ECWMIN_MASK);
4167  /* CWmax = 2^(ECWmax) - 1 */
4168  txq_pars.cw_max = EDCF_ECW2CW((edcf_acp->ECW & EDCF_ECWMAX_MASK)
4169  >> EDCF_ECWMAX_SHIFT);
4170  brcms_c_wme_setparams(wlc, aci, &txq_pars, suspend);
4171  }
4172 
4173  if (suspend) {
4175  brcms_c_enable_mac(wlc);
4176  }
4177 }
4178 
4179 static void brcms_c_radio_monitor_start(struct brcms_c_info *wlc)
4180 {
4181  /* Don't start the timer if HWRADIO feature is disabled */
4182  if (wlc->radio_monitor)
4183  return;
4184 
4185  wlc->radio_monitor = true;
4186  brcms_b_pllreq(wlc->hw, true, BRCMS_PLLREQ_RADIO_MON);
4188 }
4189 
4190 static bool brcms_c_radio_monitor_stop(struct brcms_c_info *wlc)
4191 {
4192  if (!wlc->radio_monitor)
4193  return true;
4194 
4195  wlc->radio_monitor = false;
4196  brcms_b_pllreq(wlc->hw, false, BRCMS_PLLREQ_RADIO_MON);
4197  return brcms_del_timer(wlc->radio_timer);
4198 }
4199 
4200 /* read hwdisable state and propagate to wlc flag */
4201 static void brcms_c_radio_hwdisable_upd(struct brcms_c_info *wlc)
4202 {
4203  if (wlc->pub->hw_off)
4204  return;
4205 
4206  if (brcms_b_radio_read_hwdisabled(wlc->hw))
4207  mboolset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
4208  else
4209  mboolclr(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE);
4210 }
4211 
4212 /* update hwradio status and return it */
4214 {
4215  brcms_c_radio_hwdisable_upd(wlc);
4216 
4217  return mboolisset(wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE) ?
4218  true : false;
4219 }
4220 
4221 /* periodical query hw radio button while driver is "down" */
4222 static void brcms_c_radio_timer(void *arg)
4223 {
4224  struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
4225 
4226  if (brcms_deviceremoved(wlc)) {
4227  wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit,
4228  __func__);
4229  brcms_down(wlc->wl);
4230  return;
4231  }
4232 
4233  brcms_c_radio_hwdisable_upd(wlc);
4234 }
4235 
4236 /* common low-level watchdog code */
4237 static void brcms_b_watchdog(struct brcms_c_info *wlc)
4238 {
4239  struct brcms_hardware *wlc_hw = wlc->hw;
4240 
4241  BCMMSG(wlc->wiphy, "wl%d\n", wlc_hw->unit);
4242 
4243  if (!wlc_hw->up)
4244  return;
4245 
4246  /* increment second count */
4247  wlc_hw->now++;
4248 
4249  /* Check for FIFO error interrupts */
4250  brcms_b_fifoerrors(wlc_hw);
4251 
4252  /* make sure RX dma has buffers */
4253  dma_rxfill(wlc->hw->di[RX_FIFO]);
4254 
4255  wlc_phy_watchdog(wlc_hw->band->pi);
4256 }
4257 
4258 /* common watchdog code */
4259 static void brcms_c_watchdog(struct brcms_c_info *wlc)
4260 {
4261  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
4262 
4263  if (!wlc->pub->up)
4264  return;
4265 
4266  if (brcms_deviceremoved(wlc)) {
4267  wiphy_err(wlc->wiphy, "wl%d: %s: dead chip\n", wlc->pub->unit,
4268  __func__);
4269  brcms_down(wlc->wl);
4270  return;
4271  }
4272 
4273  /* increment second count */
4274  wlc->pub->now++;
4275 
4276  brcms_c_radio_hwdisable_upd(wlc);
4277  /* if radio is disable, driver may be down, quit here */
4278  if (wlc->pub->radio_disabled)
4279  return;
4280 
4281  brcms_b_watchdog(wlc);
4282 
4283  /*
4284  * occasionally sample mac stat counters to
4285  * detect 16-bit counter wrap
4286  */
4287  if ((wlc->pub->now % SW_TIMER_MAC_STAT_UPD) == 0)
4288  brcms_c_statsupd(wlc);
4289 
4290  if (BRCMS_ISNPHY(wlc->band) &&
4291  ((wlc->pub->now - wlc->tempsense_lasttime) >=
4293  wlc->tempsense_lasttime = wlc->pub->now;
4294  brcms_c_tempsense_upd(wlc);
4295  }
4296 }
4297 
4298 static void brcms_c_watchdog_by_timer(void *arg)
4299 {
4300  struct brcms_c_info *wlc = (struct brcms_c_info *) arg;
4301 
4302  brcms_c_watchdog(wlc);
4303 }
4304 
4305 static bool brcms_c_timers_init(struct brcms_c_info *wlc, int unit)
4306 {
4307  wlc->wdtimer = brcms_init_timer(wlc->wl, brcms_c_watchdog_by_timer,
4308  wlc, "watchdog");
4309  if (!wlc->wdtimer) {
4310  wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for wdtimer "
4311  "failed\n", unit);
4312  goto fail;
4313  }
4314 
4315  wlc->radio_timer = brcms_init_timer(wlc->wl, brcms_c_radio_timer,
4316  wlc, "radio");
4317  if (!wlc->radio_timer) {
4318  wiphy_err(wlc->wiphy, "wl%d: wl_init_timer for radio_timer "
4319  "failed\n", unit);
4320  goto fail;
4321  }
4322 
4323  return true;
4324 
4325  fail:
4326  return false;
4327 }
4328 
4329 /*
4330  * Initialize brcms_c_info default values ...
4331  * may get overrides later in this function
4332  */
4333 static void brcms_c_info_init(struct brcms_c_info *wlc, int unit)
4334 {
4335  int i;
4336 
4337  /* Save our copy of the chanspec */
4338  wlc->chanspec = ch20mhz_chspec(1);
4339 
4340  /* various 802.11g modes */
4341  wlc->shortslot = false;
4343 
4346 
4354 
4357 
4358  /* 802.11g draft 4.0 NonERP elt advertisement */
4359  wlc->include_legacy_erp = true;
4360 
4361  wlc->stf->ant_rx_ovr = ANT_RX_DIV_DEF;
4362  wlc->stf->txant = ANT_TX_DEF;
4363 
4365 
4367  for (i = 0; i < NFIFO; i++)
4370 
4371  /* default rate fallback retry limits */
4372  wlc->SFBL = RETRY_SHORT_FB;
4373  wlc->LFBL = RETRY_LONG_FB;
4374 
4375  /* default mac retry limits */
4376  wlc->SRL = RETRY_SHORT_DEF;
4377  wlc->LRL = RETRY_LONG_DEF;
4378 
4379  /* WME QoS mode is Auto by default */
4380  wlc->pub->_ampdu = AMPDU_AGG_HOST;
4381  wlc->pub->bcmerror = 0;
4382 }
4383 
4384 static uint brcms_c_attach_module(struct brcms_c_info *wlc)
4385 {
4386  uint err = 0;
4387  uint unit;
4388  unit = wlc->pub->unit;
4389 
4390  wlc->asi = brcms_c_antsel_attach(wlc);
4391  if (wlc->asi == NULL) {
4392  wiphy_err(wlc->wiphy, "wl%d: attach: antsel_attach "
4393  "failed\n", unit);
4394  err = 44;
4395  goto fail;
4396  }
4397 
4398  wlc->ampdu = brcms_c_ampdu_attach(wlc);
4399  if (wlc->ampdu == NULL) {
4400  wiphy_err(wlc->wiphy, "wl%d: attach: ampdu_attach "
4401  "failed\n", unit);
4402  err = 50;
4403  goto fail;
4404  }
4405 
4406  if ((brcms_c_stf_attach(wlc) != 0)) {
4407  wiphy_err(wlc->wiphy, "wl%d: attach: stf_attach "
4408  "failed\n", unit);
4409  err = 68;
4410  goto fail;
4411  }
4412  fail:
4413  return err;
4414 }
4415 
4416 struct brcms_pub *brcms_c_pub(struct brcms_c_info *wlc)
4417 {
4418  return wlc->pub;
4419 }
4420 
4421 /* low level attach
4422  * run backplane attach, init nvram
4423  * run phy attach
4424  * initialize software state for each core and band
4425  * put the whole chip in reset(driver down state), no clock
4426  */
4427 static int brcms_b_attach(struct brcms_c_info *wlc, struct bcma_device *core,
4428  uint unit, bool piomode)
4429 {
4430  struct brcms_hardware *wlc_hw;
4431  uint err = 0;
4432  uint j;
4433  bool wme = false;
4434  struct shared_phy_params sha_params;
4435  struct wiphy *wiphy = wlc->wiphy;
4436  struct pci_dev *pcidev = core->bus->host_pci;
4437  struct ssb_sprom *sprom = &core->bus->sprom;
4438 
4439  if (core->bus->hosttype == BCMA_HOSTTYPE_PCI)
4440  BCMMSG(wlc->wiphy, "wl%d: vendor 0x%x device 0x%x\n", unit,
4441  pcidev->vendor,
4442  pcidev->device);
4443  else
4444  BCMMSG(wlc->wiphy, "wl%d: vendor 0x%x device 0x%x\n", unit,
4445  core->bus->boardinfo.vendor,
4446  core->bus->boardinfo.type);
4447 
4448  wme = true;
4449 
4450  wlc_hw = wlc->hw;
4451  wlc_hw->wlc = wlc;
4452  wlc_hw->unit = unit;
4453  wlc_hw->band = wlc_hw->bandstate[0];
4454  wlc_hw->_piomode = piomode;
4455 
4456  /* populate struct brcms_hardware with default values */
4457  brcms_b_info_init(wlc_hw);
4458 
4459  /*
4460  * Do the hardware portion of the attach. Also initialize software
4461  * state that depends on the particular hardware we are running.
4462  */
4463  wlc_hw->sih = ai_attach(core->bus);
4464  if (wlc_hw->sih == NULL) {
4465  wiphy_err(wiphy, "wl%d: brcms_b_attach: si_attach failed\n",
4466  unit);
4467  err = 11;
4468  goto fail;
4469  }
4470 
4471  /* verify again the device is supported */
4472  if (!brcms_c_chipmatch(core)) {
4473  wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported device\n",
4474  unit);
4475  err = 12;
4476  goto fail;
4477  }
4478 
4479  if (core->bus->hosttype == BCMA_HOSTTYPE_PCI) {
4480  wlc_hw->vendorid = pcidev->vendor;
4481  wlc_hw->deviceid = pcidev->device;
4482  } else {
4483  wlc_hw->vendorid = core->bus->boardinfo.vendor;
4484  wlc_hw->deviceid = core->bus->boardinfo.type;
4485  }
4486 
4487  wlc_hw->d11core = core;
4488  wlc_hw->corerev = core->id.rev;
4489 
4490  /* validate chip, chiprev and corerev */
4491  if (!brcms_c_isgoodchip(wlc_hw)) {
4492  err = 13;
4493  goto fail;
4494  }
4495 
4496  /* initialize power control registers */
4497  ai_clkctl_init(wlc_hw->sih);
4498 
4499  /* request fastclock and force fastclock for the rest of attach
4500  * bring the d11 core out of reset.
4501  * For PMU chips, the first wlc_clkctl_clk is no-op since core-clk
4502  * is still false; But it will be called again inside wlc_corereset,
4503  * after d11 is out of reset.
4504  */
4505  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
4507 
4508  if (!brcms_b_validate_chip_access(wlc_hw)) {
4509  wiphy_err(wiphy, "wl%d: brcms_b_attach: validate_chip_access "
4510  "failed\n", unit);
4511  err = 14;
4512  goto fail;
4513  }
4514 
4515  /* get the board rev, used just below */
4516  j = sprom->board_rev;
4517  /* promote srom boardrev of 0xFF to 1 */
4518  if (j == BOARDREV_PROMOTABLE)
4519  j = BOARDREV_PROMOTED;
4520  wlc_hw->boardrev = (u16) j;
4521  if (!brcms_c_validboardtype(wlc_hw)) {
4522  wiphy_err(wiphy, "wl%d: brcms_b_attach: Unsupported Broadcom "
4523  "board type (0x%x)" " or revision level (0x%x)\n",
4524  unit, ai_get_boardtype(wlc_hw->sih),
4525  wlc_hw->boardrev);
4526  err = 15;
4527  goto fail;
4528  }
4529  wlc_hw->sromrev = sprom->revision;
4530  wlc_hw->boardflags = sprom->boardflags_lo + (sprom->boardflags_hi << 16);
4531  wlc_hw->boardflags2 = sprom->boardflags2_lo + (sprom->boardflags2_hi << 16);
4532 
4533  if (wlc_hw->boardflags & BFL_NOPLLDOWN)
4534  brcms_b_pllreq(wlc_hw, true, BRCMS_PLLREQ_SHARED);
4535 
4536  /* check device id(srom, nvram etc.) to set bands */
4537  if (wlc_hw->deviceid == BCM43224_D11N_ID ||
4538  wlc_hw->deviceid == BCM43224_D11N_ID_VEN1)
4539  /* Dualband boards */
4540  wlc_hw->_nbands = 2;
4541  else
4542  wlc_hw->_nbands = 1;
4543 
4544  if ((ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM43225))
4545  wlc_hw->_nbands = 1;
4546 
4547  /* BMAC_NOTE: remove init of pub values when brcms_c_attach()
4548  * unconditionally does the init of these values
4549  */
4550  wlc->vendorid = wlc_hw->vendorid;
4551  wlc->deviceid = wlc_hw->deviceid;
4552  wlc->pub->sih = wlc_hw->sih;
4553  wlc->pub->corerev = wlc_hw->corerev;
4554  wlc->pub->sromrev = wlc_hw->sromrev;
4555  wlc->pub->boardrev = wlc_hw->boardrev;
4556  wlc->pub->boardflags = wlc_hw->boardflags;
4557  wlc->pub->boardflags2 = wlc_hw->boardflags2;
4558  wlc->pub->_nbands = wlc_hw->_nbands;
4559 
4560  wlc_hw->physhim = wlc_phy_shim_attach(wlc_hw, wlc->wl, wlc);
4561 
4562  if (wlc_hw->physhim == NULL) {
4563  wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_shim_attach "
4564  "failed\n", unit);
4565  err = 25;
4566  goto fail;
4567  }
4568 
4569  /* pass all the parameters to wlc_phy_shared_attach in one struct */
4570  sha_params.sih = wlc_hw->sih;
4571  sha_params.physhim = wlc_hw->physhim;
4572  sha_params.unit = unit;
4573  sha_params.corerev = wlc_hw->corerev;
4574  sha_params.vid = wlc_hw->vendorid;
4575  sha_params.did = wlc_hw->deviceid;
4576  sha_params.chip = ai_get_chip_id(wlc_hw->sih);
4577  sha_params.chiprev = ai_get_chiprev(wlc_hw->sih);
4578  sha_params.chippkg = ai_get_chippkg(wlc_hw->sih);
4579  sha_params.sromrev = wlc_hw->sromrev;
4580  sha_params.boardtype = ai_get_boardtype(wlc_hw->sih);
4581  sha_params.boardrev = wlc_hw->boardrev;
4582  sha_params.boardflags = wlc_hw->boardflags;
4583  sha_params.boardflags2 = wlc_hw->boardflags2;
4584 
4585  /* alloc and save pointer to shared phy state area */
4586  wlc_hw->phy_sh = wlc_phy_shared_attach(&sha_params);
4587  if (!wlc_hw->phy_sh) {
4588  err = 16;
4589  goto fail;
4590  }
4591 
4592  /* initialize software state for each core and band */
4593  for (j = 0; j < wlc_hw->_nbands; j++) {
4594  /*
4595  * band0 is always 2.4Ghz
4596  * band1, if present, is 5Ghz
4597  */
4598 
4599  brcms_c_setxband(wlc_hw, j);
4600 
4601  wlc_hw->band->bandunit = j;
4602  wlc_hw->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G;
4603  wlc->band->bandunit = j;
4604  wlc->band->bandtype = j ? BRCM_BAND_5G : BRCM_BAND_2G;
4605  wlc->core->coreidx = core->core_index;
4606 
4607  wlc_hw->machwcap = bcma_read32(core, D11REGOFFS(machwcap));
4608  wlc_hw->machwcap_backup = wlc_hw->machwcap;
4609 
4610  /* init tx fifo size */
4611  WARN_ON((wlc_hw->corerev - XMTFIFOTBL_STARTREV) < 0 ||
4612  (wlc_hw->corerev - XMTFIFOTBL_STARTREV) >
4613  ARRAY_SIZE(xmtfifo_sz));
4614  wlc_hw->xmtfifo_sz =
4615  xmtfifo_sz[(wlc_hw->corerev - XMTFIFOTBL_STARTREV)];
4616  WARN_ON(!wlc_hw->xmtfifo_sz[0]);
4617 
4618  /* Get a phy for this band */
4619  wlc_hw->band->pi =
4620  wlc_phy_attach(wlc_hw->phy_sh, core,
4621  wlc_hw->band->bandtype,
4622  wlc->wiphy);
4623  if (wlc_hw->band->pi == NULL) {
4624  wiphy_err(wiphy, "wl%d: brcms_b_attach: wlc_phy_"
4625  "attach failed\n", unit);
4626  err = 17;
4627  goto fail;
4628  }
4629 
4630  wlc_phy_machwcap_set(wlc_hw->band->pi, wlc_hw->machwcap);
4631 
4632  wlc_phy_get_phyversion(wlc_hw->band->pi, &wlc_hw->band->phytype,
4633  &wlc_hw->band->phyrev,
4634  &wlc_hw->band->radioid,
4635  &wlc_hw->band->radiorev);
4636  wlc_hw->band->abgphy_encore =
4637  wlc_phy_get_encore(wlc_hw->band->pi);
4638  wlc->band->abgphy_encore = wlc_phy_get_encore(wlc_hw->band->pi);
4639  wlc_hw->band->core_flags =
4640  wlc_phy_get_coreflags(wlc_hw->band->pi);
4641 
4642  /* verify good phy_type & supported phy revision */
4643  if (BRCMS_ISNPHY(wlc_hw->band)) {
4644  if (NCONF_HAS(wlc_hw->band->phyrev))
4645  goto good_phy;
4646  else
4647  goto bad_phy;
4648  } else if (BRCMS_ISLCNPHY(wlc_hw->band)) {
4649  if (LCNCONF_HAS(wlc_hw->band->phyrev))
4650  goto good_phy;
4651  else
4652  goto bad_phy;
4653  } else {
4654  bad_phy:
4655  wiphy_err(wiphy, "wl%d: brcms_b_attach: unsupported "
4656  "phy type/rev (%d/%d)\n", unit,
4657  wlc_hw->band->phytype, wlc_hw->band->phyrev);
4658  err = 18;
4659  goto fail;
4660  }
4661 
4662  good_phy:
4663  /*
4664  * BMAC_NOTE: wlc->band->pi should not be set below and should
4665  * be done in the high level attach. However we can not make
4666  * that change until all low level access is changed to
4667  * wlc_hw->band->pi. Instead do the wlc->band->pi init below,
4668  * keeping wlc_hw->band->pi as well for incremental update of
4669  * low level fns, and cut over low only init when all fns
4670  * updated.
4671  */
4672  wlc->band->pi = wlc_hw->band->pi;
4673  wlc->band->phytype = wlc_hw->band->phytype;
4674  wlc->band->phyrev = wlc_hw->band->phyrev;
4675  wlc->band->radioid = wlc_hw->band->radioid;
4676  wlc->band->radiorev = wlc_hw->band->radiorev;
4677 
4678  /* default contention windows size limits */
4679  wlc_hw->band->CWmin = APHY_CWMIN;
4680  wlc_hw->band->CWmax = PHY_CWMAX;
4681 
4682  if (!brcms_b_attach_dmapio(wlc, j, wme)) {
4683  err = 19;
4684  goto fail;
4685  }
4686  }
4687 
4688  /* disable core to match driver "down" state */
4689  brcms_c_coredisable(wlc_hw);
4690 
4691  /* Match driver "down" state */
4692  ai_pci_down(wlc_hw->sih);
4693 
4694  /* turn off pll and xtal to match driver "down" state */
4695  brcms_b_xtal(wlc_hw, OFF);
4696 
4697  /* *******************************************************************
4698  * The hardware is in the DOWN state at this point. D11 core
4699  * or cores are in reset with clocks off, and the board PLLs
4700  * are off if possible.
4701  *
4702  * Beyond this point, wlc->sbclk == false and chip registers
4703  * should not be touched.
4704  *********************************************************************
4705  */
4706 
4707  /* init etheraddr state variables */
4708  brcms_c_get_macaddr(wlc_hw, wlc_hw->etheraddr);
4709 
4710  if (is_broadcast_ether_addr(wlc_hw->etheraddr) ||
4711  is_zero_ether_addr(wlc_hw->etheraddr)) {
4712  wiphy_err(wiphy, "wl%d: brcms_b_attach: bad macaddr\n",
4713  unit);
4714  err = 22;
4715  goto fail;
4716  }
4717 
4718  BCMMSG(wlc->wiphy, "deviceid 0x%x nbands %d board 0x%x\n",
4719  wlc_hw->deviceid, wlc_hw->_nbands, ai_get_boardtype(wlc_hw->sih));
4720 
4721  return err;
4722 
4723  fail:
4724  wiphy_err(wiphy, "wl%d: brcms_b_attach: failed with err %d\n", unit,
4725  err);
4726  return err;
4727 }
4728 
4729 static void brcms_c_attach_antgain_init(struct brcms_c_info *wlc)
4730 {
4731  uint unit;
4732  unit = wlc->pub->unit;
4733 
4734  if ((wlc->band->antgain == -1) && (wlc->pub->sromrev == 1)) {
4735  /* default antenna gain for srom rev 1 is 2 dBm (8 qdbm) */
4736  wlc->band->antgain = 8;
4737  } else if (wlc->band->antgain == -1) {
4738  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in"
4739  " srom, using 2dB\n", unit, __func__);
4740  wlc->band->antgain = 8;
4741  } else {
4742  s8 gain, fract;
4743  /* Older sroms specified gain in whole dbm only. In order
4744  * be able to specify qdbm granularity and remain backward
4745  * compatible the whole dbms are now encoded in only
4746  * low 6 bits and remaining qdbms are encoded in the hi 2 bits.
4747  * 6 bit signed number ranges from -32 - 31.
4748  *
4749  * Examples:
4750  * 0x1 = 1 db,
4751  * 0xc1 = 1.75 db (1 + 3 quarters),
4752  * 0x3f = -1 (-1 + 0 quarters),
4753  * 0x7f = -.75 (-1 + 1 quarters) = -3 qdbm.
4754  * 0xbf = -.50 (-1 + 2 quarters) = -2 qdbm.
4755  */
4756  gain = wlc->band->antgain & 0x3f;
4757  gain <<= 2; /* Sign extend */
4758  gain >>= 2;
4759  fract = (wlc->band->antgain & 0xc0) >> 6;
4760  wlc->band->antgain = 4 * gain + fract;
4761  }
4762 }
4763 
4764 static bool brcms_c_attach_stf_ant_init(struct brcms_c_info *wlc)
4765 {
4766  int aa;
4767  uint unit;
4768  int bandtype;
4769  struct ssb_sprom *sprom = &wlc->hw->d11core->bus->sprom;
4770 
4771  unit = wlc->pub->unit;
4772  bandtype = wlc->band->bandtype;
4773 
4774  /* get antennas available */
4775  if (bandtype == BRCM_BAND_5G)
4776  aa = sprom->ant_available_a;
4777  else
4778  aa = sprom->ant_available_bg;
4779 
4780  if ((aa < 1) || (aa > 15)) {
4781  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid antennas available in"
4782  " srom (0x%x), using 3\n", unit, __func__, aa);
4783  aa = 3;
4784  }
4785 
4786  /* reset the defaults if we have a single antenna */
4787  if (aa == 1) {
4788  wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_0;
4789  wlc->stf->txant = ANT_TX_FORCE_0;
4790  } else if (aa == 2) {
4791  wlc->stf->ant_rx_ovr = ANT_RX_DIV_FORCE_1;
4792  wlc->stf->txant = ANT_TX_FORCE_1;
4793  } else {
4794  }
4795 
4796  /* Compute Antenna Gain */
4797  if (bandtype == BRCM_BAND_5G)
4798  wlc->band->antgain = sprom->antenna_gain.a1;
4799  else
4800  wlc->band->antgain = sprom->antenna_gain.a0;
4801 
4802  brcms_c_attach_antgain_init(wlc);
4803 
4804  return true;
4805 }
4806 
4807 static void brcms_c_bss_default_init(struct brcms_c_info *wlc)
4808 {
4809  u16 chanspec;
4810  struct brcms_band *band;
4811  struct brcms_bss_info *bi = wlc->default_bss;
4812 
4813  /* init default and target BSS with some sane initial values */
4814  memset((char *)(bi), 0, sizeof(struct brcms_bss_info));
4816 
4817  /* fill the default channel as the first valid channel
4818  * starting from the 2G channels
4819  */
4820  chanspec = ch20mhz_chspec(1);
4821  wlc->home_chanspec = bi->chanspec = chanspec;
4822 
4823  /* find the band of our default channel */
4824  band = wlc->band;
4825  if (wlc->pub->_nbands > 1 &&
4826  band->bandunit != chspec_bandunit(chanspec))
4827  band = wlc->bandstate[OTHERBANDUNIT(wlc)];
4828 
4829  /* init bss rates to the band specific default rate set */
4831  band->bandtype, false, BRCMS_RATE_MASK_FULL,
4832  (bool) (wlc->pub->_n_enab & SUPPORT_11N),
4833  brcms_chspec_bw(chanspec), wlc->stf->txstreams);
4834 
4835  if (wlc->pub->_n_enab & SUPPORT_11N)
4836  bi->flags |= BRCMS_BSS_HT;
4837 }
4838 
4839 static struct brcms_txq_info *brcms_c_txq_alloc(struct brcms_c_info *wlc)
4840 {
4841  struct brcms_txq_info *qi, *p;
4842 
4843  qi = kzalloc(sizeof(struct brcms_txq_info), GFP_ATOMIC);
4844  if (qi != NULL) {
4845  /*
4846  * Have enough room for control packets along with HI watermark
4847  * Also, add room to txq for total psq packets if all the SCBs
4848  * leave PS mode. The watermark for flowcontrol to OS packets
4849  * will remain the same
4850  */
4853 
4854  /* add this queue to the the global list */
4855  p = wlc->tx_queues;
4856  if (p == NULL) {
4857  wlc->tx_queues = qi;
4858  } else {
4859  while (p->next != NULL)
4860  p = p->next;
4861  p->next = qi;
4862  }
4863  }
4864  return qi;
4865 }
4866 
4867 static void brcms_c_txq_free(struct brcms_c_info *wlc,
4868  struct brcms_txq_info *qi)
4869 {
4870  struct brcms_txq_info *p;
4871 
4872  if (qi == NULL)
4873  return;
4874 
4875  /* remove the queue from the linked list */
4876  p = wlc->tx_queues;
4877  if (p == qi)
4878  wlc->tx_queues = p->next;
4879  else {
4880  while (p != NULL && p->next != qi)
4881  p = p->next;
4882  if (p != NULL)
4883  p->next = p->next->next;
4884  }
4885 
4886  kfree(qi);
4887 }
4888 
4889 static void brcms_c_update_mimo_band_bwcap(struct brcms_c_info *wlc, u8 bwcap)
4890 {
4891  uint i;
4892  struct brcms_band *band;
4893 
4894  for (i = 0; i < wlc->pub->_nbands; i++) {
4895  band = wlc->bandstate[i];
4896  if (band->bandtype == BRCM_BAND_5G) {
4897  if ((bwcap == BRCMS_N_BW_40ALL)
4898  || (bwcap == BRCMS_N_BW_20IN2G_40IN5G))
4899  band->mimo_cap_40 = true;
4900  else
4901  band->mimo_cap_40 = false;
4902  } else {
4903  if (bwcap == BRCMS_N_BW_40ALL)
4904  band->mimo_cap_40 = true;
4905  else
4906  band->mimo_cap_40 = false;
4907  }
4908  }
4909 }
4910 
4911 static void brcms_c_timers_deinit(struct brcms_c_info *wlc)
4912 {
4913  /* free timer state */
4914  if (wlc->wdtimer) {
4915  brcms_free_timer(wlc->wdtimer);
4916  wlc->wdtimer = NULL;
4917  }
4918  if (wlc->radio_timer) {
4920  wlc->radio_timer = NULL;
4921  }
4922 }
4923 
4924 static void brcms_c_detach_module(struct brcms_c_info *wlc)
4925 {
4926  if (wlc->asi) {
4927  brcms_c_antsel_detach(wlc->asi);
4928  wlc->asi = NULL;
4929  }
4930 
4931  if (wlc->ampdu) {
4933  wlc->ampdu = NULL;
4934  }
4935 
4936  brcms_c_stf_detach(wlc);
4937 }
4938 
4939 /*
4940  * low level detach
4941  */
4942 static int brcms_b_detach(struct brcms_c_info *wlc)
4943 {
4944  uint i;
4945  struct brcms_hw_band *band;
4946  struct brcms_hardware *wlc_hw = wlc->hw;
4947  int callbacks;
4948 
4949  callbacks = 0;
4950 
4951  brcms_b_detach_dmapio(wlc_hw);
4952 
4953  band = wlc_hw->band;
4954  for (i = 0; i < wlc_hw->_nbands; i++) {
4955  if (band->pi) {
4956  /* Detach this band's phy */
4957  wlc_phy_detach(band->pi);
4958  band->pi = NULL;
4959  }
4960  band = wlc_hw->bandstate[OTHERBANDUNIT(wlc)];
4961  }
4962 
4963  /* Free shared phy state */
4964  kfree(wlc_hw->phy_sh);
4965 
4966  wlc_phy_shim_detach(wlc_hw->physhim);
4967 
4968  if (wlc_hw->sih) {
4969  ai_detach(wlc_hw->sih);
4970  wlc_hw->sih = NULL;
4971  }
4972 
4973  return callbacks;
4974 
4975 }
4976 
4977 /*
4978  * Return a count of the number of driver callbacks still pending.
4979  *
4980  * General policy is that brcms_c_detach can only dealloc/free software states.
4981  * It can NOT touch hardware registers since the d11core may be in reset and
4982  * clock may not be available.
4983  * One exception is sb register access, which is possible if crystal is turned
4984  * on after "down" state, driver should avoid software timer with the exception
4985  * of radio_monitor.
4986  */
4988 {
4989  uint callbacks = 0;
4990 
4991  if (wlc == NULL)
4992  return 0;
4993 
4994  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
4995 
4996  callbacks += brcms_b_detach(wlc);
4997 
4998  /* delete software timers */
4999  if (!brcms_c_radio_monitor_stop(wlc))
5000  callbacks++;
5001 
5003 
5004  brcms_c_timers_deinit(wlc);
5005 
5006  brcms_c_detach_module(wlc);
5007 
5008 
5009  while (wlc->tx_queues != NULL)
5010  brcms_c_txq_free(wlc, wlc->tx_queues);
5011 
5012  brcms_c_detach_mfree(wlc);
5013  return callbacks;
5014 }
5015 
5016 /* update state that depends on the current value of "ap" */
5017 static void brcms_c_ap_upd(struct brcms_c_info *wlc)
5018 {
5019  /* STA-BSS; short capable */
5021 }
5022 
5023 /* Initialize just the hardware when coming out of POR or S3/S5 system states */
5024 static void brcms_b_hw_up(struct brcms_hardware *wlc_hw)
5025 {
5026  if (wlc_hw->wlc->pub->hw_up)
5027  return;
5028 
5029  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
5030 
5031  /*
5032  * Enable pll and xtal, initialize the power control registers,
5033  * and force fastclock for the remainder of brcms_c_up().
5034  */
5035  brcms_b_xtal(wlc_hw, ON);
5036  ai_clkctl_init(wlc_hw->sih);
5037  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
5038 
5039  /*
5040  * TODO: test suspend/resume
5041  *
5042  * AI chip doesn't restore bar0win2 on
5043  * hibernation/resume, need sw fixup
5044  */
5045 
5046  /*
5047  * Inform phy that a POR reset has occurred so
5048  * it does a complete phy init
5049  */
5050  wlc_phy_por_inform(wlc_hw->band->pi);
5051 
5052  wlc_hw->ucode_loaded = false;
5053  wlc_hw->wlc->pub->hw_up = true;
5054 
5055  if ((wlc_hw->boardflags & BFL_FEM)
5056  && (ai_get_chip_id(wlc_hw->sih) == BCMA_CHIP_ID_BCM4313)) {
5057  if (!
5058  (wlc_hw->boardrev >= 0x1250
5059  && (wlc_hw->boardflags & BFL_FEM_BT)))
5060  ai_epa_4313war(wlc_hw->sih);
5061  }
5062 }
5063 
5064 static int brcms_b_up_prep(struct brcms_hardware *wlc_hw)
5065 {
5066  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
5067 
5068  /*
5069  * Enable pll and xtal, initialize the power control registers,
5070  * and force fastclock for the remainder of brcms_c_up().
5071  */
5072  brcms_b_xtal(wlc_hw, ON);
5073  ai_clkctl_init(wlc_hw->sih);
5074  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
5075 
5076  /*
5077  * Configure pci/pcmcia here instead of in brcms_c_attach()
5078  * to allow mfg hotswap: down, hotswap (chip power cycle), up.
5079  */
5080  bcma_core_pci_irq_ctl(&wlc_hw->d11core->bus->drv_pci, wlc_hw->d11core,
5081  true);
5082 
5083  /*
5084  * Need to read the hwradio status here to cover the case where the
5085  * system is loaded with the hw radio disabled. We do not want to
5086  * bring the driver up in this case.
5087  */
5088  if (brcms_b_radio_read_hwdisabled(wlc_hw)) {
5089  /* put SB PCI in down state again */
5090  ai_pci_down(wlc_hw->sih);
5091  brcms_b_xtal(wlc_hw, OFF);
5092  return -ENOMEDIUM;
5093  }
5094 
5095  ai_pci_up(wlc_hw->sih);
5096 
5097  /* reset the d11 core */
5099 
5100  return 0;
5101 }
5102 
5103 static int brcms_b_up_finish(struct brcms_hardware *wlc_hw)
5104 {
5105  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
5106 
5107  wlc_hw->up = true;
5108  wlc_phy_hw_state_upd(wlc_hw->band->pi, true);
5109 
5110  /* FULLY enable dynamic power control and d11 core interrupt */
5111  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_DYNAMIC);
5112  brcms_intrson(wlc_hw->wlc->wl);
5113  return 0;
5114 }
5115 
5116 /*
5117  * Write WME tunable parameters for retransmit/max rate
5118  * from wlc struct to ucode
5119  */
5120 static void brcms_c_wme_retries_write(struct brcms_c_info *wlc)
5121 {
5122  int ac;
5123 
5124  /* Need clock to do this */
5125  if (!wlc->clk)
5126  return;
5127 
5128  for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
5130  wlc->wme_retries[ac]);
5131 }
5132 
5133 /* make interface operational */
5134 int brcms_c_up(struct brcms_c_info *wlc)
5135 {
5136  struct ieee80211_channel *ch;
5137 
5138  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
5139 
5140  /* HW is turned off so don't try to access it */
5141  if (wlc->pub->hw_off || brcms_deviceremoved(wlc))
5142  return -ENOMEDIUM;
5143 
5144  if (!wlc->pub->hw_up) {
5145  brcms_b_hw_up(wlc->hw);
5146  wlc->pub->hw_up = true;
5147  }
5148 
5149  if ((wlc->pub->boardflags & BFL_FEM)
5150  && (ai_get_chip_id(wlc->hw->sih) == BCMA_CHIP_ID_BCM4313)) {
5151  if (wlc->pub->boardrev >= 0x1250
5152  && (wlc->pub->boardflags & BFL_FEM_BT))
5155  else
5158  }
5159 
5160  /*
5161  * Need to read the hwradio status here to cover the case where the
5162  * system is loaded with the hw radio disabled. We do not want to bring
5163  * the driver up in this case. If radio is disabled, abort up, lower
5164  * power, start radio timer and return 0(for NDIS) don't call
5165  * radio_update to avoid looping brcms_c_up.
5166  *
5167  * brcms_b_up_prep() returns either 0 or -BCME_RADIOOFF only
5168  */
5169  if (!wlc->pub->radio_disabled) {
5170  int status = brcms_b_up_prep(wlc->hw);
5171  if (status == -ENOMEDIUM) {
5172  if (!mboolisset
5173  (wlc->pub->radio_disabled, WL_RADIO_HW_DISABLE)) {
5174  struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
5175  mboolset(wlc->pub->radio_disabled,
5177 
5178  if (bsscfg->enable && bsscfg->BSS)
5179  wiphy_err(wlc->wiphy, "wl%d: up"
5180  ": rfdisable -> "
5181  "bsscfg_disable()\n",
5182  wlc->pub->unit);
5183  }
5184  }
5185  }
5186 
5187  if (wlc->pub->radio_disabled) {
5188  brcms_c_radio_monitor_start(wlc);
5189  return 0;
5190  }
5191 
5192  /* brcms_b_up_prep has done brcms_c_corereset(). so clk is on, set it */
5193  wlc->clk = true;
5194 
5195  brcms_c_radio_monitor_stop(wlc);
5196 
5197  /* Set EDCF hostflags */
5199 
5200  brcms_init(wlc->wl);
5201  wlc->pub->up = true;
5202 
5203  if (wlc->bandinit_pending) {
5204  ch = wlc->pub->ieee_hw->conf.channel;
5206  brcms_c_set_chanspec(wlc, ch20mhz_chspec(ch->hw_value));
5207  wlc->bandinit_pending = false;
5208  brcms_c_enable_mac(wlc);
5209  }
5210 
5211  brcms_b_up_finish(wlc->hw);
5212 
5213  /* Program the TX wme params with the current settings */
5214  brcms_c_wme_retries_write(wlc);
5215 
5216  /* start one second watchdog timer */
5218  wlc->WDarmed = true;
5219 
5220  /* ensure antenna config is up to date */
5222  /* ensure LDPC config is in sync */
5223  brcms_c_ht_update_ldpc(wlc, wlc->stf->ldpc);
5224 
5225  return 0;
5226 }
5227 
5228 static uint brcms_c_down_del_timer(struct brcms_c_info *wlc)
5229 {
5230  uint callbacks = 0;
5231 
5232  return callbacks;
5233 }
5234 
5235 static int brcms_b_bmac_down_prep(struct brcms_hardware *wlc_hw)
5236 {
5237  bool dev_gone;
5238  uint callbacks = 0;
5239 
5240  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
5241 
5242  if (!wlc_hw->up)
5243  return callbacks;
5244 
5245  dev_gone = brcms_deviceremoved(wlc_hw->wlc);
5246 
5247  /* disable interrupts */
5248  if (dev_gone)
5249  wlc_hw->wlc->macintmask = 0;
5250  else {
5251  /* now disable interrupts */
5252  brcms_intrsoff(wlc_hw->wlc->wl);
5253 
5254  /* ensure we're running on the pll clock again */
5255  brcms_b_clkctl_clk(wlc_hw, BCMA_CLKMODE_FAST);
5256  }
5257  /* down phy at the last of this stage */
5258  callbacks += wlc_phy_down(wlc_hw->band->pi);
5259 
5260  return callbacks;
5261 }
5262 
5263 static int brcms_b_down_finish(struct brcms_hardware *wlc_hw)
5264 {
5265  uint callbacks = 0;
5266  bool dev_gone;
5267 
5268  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
5269 
5270  if (!wlc_hw->up)
5271  return callbacks;
5272 
5273  wlc_hw->up = false;
5274  wlc_phy_hw_state_upd(wlc_hw->band->pi, false);
5275 
5276  dev_gone = brcms_deviceremoved(wlc_hw->wlc);
5277 
5278  if (dev_gone) {
5279  wlc_hw->sbclk = false;
5280  wlc_hw->clk = false;
5281  wlc_phy_hw_clk_state_upd(wlc_hw->band->pi, false);
5282 
5283  /* reclaim any posted packets */
5284  brcms_c_flushqueues(wlc_hw->wlc);
5285  } else {
5286 
5287  /* Reset and disable the core */
5288  if (bcma_core_is_enabled(wlc_hw->d11core)) {
5289  if (bcma_read32(wlc_hw->d11core,
5290  D11REGOFFS(maccontrol)) & MCTL_EN_MAC)
5292  callbacks += brcms_reset(wlc_hw->wlc->wl);
5293  brcms_c_coredisable(wlc_hw);
5294  }
5295 
5296  /* turn off primary xtal and pll */
5297  if (!wlc_hw->noreset) {
5298  ai_pci_down(wlc_hw->sih);
5299  brcms_b_xtal(wlc_hw, OFF);
5300  }
5301  }
5302 
5303  return callbacks;
5304 }
5305 
5306 /*
5307  * Mark the interface nonoperational, stop the software mechanisms,
5308  * disable the hardware, free any transient buffer state.
5309  * Return a count of the number of driver callbacks still pending.
5310  */
5312 {
5313 
5314  uint callbacks = 0;
5315  int i;
5316  bool dev_gone = false;
5317  struct brcms_txq_info *qi;
5318 
5319  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
5320 
5321  /* check if we are already in the going down path */
5322  if (wlc->going_down) {
5323  wiphy_err(wlc->wiphy, "wl%d: %s: Driver going down so return"
5324  "\n", wlc->pub->unit, __func__);
5325  return 0;
5326  }
5327  if (!wlc->pub->up)
5328  return callbacks;
5329 
5330  wlc->going_down = true;
5331 
5332  callbacks += brcms_b_bmac_down_prep(wlc->hw);
5333 
5334  dev_gone = brcms_deviceremoved(wlc);
5335 
5336  /* Call any registered down handlers */
5337  for (i = 0; i < BRCMS_MAXMODULES; i++) {
5338  if (wlc->modulecb[i].down_fn)
5339  callbacks +=
5340  wlc->modulecb[i].down_fn(wlc->modulecb[i].hdl);
5341  }
5342 
5343  /* cancel the watchdog timer */
5344  if (wlc->WDarmed) {
5345  if (!brcms_del_timer(wlc->wdtimer))
5346  callbacks++;
5347  wlc->WDarmed = false;
5348  }
5349  /* cancel all other timers */
5350  callbacks += brcms_c_down_del_timer(wlc);
5351 
5352  wlc->pub->up = false;
5353 
5354  wlc_phy_mute_upd(wlc->band->pi, false, PHY_MUTE_ALL);
5355 
5356  /* clear txq flow control */
5357  brcms_c_txflowcontrol_reset(wlc);
5358 
5359  /* flush tx queues */
5360  for (qi = wlc->tx_queues; qi != NULL; qi = qi->next)
5361  brcmu_pktq_flush(&qi->q, true, NULL, NULL);
5362 
5363  callbacks += brcms_b_down_finish(wlc->hw);
5364 
5365  /* brcms_b_down_finish has done brcms_c_coredisable(). so clk is off */
5366  wlc->clk = false;
5367 
5368  wlc->going_down = false;
5369  return callbacks;
5370 }
5371 
5372 /* Set the current gmode configuration */
5373 int brcms_c_set_gmode(struct brcms_c_info *wlc, u8 gmode, bool config)
5374 {
5375  int ret = 0;
5376  uint i;
5377  struct brcms_c_rateset rs;
5378  /* Default to 54g Auto */
5379  /* Advertise and use shortslot (-1/0/1 Auto/Off/On) */
5380  s8 shortslot = BRCMS_SHORTSLOT_AUTO;
5381  bool shortslot_restrict = false; /* Restrict association to stations
5382  * that support shortslot
5383  */
5384  bool ofdm_basic = false; /* Make 6, 12, and 24 basic rates */
5385  /* Advertise and use short preambles (-1/0/1 Auto/Off/On) */
5386  int preamble = BRCMS_PLCP_LONG;
5387  bool preamble_restrict = false; /* Restrict association to stations
5388  * that support short preambles
5389  */
5390  struct brcms_band *band;
5391 
5392  /* if N-support is enabled, allow Gmode set as long as requested
5393  * Gmode is not GMODE_LEGACY_B
5394  */
5395  if ((wlc->pub->_n_enab & SUPPORT_11N) && gmode == GMODE_LEGACY_B)
5396  return -ENOTSUPP;
5397 
5398  /* verify that we are dealing with 2G band and grab the band pointer */
5399  if (wlc->band->bandtype == BRCM_BAND_2G)
5400  band = wlc->band;
5401  else if ((wlc->pub->_nbands > 1) &&
5402  (wlc->bandstate[OTHERBANDUNIT(wlc)]->bandtype == BRCM_BAND_2G))
5403  band = wlc->bandstate[OTHERBANDUNIT(wlc)];
5404  else
5405  return -EINVAL;
5406 
5407  /* update configuration value */
5408  if (config)
5410 
5411  /* Clear rateset override */
5412  memset(&rs, 0, sizeof(struct brcms_c_rateset));
5413 
5414  switch (gmode) {
5415  case GMODE_LEGACY_B:
5416  shortslot = BRCMS_SHORTSLOT_OFF;
5418 
5419  break;
5420 
5421  case GMODE_LRS:
5422  break;
5423 
5424  case GMODE_AUTO:
5425  /* Accept defaults */
5426  break;
5427 
5428  case GMODE_ONLY:
5429  ofdm_basic = true;
5430  preamble = BRCMS_PLCP_SHORT;
5431  preamble_restrict = true;
5432  break;
5433 
5434  case GMODE_PERFORMANCE:
5435  shortslot = BRCMS_SHORTSLOT_ON;
5436  shortslot_restrict = true;
5437  ofdm_basic = true;
5438  preamble = BRCMS_PLCP_SHORT;
5439  preamble_restrict = true;
5440  break;
5441 
5442  default:
5443  /* Error */
5444  wiphy_err(wlc->wiphy, "wl%d: %s: invalid gmode %d\n",
5445  wlc->pub->unit, __func__, gmode);
5446  return -ENOTSUPP;
5447  }
5448 
5449  band->gmode = gmode;
5450 
5451  wlc->shortslot_override = shortslot;
5452 
5453  /* Use the default 11g rateset */
5454  if (!rs.count)
5456 
5457  if (ofdm_basic) {
5458  for (i = 0; i < rs.count; i++) {
5459  if (rs.rates[i] == BRCM_RATE_6M
5460  || rs.rates[i] == BRCM_RATE_12M
5461  || rs.rates[i] == BRCM_RATE_24M)
5462  rs.rates[i] |= BRCMS_RATE_FLAG;
5463  }
5464  }
5465 
5466  /* Set default bss rateset */
5467  wlc->default_bss->rateset.count = rs.count;
5468  memcpy(wlc->default_bss->rateset.rates, rs.rates,
5469  sizeof(wlc->default_bss->rateset.rates));
5470 
5471  return ret;
5472 }
5473 
5475 {
5476  uint i;
5477  s32 nmode = AUTO;
5478 
5479  if (wlc->stf->txstreams == WL_11N_3x3)
5480  nmode = WL_11N_3x3;
5481  else
5482  nmode = WL_11N_2x2;
5483 
5484  /* force GMODE_AUTO if NMODE is ON */
5485  brcms_c_set_gmode(wlc, GMODE_AUTO, true);
5486  if (nmode == WL_11N_3x3)
5487  wlc->pub->_n_enab = SUPPORT_HT;
5488  else
5489  wlc->pub->_n_enab = SUPPORT_11N;
5490  wlc->default_bss->flags |= BRCMS_BSS_HT;
5491  /* add the mcs rates to the default and hw ratesets */
5492  brcms_c_rateset_mcs_build(&wlc->default_bss->rateset,
5493  wlc->stf->txstreams);
5494  for (i = 0; i < wlc->pub->_nbands; i++)
5495  memcpy(wlc->bandstate[i]->hw_rateset.mcs,
5496  wlc->default_bss->rateset.mcs, MCSSET_LEN);
5497 
5498  return 0;
5499 }
5500 
5501 static int
5502 brcms_c_set_internal_rateset(struct brcms_c_info *wlc,
5503  struct brcms_c_rateset *rs_arg)
5504 {
5505  struct brcms_c_rateset rs, new;
5506  uint bandunit;
5507 
5508  memcpy(&rs, rs_arg, sizeof(struct brcms_c_rateset));
5509 
5510  /* check for bad count value */
5511  if ((rs.count == 0) || (rs.count > BRCMS_NUMRATES))
5512  return -EINVAL;
5513 
5514  /* try the current band */
5515  bandunit = wlc->band->bandunit;
5516  memcpy(&new, &rs, sizeof(struct brcms_c_rateset));
5518  (&new, &wlc->bandstate[bandunit]->hw_rateset, true,
5519  wlc->stf->txstreams))
5520  goto good;
5521 
5522  /* try the other band */
5523  if (brcms_is_mband_unlocked(wlc)) {
5524  bandunit = OTHERBANDUNIT(wlc);
5525  memcpy(&new, &rs, sizeof(struct brcms_c_rateset));
5527  &wlc->
5528  bandstate[bandunit]->
5529  hw_rateset, true,
5530  wlc->stf->txstreams))
5531  goto good;
5532  }
5533 
5534  return -EBADE;
5535 
5536  good:
5537  /* apply new rateset */
5538  memcpy(&wlc->default_bss->rateset, &new,
5539  sizeof(struct brcms_c_rateset));
5540  memcpy(&wlc->bandstate[bandunit]->defrateset, &new,
5541  sizeof(struct brcms_c_rateset));
5542  return 0;
5543 }
5544 
5545 static void brcms_c_ofdm_rateset_war(struct brcms_c_info *wlc)
5546 {
5547  u8 r;
5548  bool war = false;
5549 
5550  if (wlc->bsscfg->associated)
5551  r = wlc->bsscfg->current_bss->rateset.rates[0];
5552  else
5553  r = wlc->default_bss->rateset.rates[0];
5554 
5555  wlc_phy_ofdm_rateset_war(wlc->band->pi, war);
5556 }
5557 
5559 {
5560  u16 chspec = ch20mhz_chspec(channel);
5561 
5563  return -EINVAL;
5564 
5565  if (!brcms_c_valid_chanspec_db(wlc->cmi, chspec))
5566  return -EINVAL;
5567 
5568 
5569  if (!wlc->pub->up && brcms_is_mband_unlocked(wlc)) {
5570  if (wlc->band->bandunit != chspec_bandunit(chspec))
5571  wlc->bandinit_pending = true;
5572  else
5573  wlc->bandinit_pending = false;
5574  }
5575 
5576  wlc->default_bss->chanspec = chspec;
5577  /* brcms_c_BSSinit() will sanitize the rateset before
5578  * using it.. */
5579  if (wlc->pub->up && (wlc_phy_chanspec_get(wlc->band->pi) != chspec)) {
5580  brcms_c_set_home_chanspec(wlc, chspec);
5582  brcms_c_set_chanspec(wlc, chspec);
5583  brcms_c_enable_mac(wlc);
5584  }
5585  return 0;
5586 }
5587 
5588 int brcms_c_set_rate_limit(struct brcms_c_info *wlc, u16 srl, u16 lrl)
5589 {
5590  int ac;
5591 
5592  if (srl < 1 || srl > RETRY_SHORT_MAX ||
5593  lrl < 1 || lrl > RETRY_SHORT_MAX)
5594  return -EINVAL;
5595 
5596  wlc->SRL = srl;
5597  wlc->LRL = lrl;
5598 
5599  brcms_b_retrylimit_upd(wlc->hw, wlc->SRL, wlc->LRL);
5600 
5601  for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
5602  wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac],
5603  EDCF_SHORT, wlc->SRL);
5604  wlc->wme_retries[ac] = SFIELD(wlc->wme_retries[ac],
5605  EDCF_LONG, wlc->LRL);
5606  }
5607  brcms_c_wme_retries_write(wlc);
5608 
5609  return 0;
5610 }
5611 
5613  struct brcm_rateset *currs)
5614 {
5615  struct brcms_c_rateset *rs;
5616 
5617  if (wlc->pub->associated)
5618  rs = &wlc->bsscfg->current_bss->rateset;
5619  else
5620  rs = &wlc->default_bss->rateset;
5621 
5622  /* Copy only legacy rateset section */
5623  currs->count = rs->count;
5624  memcpy(&currs->rates, &rs->rates, rs->count);
5625 }
5626 
5627 int brcms_c_set_rateset(struct brcms_c_info *wlc, struct brcm_rateset *rs)
5628 {
5629  struct brcms_c_rateset internal_rs;
5630  int bcmerror;
5631 
5632  if (rs->count > BRCMS_NUMRATES)
5633  return -ENOBUFS;
5634 
5635  memset(&internal_rs, 0, sizeof(struct brcms_c_rateset));
5636 
5637  /* Copy only legacy rateset section */
5638  internal_rs.count = rs->count;
5639  memcpy(&internal_rs.rates, &rs->rates, internal_rs.count);
5640 
5641  /* merge rateset coming in with the current mcsset */
5642  if (wlc->pub->_n_enab & SUPPORT_11N) {
5643  struct brcms_bss_info *mcsset_bss;
5644  if (wlc->bsscfg->associated)
5645  mcsset_bss = wlc->bsscfg->current_bss;
5646  else
5647  mcsset_bss = wlc->default_bss;
5648  memcpy(internal_rs.mcs, &mcsset_bss->rateset.mcs[0],
5649  MCSSET_LEN);
5650  }
5651 
5652  bcmerror = brcms_c_set_internal_rateset(wlc, &internal_rs);
5653  if (!bcmerror)
5654  brcms_c_ofdm_rateset_war(wlc);
5655 
5656  return bcmerror;
5657 }
5658 
5660 {
5661  if (period < DOT11_MIN_BEACON_PERIOD ||
5662  period > DOT11_MAX_BEACON_PERIOD)
5663  return -EINVAL;
5664 
5665  wlc->default_bss->beacon_period = period;
5666  return 0;
5667 }
5668 
5669 u16 brcms_c_get_phy_type(struct brcms_c_info *wlc, int phyidx)
5670 {
5671  return wlc->band->phytype;
5672 }
5673 
5674 void brcms_c_set_shortslot_override(struct brcms_c_info *wlc, s8 sslot_override)
5675 {
5676  wlc->shortslot_override = sslot_override;
5677 
5678  /*
5679  * shortslot is an 11g feature, so no more work if we are
5680  * currently on the 5G band
5681  */
5682  if (wlc->band->bandtype == BRCM_BAND_5G)
5683  return;
5684 
5685  if (wlc->pub->up && wlc->pub->associated) {
5686  /* let watchdog or beacon processing update shortslot */
5687  } else if (wlc->pub->up) {
5688  /* unassociated shortslot is off */
5689  brcms_c_switch_shortslot(wlc, false);
5690  } else {
5691  /* driver is down, so just update the brcms_c_info
5692  * value */
5694  wlc->shortslot = false;
5695  else
5696  wlc->shortslot =
5697  (wlc->shortslot_override ==
5699  }
5700 }
5701 
5702 /*
5703  * register watchdog and down handlers.
5704  */
5706  const char *name, struct brcms_info *hdl,
5707  int (*d_fn)(void *handle))
5708 {
5709  struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
5710  int i;
5711 
5712  /* find an empty entry and just add, no duplication check! */
5713  for (i = 0; i < BRCMS_MAXMODULES; i++) {
5714  if (wlc->modulecb[i].name[0] == '\0') {
5715  strncpy(wlc->modulecb[i].name, name,
5716  sizeof(wlc->modulecb[i].name) - 1);
5717  wlc->modulecb[i].hdl = hdl;
5718  wlc->modulecb[i].down_fn = d_fn;
5719  return 0;
5720  }
5721  }
5722 
5723  return -ENOSR;
5724 }
5725 
5726 /* unregister module callbacks */
5727 int brcms_c_module_unregister(struct brcms_pub *pub, const char *name,
5728  struct brcms_info *hdl)
5729 {
5730  struct brcms_c_info *wlc = (struct brcms_c_info *) pub->wlc;
5731  int i;
5732 
5733  if (wlc == NULL)
5734  return -ENODATA;
5735 
5736  for (i = 0; i < BRCMS_MAXMODULES; i++) {
5737  if (!strcmp(wlc->modulecb[i].name, name) &&
5738  (wlc->modulecb[i].hdl == hdl)) {
5739  memset(&wlc->modulecb[i], 0, sizeof(struct modulecb));
5740  return 0;
5741  }
5742  }
5743 
5744  /* table not found! */
5745  return -ENODATA;
5746 }
5747 
5749 {
5750  pr_debug("\ntxpkt (MPDU) Complete\n");
5751 
5752  pr_debug("FrameID: %04x TxStatus: %04x\n", txs->frameid, txs->status);
5753 
5754  pr_debug("[15:12] %d frame attempts\n",
5755  (txs->status & TX_STATUS_FRM_RTX_MASK) >>
5757  pr_debug(" [11:8] %d rts attempts\n",
5758  (txs->status & TX_STATUS_RTS_RTX_MASK) >>
5760  pr_debug(" [7] %d PM mode indicated\n",
5761  txs->status & TX_STATUS_PMINDCTD ? 1 : 0);
5762  pr_debug(" [6] %d intermediate status\n",
5763  txs->status & TX_STATUS_INTERMEDIATE ? 1 : 0);
5764  pr_debug(" [5] %d AMPDU\n",
5765  txs->status & TX_STATUS_AMPDU ? 1 : 0);
5766  pr_debug(" [4:2] %d Frame Suppressed Reason (%s)\n",
5768  (const char *[]) {
5769  "None",
5770  "PMQ Entry",
5771  "Flush request",
5772  "Previous frag failure",
5773  "Channel mismatch",
5774  "Lifetime Expiry",
5775  "Underflow"
5776  } [(txs->status & TX_STATUS_SUPR_MASK) >>
5778  pr_debug(" [1] %d acked\n",
5779  txs->status & TX_STATUS_ACK_RCV ? 1 : 0);
5780 
5781  pr_debug("LastTxTime: %04x Seq: %04x PHYTxStatus: %04x RxAckRSSI: %04x RxAckSQ: %04x\n",
5782  txs->lasttxtime, txs->sequence, txs->phyerr,
5785 }
5786 
5787 static bool brcms_c_chipmatch_pci(struct bcma_device *core)
5788 {
5789  struct pci_dev *pcidev = core->bus->host_pci;
5790  u16 vendor = pcidev->vendor;
5791  u16 device = pcidev->device;
5792 
5793  if (vendor != PCI_VENDOR_ID_BROADCOM) {
5794  pr_err("unknown vendor id %04x\n", vendor);
5795  return false;
5796  }
5797 
5798  if (device == BCM43224_D11N_ID_VEN1)
5799  return true;
5800  if ((device == BCM43224_D11N_ID) || (device == BCM43225_D11N2G_ID))
5801  return true;
5802  if (device == BCM4313_D11N2G_ID)
5803  return true;
5804  if ((device == BCM43236_D11N_ID) || (device == BCM43236_D11N2G_ID))
5805  return true;
5806 
5807  pr_err("unknown device id %04x\n", device);
5808  return false;
5809 }
5810 
5811 static bool brcms_c_chipmatch_soc(struct bcma_device *core)
5812 {
5813  struct bcma_chipinfo *chipinfo = &core->bus->chipinfo;
5814 
5815  if (chipinfo->id == BCMA_CHIP_ID_BCM4716)
5816  return true;
5817 
5818  pr_err("unknown chip id %04x\n", chipinfo->id);
5819  return false;
5820 }
5821 
5822 bool brcms_c_chipmatch(struct bcma_device *core)
5823 {
5824  switch (core->bus->hosttype) {
5825  case BCMA_HOSTTYPE_PCI:
5826  return brcms_c_chipmatch_pci(core);
5827  case BCMA_HOSTTYPE_SOC:
5828  return brcms_c_chipmatch_soc(core);
5829  default:
5830  pr_err("unknown host type: %i\n", core->bus->hosttype);
5831  return false;
5832  }
5833 }
5834 
5835 #if defined(DEBUG)
5836 void brcms_c_print_txdesc(struct d11txh *txh)
5837 {
5838  u16 mtcl = le16_to_cpu(txh->MacTxControlLow);
5839  u16 mtch = le16_to_cpu(txh->MacTxControlHigh);
5840  u16 mfc = le16_to_cpu(txh->MacFrameControl);
5841  u16 tfest = le16_to_cpu(txh->TxFesTimeNormal);
5842  u16 ptcw = le16_to_cpu(txh->PhyTxControlWord);
5843  u16 ptcw_1 = le16_to_cpu(txh->PhyTxControlWord_1);
5844  u16 ptcw_1_Fbr = le16_to_cpu(txh->PhyTxControlWord_1_Fbr);
5845  u16 ptcw_1_Rts = le16_to_cpu(txh->PhyTxControlWord_1_Rts);
5846  u16 ptcw_1_FbrRts = le16_to_cpu(txh->PhyTxControlWord_1_FbrRts);
5847  u16 mainrates = le16_to_cpu(txh->MainRates);
5848  u16 xtraft = le16_to_cpu(txh->XtraFrameTypes);
5849  u8 *iv = txh->IV;
5850  u8 *ra = txh->TxFrameRA;
5851  u16 tfestfb = le16_to_cpu(txh->TxFesTimeFallback);
5852  u8 *rtspfb = txh->RTSPLCPFallback;
5853  u16 rtsdfb = le16_to_cpu(txh->RTSDurFallback);
5854  u8 *fragpfb = txh->FragPLCPFallback;
5855  u16 fragdfb = le16_to_cpu(txh->FragDurFallback);
5856  u16 mmodelen = le16_to_cpu(txh->MModeLen);
5857  u16 mmodefbrlen = le16_to_cpu(txh->MModeFbrLen);
5858  u16 tfid = le16_to_cpu(txh->TxFrameID);
5859  u16 txs = le16_to_cpu(txh->TxStatus);
5860  u16 mnmpdu = le16_to_cpu(txh->MaxNMpdus);
5861  u16 mabyte = le16_to_cpu(txh->MaxABytes_MRT);
5862  u16 mabyte_f = le16_to_cpu(txh->MaxABytes_FBR);
5863  u16 mmbyte = le16_to_cpu(txh->MinMBytes);
5864 
5865  u8 *rtsph = txh->RTSPhyHeader;
5866  struct ieee80211_rts rts = txh->rts_frame;
5867 
5868  /* add plcp header along with txh descriptor */
5869  brcmu_dbg_hex_dump(txh, sizeof(struct d11txh) + 48,
5870  "Raw TxDesc + plcp header:\n");
5871 
5872  pr_debug("TxCtlLow: %04x ", mtcl);
5873  pr_debug("TxCtlHigh: %04x ", mtch);
5874  pr_debug("FC: %04x ", mfc);
5875  pr_debug("FES Time: %04x\n", tfest);
5876  pr_debug("PhyCtl: %04x%s ", ptcw,
5877  (ptcw & PHY_TXC_SHORT_HDR) ? " short" : "");
5878  pr_debug("PhyCtl_1: %04x ", ptcw_1);
5879  pr_debug("PhyCtl_1_Fbr: %04x\n", ptcw_1_Fbr);
5880  pr_debug("PhyCtl_1_Rts: %04x ", ptcw_1_Rts);
5881  pr_debug("PhyCtl_1_Fbr_Rts: %04x\n", ptcw_1_FbrRts);
5882  pr_debug("MainRates: %04x ", mainrates);
5883  pr_debug("XtraFrameTypes: %04x ", xtraft);
5884  pr_debug("\n");
5885 
5886  print_hex_dump_bytes("SecIV:", DUMP_PREFIX_OFFSET, iv, sizeof(txh->IV));
5887  print_hex_dump_bytes("RA:", DUMP_PREFIX_OFFSET,
5888  ra, sizeof(txh->TxFrameRA));
5889 
5890  pr_debug("Fb FES Time: %04x ", tfestfb);
5891  print_hex_dump_bytes("Fb RTS PLCP:", DUMP_PREFIX_OFFSET,
5892  rtspfb, sizeof(txh->RTSPLCPFallback));
5893  pr_debug("RTS DUR: %04x ", rtsdfb);
5894  print_hex_dump_bytes("PLCP:", DUMP_PREFIX_OFFSET,
5895  fragpfb, sizeof(txh->FragPLCPFallback));
5896  pr_debug("DUR: %04x", fragdfb);
5897  pr_debug("\n");
5898 
5899  pr_debug("MModeLen: %04x ", mmodelen);
5900  pr_debug("MModeFbrLen: %04x\n", mmodefbrlen);
5901 
5902  pr_debug("FrameID: %04x\n", tfid);
5903  pr_debug("TxStatus: %04x\n", txs);
5904 
5905  pr_debug("MaxNumMpdu: %04x\n", mnmpdu);
5906  pr_debug("MaxAggbyte: %04x\n", mabyte);
5907  pr_debug("MaxAggbyte_fb: %04x\n", mabyte_f);
5908  pr_debug("MinByte: %04x\n", mmbyte);
5909 
5910  print_hex_dump_bytes("RTS PLCP:", DUMP_PREFIX_OFFSET,
5911  rtsph, sizeof(txh->RTSPhyHeader));
5912  print_hex_dump_bytes("RTS Frame:", DUMP_PREFIX_OFFSET,
5913  (u8 *)&rts, sizeof(txh->rts_frame));
5914  pr_debug("\n");
5915 }
5916 #endif /* defined(DEBUG) */
5917 
5918 #if defined(DEBUG)
5919 static int
5920 brcms_c_format_flags(const struct brcms_c_bit_desc *bd, u32 flags, char *buf,
5921  int len)
5922 {
5923  int i;
5924  char *p = buf;
5925  char hexstr[16];
5926  int slen = 0, nlen = 0;
5927  u32 bit;
5928  const char *name;
5929 
5930  if (len < 2 || !buf)
5931  return 0;
5932 
5933  buf[0] = '\0';
5934 
5935  for (i = 0; flags != 0; i++) {
5936  bit = bd[i].bit;
5937  name = bd[i].name;
5938  if (bit == 0 && flags != 0) {
5939  /* print any unnamed bits */
5940  snprintf(hexstr, 16, "0x%X", flags);
5941  name = hexstr;
5942  flags = 0; /* exit loop */
5943  } else if ((flags & bit) == 0)
5944  continue;
5945  flags &= ~bit;
5946  nlen = strlen(name);
5947  slen += nlen;
5948  /* count btwn flag space */
5949  if (flags != 0)
5950  slen += 1;
5951  /* need NULL char as well */
5952  if (len <= slen)
5953  break;
5954  /* copy NULL char but don't count it */
5955  strncpy(p, name, nlen + 1);
5956  p += nlen;
5957  /* copy btwn flag space and NULL char */
5958  if (flags != 0)
5959  p += snprintf(p, 2, " ");
5960  len -= slen;
5961  }
5962 
5963  /* indicate the str was too short */
5964  if (flags != 0) {
5965  if (len < 2)
5966  p -= 2 - len; /* overwrite last char */
5967  p += snprintf(p, 2, ">");
5968  }
5969 
5970  return (int)(p - buf);
5971 }
5972 #endif /* defined(DEBUG) */
5973 
5974 #if defined(DEBUG)
5975 void brcms_c_print_rxh(struct d11rxhdr *rxh)
5976 {
5977  u16 len = rxh->RxFrameSize;
5978  u16 phystatus_0 = rxh->PhyRxStatus_0;
5979  u16 phystatus_1 = rxh->PhyRxStatus_1;
5980  u16 phystatus_2 = rxh->PhyRxStatus_2;
5981  u16 phystatus_3 = rxh->PhyRxStatus_3;
5982  u16 macstatus1 = rxh->RxStatus1;
5983  u16 macstatus2 = rxh->RxStatus2;
5984  char flagstr[64];
5985  char lenbuf[20];
5986  static const struct brcms_c_bit_desc macstat_flags[] = {
5987  {RXS_FCSERR, "FCSErr"},
5988  {RXS_RESPFRAMETX, "Reply"},
5989  {RXS_PBPRES, "PADDING"},
5990  {RXS_DECATMPT, "DeCr"},
5991  {RXS_DECERR, "DeCrErr"},
5992  {RXS_BCNSENT, "Bcn"},
5993  {0, NULL}
5994  };
5995 
5996  brcmu_dbg_hex_dump(rxh, sizeof(struct d11rxhdr), "Raw RxDesc:\n");
5997 
5998  brcms_c_format_flags(macstat_flags, macstatus1, flagstr, 64);
5999 
6000  snprintf(lenbuf, sizeof(lenbuf), "0x%x", len);
6001 
6002  pr_debug("RxFrameSize: %6s (%d)%s\n", lenbuf, len,
6003  (rxh->PhyRxStatus_0 & PRXS0_SHORTH) ? " short preamble" : "");
6004  pr_debug("RxPHYStatus: %04x %04x %04x %04x\n",
6005  phystatus_0, phystatus_1, phystatus_2, phystatus_3);
6006  pr_debug("RxMACStatus: %x %s\n", macstatus1, flagstr);
6007  pr_debug("RXMACaggtype: %x\n",
6008  (macstatus2 & RXS_AGGTYPE_MASK));
6009  pr_debug("RxTSFTime: %04x\n", rxh->RxTSFTime);
6010 }
6011 #endif /* defined(DEBUG) */
6012 
6014 {
6015  u16 table_ptr;
6016  u8 phy_rate, index;
6017 
6018  /* get the phy specific rate encoding for the PLCP SIGNAL field */
6019  if (is_ofdm_rate(rate))
6020  table_ptr = M_RT_DIRMAP_A;
6021  else
6022  table_ptr = M_RT_DIRMAP_B;
6023 
6024  /* for a given rate, the LS-nibble of the PLCP SIGNAL field is
6025  * the index into the rate table.
6026  */
6027  phy_rate = rate_info[rate] & BRCMS_RATE_MASK;
6028  index = phy_rate & 0xf;
6029 
6030  /* Find the SHM pointer to the rate table entry by looking in the
6031  * Direct-map Table
6032  */
6033  return 2 * brcms_b_read_shm(wlc_hw, table_ptr + (index * 2));
6034 }
6035 
6036 static bool
6037 brcms_c_prec_enq_head(struct brcms_c_info *wlc, struct pktq *q,
6038  struct sk_buff *pkt, int prec, bool head)
6039 {
6040  struct sk_buff *p;
6041  int eprec = -1; /* precedence to evict from */
6042 
6043  /* Determine precedence from which to evict packet, if any */
6044  if (pktq_pfull(q, prec))
6045  eprec = prec;
6046  else if (pktq_full(q)) {
6047  p = brcmu_pktq_peek_tail(q, &eprec);
6048  if (eprec > prec) {
6049  wiphy_err(wlc->wiphy, "%s: Failing: eprec %d > prec %d"
6050  "\n", __func__, eprec, prec);
6051  return false;
6052  }
6053  }
6054 
6055  /* Evict if needed */
6056  if (eprec >= 0) {
6057  bool discard_oldest;
6058 
6059  discard_oldest = ac_bitmap_tst(0, eprec);
6060 
6061  /* Refuse newer packet unless configured to discard oldest */
6062  if (eprec == prec && !discard_oldest) {
6063  wiphy_err(wlc->wiphy, "%s: No where to go, prec == %d"
6064  "\n", __func__, prec);
6065  return false;
6066  }
6067 
6068  /* Evict packet according to discard policy */
6069  p = discard_oldest ? brcmu_pktq_pdeq(q, eprec) :
6070  brcmu_pktq_pdeq_tail(q, eprec);
6072  }
6073 
6074  /* Enqueue */
6075  if (head)
6076  p = brcmu_pktq_penq_head(q, prec, pkt);
6077  else
6078  p = brcmu_pktq_penq(q, prec, pkt);
6079 
6080  return true;
6081 }
6082 
6083 /*
6084  * Attempts to queue a packet onto a multiple-precedence queue,
6085  * if necessary evicting a lower precedence packet from the queue.
6086  *
6087  * 'prec' is the precedence number that has already been mapped
6088  * from the packet priority.
6089  *
6090  * Returns true if packet consumed (queued), false if not.
6091  */
6092 static bool brcms_c_prec_enq(struct brcms_c_info *wlc, struct pktq *q,
6093  struct sk_buff *pkt, int prec)
6094 {
6095  return brcms_c_prec_enq_head(wlc, q, pkt, prec, false);
6096 }
6097 
6098 void brcms_c_txq_enq(struct brcms_c_info *wlc, struct scb *scb,
6099  struct sk_buff *sdu, uint prec)
6100 {
6101  struct brcms_txq_info *qi = wlc->pkt_queue; /* Check me */
6102  struct pktq *q = &qi->q;
6103  int prio;
6104 
6105  prio = sdu->priority;
6106 
6107  if (!brcms_c_prec_enq(wlc, q, sdu, prec)) {
6108  /*
6109  * we might hit this condtion in case
6110  * packet flooding from mac80211 stack
6111  */
6113  }
6114 }
6115 
6116 /*
6117  * bcmc_fid_generate:
6118  * Generate frame ID for a BCMC packet. The frag field is not used
6119  * for MC frames so is used as part of the sequence number.
6120  */
6121 static inline u16
6122 bcmc_fid_generate(struct brcms_c_info *wlc, struct brcms_bss_cfg *bsscfg,
6123  struct d11txh *txh)
6124 {
6125  u16 frameid;
6126 
6127  frameid = le16_to_cpu(txh->TxFrameID) & ~(TXFID_SEQ_MASK |
6129  frameid |=
6130  (((wlc->
6131  mc_fid_counter++) << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
6132  TX_BCMC_FIFO;
6133 
6134  return frameid;
6135 }
6136 
6137 static uint
6138 brcms_c_calc_ack_time(struct brcms_c_info *wlc, u32 rspec,
6139  u8 preamble_type)
6140 {
6141  uint dur = 0;
6142 
6143  BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d\n",
6144  wlc->pub->unit, rspec, preamble_type);
6145  /*
6146  * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that
6147  * is less than or equal to the rate of the immediately previous
6148  * frame in the FES
6149  */
6150  rspec = brcms_basic_rate(wlc, rspec);
6151  /* ACK frame len == 14 == 2(fc) + 2(dur) + 6(ra) + 4(fcs) */
6152  dur =
6153  brcms_c_calc_frame_time(wlc, rspec, preamble_type,
6154  (DOT11_ACK_LEN + FCS_LEN));
6155  return dur;
6156 }
6157 
6158 static uint
6159 brcms_c_calc_cts_time(struct brcms_c_info *wlc, u32 rspec,
6160  u8 preamble_type)
6161 {
6162  BCMMSG(wlc->wiphy, "wl%d: ratespec 0x%x, preamble_type %d\n",
6163  wlc->pub->unit, rspec, preamble_type);
6164  return brcms_c_calc_ack_time(wlc, rspec, preamble_type);
6165 }
6166 
6167 static uint
6168 brcms_c_calc_ba_time(struct brcms_c_info *wlc, u32 rspec,
6169  u8 preamble_type)
6170 {
6171  BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, "
6172  "preamble_type %d\n", wlc->pub->unit, rspec, preamble_type);
6173  /*
6174  * Spec 9.6: ack rate is the highest rate in BSSBasicRateSet that
6175  * is less than or equal to the rate of the immediately previous
6176  * frame in the FES
6177  */
6178  rspec = brcms_basic_rate(wlc, rspec);
6179  /* BA len == 32 == 16(ctl hdr) + 4(ba len) + 8(bitmap) + 4(fcs) */
6180  return brcms_c_calc_frame_time(wlc, rspec, preamble_type,
6182  FCS_LEN));
6183 }
6184 
6185 /* brcms_c_compute_frame_dur()
6186  *
6187  * Calculate the 802.11 MAC header DUR field for MPDU
6188  * DUR for a single frame = 1 SIFS + 1 ACK
6189  * DUR for a frame with following frags = 3 SIFS + 2 ACK + next frag time
6190  *
6191  * rate MPDU rate in unit of 500kbps
6192  * next_frag_len next MPDU length in bytes
6193  * preamble_type use short/GF or long/MM PLCP header
6194  */
6195 static u16
6196 brcms_c_compute_frame_dur(struct brcms_c_info *wlc, u32 rate,
6197  u8 preamble_type, uint next_frag_len)
6198 {
6199  u16 dur, sifs;
6200 
6201  sifs = get_sifs(wlc->band);
6202 
6203  dur = sifs;
6204  dur += (u16) brcms_c_calc_ack_time(wlc, rate, preamble_type);
6205 
6206  if (next_frag_len) {
6207  /* Double the current DUR to get 2 SIFS + 2 ACKs */
6208  dur *= 2;
6209  /* add another SIFS and the frag time */
6210  dur += sifs;
6211  dur +=
6212  (u16) brcms_c_calc_frame_time(wlc, rate, preamble_type,
6213  next_frag_len);
6214  }
6215  return dur;
6216 }
6217 
6218 /* The opposite of brcms_c_calc_frame_time */
6219 static uint
6220 brcms_c_calc_frame_len(struct brcms_c_info *wlc, u32 ratespec,
6221  u8 preamble_type, uint dur)
6222 {
6223  uint nsyms, mac_len, Ndps, kNdps;
6224  uint rate = rspec2rate(ratespec);
6225 
6226  BCMMSG(wlc->wiphy, "wl%d: rspec 0x%x, preamble_type %d, dur %d\n",
6227  wlc->pub->unit, ratespec, preamble_type, dur);
6228 
6229  if (is_mcs_rate(ratespec)) {
6230  uint mcs = ratespec & RSPEC_RATE_MASK;
6231  int tot_streams = mcs_2_txstreams(mcs) + rspec_stc(ratespec);
6232  dur -= PREN_PREAMBLE + (tot_streams * PREN_PREAMBLE_EXT);
6233  /* payload calculation matches that of regular ofdm */
6234  if (wlc->band->bandtype == BRCM_BAND_2G)
6236  /* kNdbps = kbps * 4 */
6237  kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
6238  rspec_issgi(ratespec)) * 4;
6239  nsyms = dur / APHY_SYMBOL_TIME;
6240  mac_len =
6241  ((nsyms * kNdps) -
6242  ((APHY_SERVICE_NBITS + APHY_TAIL_NBITS) * 1000)) / 8000;
6243  } else if (is_ofdm_rate(ratespec)) {
6244  dur -= APHY_PREAMBLE_TIME;
6245  dur -= APHY_SIGNAL_TIME;
6246  /* Ndbps = Mbps * 4 = rate(500Kbps) * 2 */
6247  Ndps = rate * 2;
6248  nsyms = dur / APHY_SYMBOL_TIME;
6249  mac_len =
6250  ((nsyms * Ndps) -
6252  } else {
6253  if (preamble_type & BRCMS_SHORT_PREAMBLE)
6254  dur -= BPHY_PLCP_SHORT_TIME;
6255  else
6256  dur -= BPHY_PLCP_TIME;
6257  mac_len = dur * rate;
6258  /* divide out factor of 2 in rate (1/2 mbps) */
6259  mac_len = mac_len / 8 / 2;
6260  }
6261  return mac_len;
6262 }
6263 
6264 /*
6265  * Return true if the specified rate is supported by the specified band.
6266  * BRCM_BAND_AUTO indicates the current band.
6267  */
6268 static bool brcms_c_valid_rate(struct brcms_c_info *wlc, u32 rspec, int band,
6269  bool verbose)
6270 {
6271  struct brcms_c_rateset *hw_rateset;
6272  uint i;
6273 
6274  if ((band == BRCM_BAND_AUTO) || (band == wlc->band->bandtype))
6275  hw_rateset = &wlc->band->hw_rateset;
6276  else if (wlc->pub->_nbands > 1)
6277  hw_rateset = &wlc->bandstate[OTHERBANDUNIT(wlc)]->hw_rateset;
6278  else
6279  /* other band specified and we are a single band device */
6280  return false;
6281 
6282  /* check if this is a mimo rate */
6283  if (is_mcs_rate(rspec)) {
6284  if ((rspec & RSPEC_RATE_MASK) >= MCS_TABLE_SIZE)
6285  goto error;
6286 
6287  return isset(hw_rateset->mcs, (rspec & RSPEC_RATE_MASK));
6288  }
6289 
6290  for (i = 0; i < hw_rateset->count; i++)
6291  if (hw_rateset->rates[i] == rspec2rate(rspec))
6292  return true;
6293  error:
6294  if (verbose)
6295  wiphy_err(wlc->wiphy, "wl%d: valid_rate: rate spec 0x%x "
6296  "not in hw_rateset\n", wlc->pub->unit, rspec);
6297 
6298  return false;
6299 }
6300 
6301 static u32
6302 mac80211_wlc_set_nrate(struct brcms_c_info *wlc, struct brcms_band *cur_band,
6303  u32 int_val)
6304 {
6305  u8 stf = (int_val & NRATE_STF_MASK) >> NRATE_STF_SHIFT;
6306  u8 rate = int_val & NRATE_RATE_MASK;
6307  u32 rspec;
6308  bool ismcs = ((int_val & NRATE_MCS_INUSE) == NRATE_MCS_INUSE);
6309  bool issgi = ((int_val & NRATE_SGI_MASK) >> NRATE_SGI_SHIFT);
6310  bool override_mcs_only = ((int_val & NRATE_OVERRIDE_MCS_ONLY)
6312  int bcmerror = 0;
6313 
6314  if (!ismcs)
6315  return (u32) rate;
6316 
6317  /* validate the combination of rate/mcs/stf is allowed */
6318  if ((wlc->pub->_n_enab & SUPPORT_11N) && ismcs) {
6319  /* mcs only allowed when nmode */
6320  if (stf > PHY_TXC1_MODE_SDM) {
6321  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid stf\n",
6322  wlc->pub->unit, __func__);
6323  bcmerror = -EINVAL;
6324  goto done;
6325  }
6326 
6327  /* mcs 32 is a special case, DUP mode 40 only */
6328  if (rate == 32) {
6329  if (!CHSPEC_IS40(wlc->home_chanspec) ||
6330  ((stf != PHY_TXC1_MODE_SISO)
6331  && (stf != PHY_TXC1_MODE_CDD))) {
6332  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid mcs "
6333  "32\n", wlc->pub->unit, __func__);
6334  bcmerror = -EINVAL;
6335  goto done;
6336  }
6337  /* mcs > 7 must use stf SDM */
6338  } else if (rate > HIGHEST_SINGLE_STREAM_MCS) {
6339  /* mcs > 7 must use stf SDM */
6340  if (stf != PHY_TXC1_MODE_SDM) {
6341  BCMMSG(wlc->wiphy, "wl%d: enabling "
6342  "SDM mode for mcs %d\n",
6343  wlc->pub->unit, rate);
6344  stf = PHY_TXC1_MODE_SDM;
6345  }
6346  } else {
6347  /*
6348  * MCS 0-7 may use SISO, CDD, and for
6349  * phy_rev >= 3 STBC
6350  */
6351  if ((stf > PHY_TXC1_MODE_STBC) ||
6352  (!BRCMS_STBC_CAP_PHY(wlc)
6353  && (stf == PHY_TXC1_MODE_STBC))) {
6354  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid STBC"
6355  "\n", wlc->pub->unit, __func__);
6356  bcmerror = -EINVAL;
6357  goto done;
6358  }
6359  }
6360  } else if (is_ofdm_rate(rate)) {
6361  if ((stf != PHY_TXC1_MODE_CDD) && (stf != PHY_TXC1_MODE_SISO)) {
6362  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid OFDM\n",
6363  wlc->pub->unit, __func__);
6364  bcmerror = -EINVAL;
6365  goto done;
6366  }
6367  } else if (is_cck_rate(rate)) {
6368  if ((cur_band->bandtype != BRCM_BAND_2G)
6369  || (stf != PHY_TXC1_MODE_SISO)) {
6370  wiphy_err(wlc->wiphy, "wl%d: %s: Invalid CCK\n",
6371  wlc->pub->unit, __func__);
6372  bcmerror = -EINVAL;
6373  goto done;
6374  }
6375  } else {
6376  wiphy_err(wlc->wiphy, "wl%d: %s: Unknown rate type\n",
6377  wlc->pub->unit, __func__);
6378  bcmerror = -EINVAL;
6379  goto done;
6380  }
6381  /* make sure multiple antennae are available for non-siso rates */
6382  if ((stf != PHY_TXC1_MODE_SISO) && (wlc->stf->txstreams == 1)) {
6383  wiphy_err(wlc->wiphy, "wl%d: %s: SISO antenna but !SISO "
6384  "request\n", wlc->pub->unit, __func__);
6385  bcmerror = -EINVAL;
6386  goto done;
6387  }
6388 
6389  rspec = rate;
6390  if (ismcs) {
6391  rspec |= RSPEC_MIMORATE;
6392  /* For STBC populate the STC field of the ratespec */
6393  if (stf == PHY_TXC1_MODE_STBC) {
6394  u8 stc;
6395  stc = 1; /* Nss for single stream is always 1 */
6396  rspec |= (stc << RSPEC_STC_SHIFT);
6397  }
6398  }
6399 
6400  rspec |= (stf << RSPEC_STF_SHIFT);
6401 
6402  if (override_mcs_only)
6403  rspec |= RSPEC_OVERRIDE_MCS_ONLY;
6404 
6405  if (issgi)
6406  rspec |= RSPEC_SHORT_GI;
6407 
6408  if ((rate != 0)
6409  && !brcms_c_valid_rate(wlc, rspec, cur_band->bandtype, true))
6410  return rate;
6411 
6412  return rspec;
6413 done:
6414  return rate;
6415 }
6416 
6417 /*
6418  * Compute PLCP, but only requires actual rate and length of pkt.
6419  * Rate is given in the driver standard multiple of 500 kbps.
6420  * le is set for 11 Mbps rate if necessary.
6421  * Broken out for PRQ.
6422  */
6423 
6424 static void brcms_c_cck_plcp_set(struct brcms_c_info *wlc, int rate_500,
6425  uint length, u8 *plcp)
6426 {
6427  u16 usec = 0;
6428  u8 le = 0;
6429 
6430  switch (rate_500) {
6431  case BRCM_RATE_1M:
6432  usec = length << 3;
6433  break;
6434  case BRCM_RATE_2M:
6435  usec = length << 2;
6436  break;
6437  case BRCM_RATE_5M5:
6438  usec = (length << 4) / 11;
6439  if ((length << 4) - (usec * 11) > 0)
6440  usec++;
6441  break;
6442  case BRCM_RATE_11M:
6443  usec = (length << 3) / 11;
6444  if ((length << 3) - (usec * 11) > 0) {
6445  usec++;
6446  if ((usec * 11) - (length << 3) >= 8)
6447  le = D11B_PLCP_SIGNAL_LE;
6448  }
6449  break;
6450 
6451  default:
6452  wiphy_err(wlc->wiphy,
6453  "brcms_c_cck_plcp_set: unsupported rate %d\n",
6454  rate_500);
6455  rate_500 = BRCM_RATE_1M;
6456  usec = length << 3;
6457  break;
6458  }
6459  /* PLCP signal byte */
6460  plcp[0] = rate_500 * 5; /* r (500kbps) * 5 == r (100kbps) */
6461  /* PLCP service byte */
6462  plcp[1] = (u8) (le | D11B_PLCP_SIGNAL_LOCKED);
6463  /* PLCP length u16, little endian */
6464  plcp[2] = usec & 0xff;
6465  plcp[3] = (usec >> 8) & 0xff;
6466  /* PLCP CRC16 */
6467  plcp[4] = 0;
6468  plcp[5] = 0;
6469 }
6470 
6471 /* Rate: 802.11 rate code, length: PSDU length in octets */
6472 static void brcms_c_compute_mimo_plcp(u32 rspec, uint length, u8 *plcp)
6473 {
6474  u8 mcs = (u8) (rspec & RSPEC_RATE_MASK);
6475  plcp[0] = mcs;
6476  if (rspec_is40mhz(rspec) || (mcs == 32))
6477  plcp[0] |= MIMO_PLCP_40MHZ;
6478  BRCMS_SET_MIMO_PLCP_LEN(plcp, length);
6479  plcp[3] = rspec_mimoplcp3(rspec); /* rspec already holds this byte */
6480  plcp[3] |= 0x7; /* set smoothing, not sounding ppdu & reserved */
6481  plcp[4] = 0; /* number of extension spatial streams bit 0 & 1 */
6482  plcp[5] = 0;
6483 }
6484 
6485 /* Rate: 802.11 rate code, length: PSDU length in octets */
6486 static void
6487 brcms_c_compute_ofdm_plcp(u32 rspec, u32 length, u8 *plcp)
6488 {
6489  u8 rate_signal;
6490  u32 tmp = 0;
6491  int rate = rspec2rate(rspec);
6492 
6493  /*
6494  * encode rate per 802.11a-1999 sec 17.3.4.1, with lsb
6495  * transmitted first
6496  */
6497  rate_signal = rate_info[rate] & BRCMS_RATE_MASK;
6498  memset(plcp, 0, D11_PHY_HDR_LEN);
6499  D11A_PHY_HDR_SRATE((struct ofdm_phy_hdr *) plcp, rate_signal);
6500 
6501  tmp = (length & 0xfff) << 5;
6502  plcp[2] |= (tmp >> 16) & 0xff;
6503  plcp[1] |= (tmp >> 8) & 0xff;
6504  plcp[0] |= tmp & 0xff;
6505 }
6506 
6507 /* Rate: 802.11 rate code, length: PSDU length in octets */
6508 static void brcms_c_compute_cck_plcp(struct brcms_c_info *wlc, u32 rspec,
6509  uint length, u8 *plcp)
6510 {
6511  int rate = rspec2rate(rspec);
6512 
6513  brcms_c_cck_plcp_set(wlc, rate, length, plcp);
6514 }
6515 
6516 static void
6517 brcms_c_compute_plcp(struct brcms_c_info *wlc, u32 rspec,
6518  uint length, u8 *plcp)
6519 {
6520  if (is_mcs_rate(rspec))
6521  brcms_c_compute_mimo_plcp(rspec, length, plcp);
6522  else if (is_ofdm_rate(rspec))
6523  brcms_c_compute_ofdm_plcp(rspec, length, plcp);
6524  else
6525  brcms_c_compute_cck_plcp(wlc, rspec, length, plcp);
6526 }
6527 
6528 /* brcms_c_compute_rtscts_dur()
6529  *
6530  * Calculate the 802.11 MAC header DUR field for an RTS or CTS frame
6531  * DUR for normal RTS/CTS w/ frame = 3 SIFS + 1 CTS + next frame time + 1 ACK
6532  * DUR for CTS-TO-SELF w/ frame = 2 SIFS + next frame time + 1 ACK
6533  *
6534  * cts cts-to-self or rts/cts
6535  * rts_rate rts or cts rate in unit of 500kbps
6536  * rate next MPDU rate in unit of 500kbps
6537  * frame_len next MPDU frame length in bytes
6538  */
6539 u16
6540 brcms_c_compute_rtscts_dur(struct brcms_c_info *wlc, bool cts_only,
6541  u32 rts_rate,
6542  u32 frame_rate, u8 rts_preamble_type,
6543  u8 frame_preamble_type, uint frame_len, bool ba)
6544 {
6545  u16 dur, sifs;
6546 
6547  sifs = get_sifs(wlc->band);
6548 
6549  if (!cts_only) {
6550  /* RTS/CTS */
6551  dur = 3 * sifs;
6552  dur +=
6553  (u16) brcms_c_calc_cts_time(wlc, rts_rate,
6554  rts_preamble_type);
6555  } else {
6556  /* CTS-TO-SELF */
6557  dur = 2 * sifs;
6558  }
6559 
6560  dur +=
6561  (u16) brcms_c_calc_frame_time(wlc, frame_rate, frame_preamble_type,
6562  frame_len);
6563  if (ba)
6564  dur +=
6565  (u16) brcms_c_calc_ba_time(wlc, frame_rate,
6567  else
6568  dur +=
6569  (u16) brcms_c_calc_ack_time(wlc, frame_rate,
6570  frame_preamble_type);
6571  return dur;
6572 }
6573 
6574 static u16 brcms_c_phytxctl1_calc(struct brcms_c_info *wlc, u32 rspec)
6575 {
6576  u16 phyctl1 = 0;
6577  u16 bw;
6578 
6579  if (BRCMS_ISLCNPHY(wlc->band)) {
6580  bw = PHY_TXC1_BW_20MHZ;
6581  } else {
6582  bw = rspec_get_bw(rspec);
6583  /* 10Mhz is not supported yet */
6584  if (bw < PHY_TXC1_BW_20MHZ) {
6585  wiphy_err(wlc->wiphy, "phytxctl1_calc: bw %d is "
6586  "not supported yet, set to 20L\n", bw);
6587  bw = PHY_TXC1_BW_20MHZ;
6588  }
6589  }
6590 
6591  if (is_mcs_rate(rspec)) {
6592  uint mcs = rspec & RSPEC_RATE_MASK;
6593 
6594  /* bw, stf, coding-type is part of rspec_phytxbyte2 returns */
6595  phyctl1 = rspec_phytxbyte2(rspec);
6596  /* set the upper byte of phyctl1 */
6597  phyctl1 |= (mcs_table[mcs].tx_phy_ctl3 << 8);
6598  } else if (is_cck_rate(rspec) && !BRCMS_ISLCNPHY(wlc->band)
6599  && !BRCMS_ISSSLPNPHY(wlc->band)) {
6600  /*
6601  * In CCK mode LPPHY overloads OFDM Modulation bits with CCK
6602  * Data Rate. Eventually MIMOPHY would also be converted to
6603  * this format
6604  */
6605  /* 0 = 1Mbps; 1 = 2Mbps; 2 = 5.5Mbps; 3 = 11Mbps */
6606  phyctl1 = (bw | (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT));
6607  } else { /* legacy OFDM/CCK */
6608  s16 phycfg;
6609  /* get the phyctl byte from rate phycfg table */
6610  phycfg = brcms_c_rate_legacy_phyctl(rspec2rate(rspec));
6611  if (phycfg == -1) {
6612  wiphy_err(wlc->wiphy, "phytxctl1_calc: wrong "
6613  "legacy OFDM/CCK rate\n");
6614  phycfg = 0;
6615  }
6616  /* set the upper byte of phyctl1 */
6617  phyctl1 =
6618  (bw | (phycfg << 8) |
6619  (rspec_stf(rspec) << PHY_TXC1_MODE_SHIFT));
6620  }
6621  return phyctl1;
6622 }
6623 
6624 /*
6625  * Add struct d11txh, struct cck_phy_hdr.
6626  *
6627  * 'p' data must start with 802.11 MAC header
6628  * 'p' must allow enough bytes of local headers to be "pushed" onto the packet
6629  *
6630  * headroom == D11_PHY_HDR_LEN + D11_TXH_LEN (D11_TXH_LEN is now 104 bytes)
6631  *
6632  */
6633 static u16
6634 brcms_c_d11hdrs_mac80211(struct brcms_c_info *wlc, struct ieee80211_hw *hw,
6635  struct sk_buff *p, struct scb *scb, uint frag,
6636  uint nfrags, uint queue, uint next_frag_len)
6637 {
6638  struct ieee80211_hdr *h;
6639  struct d11txh *txh;
6640  u8 *plcp, plcp_fallback[D11_PHY_HDR_LEN];
6641  int len, phylen, rts_phylen;
6642  u16 mch, phyctl, xfts, mainrates;
6643  u16 seq = 0, mcl = 0, status = 0, frameid = 0;
6644  u32 rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M };
6645  u32 rts_rspec[2] = { BRCM_RATE_1M, BRCM_RATE_1M };
6646  bool use_rts = false;
6647  bool use_cts = false;
6648  bool use_rifs = false;
6649  bool short_preamble[2] = { false, false };
6650  u8 preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
6651  u8 rts_preamble_type[2] = { BRCMS_LONG_PREAMBLE, BRCMS_LONG_PREAMBLE };
6652  u8 *rts_plcp, rts_plcp_fallback[D11_PHY_HDR_LEN];
6653  struct ieee80211_rts *rts = NULL;
6654  bool qos;
6655  uint ac;
6656  bool hwtkmic = false;
6657  u16 mimo_ctlchbw = PHY_TXC1_BW_20MHZ;
6658 #define ANTCFG_NONE 0xFF
6659  u8 antcfg = ANTCFG_NONE;
6660  u8 fbantcfg = ANTCFG_NONE;
6661  uint phyctl1_stf = 0;
6662  u16 durid = 0;
6663  struct ieee80211_tx_rate *txrate[2];
6664  int k;
6665  struct ieee80211_tx_info *tx_info;
6666  bool is_mcs;
6667  u16 mimo_txbw;
6668  u8 mimo_preamble_type;
6669 
6670  /* locate 802.11 MAC header */
6671  h = (struct ieee80211_hdr *)(p->data);
6672  qos = ieee80211_is_data_qos(h->frame_control);
6673 
6674  /* compute length of frame in bytes for use in PLCP computations */
6675  len = p->len;
6676  phylen = len + FCS_LEN;
6677 
6678  /* Get tx_info */
6679  tx_info = IEEE80211_SKB_CB(p);
6680 
6681  /* add PLCP */
6682  plcp = skb_push(p, D11_PHY_HDR_LEN);
6683 
6684  /* add Broadcom tx descriptor header */
6685  txh = (struct d11txh *) skb_push(p, D11_TXH_LEN);
6686  memset(txh, 0, D11_TXH_LEN);
6687 
6688  /* setup frameid */
6689  if (tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
6690  /* non-AP STA should never use BCMC queue */
6691  if (queue == TX_BCMC_FIFO) {
6692  wiphy_err(wlc->wiphy, "wl%d: %s: ASSERT queue == "
6693  "TX_BCMC!\n", wlc->pub->unit, __func__);
6694  frameid = bcmc_fid_generate(wlc, NULL, txh);
6695  } else {
6696  /* Increment the counter for first fragment */
6697  if (tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
6698  scb->seqnum[p->priority]++;
6699 
6700  /* extract fragment number from frame first */
6701  seq = le16_to_cpu(h->seq_ctrl) & FRAGNUM_MASK;
6702  seq |= (scb->seqnum[p->priority] << SEQNUM_SHIFT);
6703  h->seq_ctrl = cpu_to_le16(seq);
6704 
6705  frameid = ((seq << TXFID_SEQ_SHIFT) & TXFID_SEQ_MASK) |
6706  (queue & TXFID_QUEUE_MASK);
6707  }
6708  }
6709  frameid |= queue & TXFID_QUEUE_MASK;
6710 
6711  /* set the ignpmq bit for all pkts tx'd in PS mode and for beacons */
6712  if (ieee80211_is_beacon(h->frame_control))
6713  mcl |= TXC_IGNOREPMQ;
6714 
6715  txrate[0] = tx_info->control.rates;
6716  txrate[1] = txrate[0] + 1;
6717 
6718  /*
6719  * if rate control algorithm didn't give us a fallback
6720  * rate, use the primary rate
6721  */
6722  if (txrate[1]->idx < 0)
6723  txrate[1] = txrate[0];
6724 
6725  for (k = 0; k < hw->max_rates; k++) {
6726  is_mcs = txrate[k]->flags & IEEE80211_TX_RC_MCS ? true : false;
6727  if (!is_mcs) {
6728  if ((txrate[k]->idx >= 0)
6729  && (txrate[k]->idx <
6730  hw->wiphy->bands[tx_info->band]->n_bitrates)) {
6731  rspec[k] =
6732  hw->wiphy->bands[tx_info->band]->
6733  bitrates[txrate[k]->idx].hw_value;
6734  short_preamble[k] =
6735  txrate[k]->
6737  true : false;
6738  } else {
6739  rspec[k] = BRCM_RATE_1M;
6740  }
6741  } else {
6742  rspec[k] = mac80211_wlc_set_nrate(wlc, wlc->band,
6743  NRATE_MCS_INUSE | txrate[k]->idx);
6744  }
6745 
6746  /*
6747  * Currently only support same setting for primay and
6748  * fallback rates. Unify flags for each rate into a
6749  * single value for the frame
6750  */
6751  use_rts |=
6752  txrate[k]->
6753  flags & IEEE80211_TX_RC_USE_RTS_CTS ? true : false;
6754  use_cts |=
6755  txrate[k]->
6756  flags & IEEE80211_TX_RC_USE_CTS_PROTECT ? true : false;
6757 
6758 
6759  /*
6760  * (1) RATE:
6761  * determine and validate primary rate
6762  * and fallback rates
6763  */
6764  if (!rspec_active(rspec[k])) {
6765  rspec[k] = BRCM_RATE_1M;
6766  } else {
6767  if (!is_multicast_ether_addr(h->addr1)) {
6768  /* set tx antenna config */
6769  brcms_c_antsel_antcfg_get(wlc->asi, false,
6770  false, 0, 0, &antcfg, &fbantcfg);
6771  }
6772  }
6773  }
6774 
6775  phyctl1_stf = wlc->stf->ss_opmode;
6776 
6777  if (wlc->pub->_n_enab & SUPPORT_11N) {
6778  for (k = 0; k < hw->max_rates; k++) {
6779  /*
6780  * apply siso/cdd to single stream mcs's or ofdm
6781  * if rspec is auto selected
6782  */
6783  if (((is_mcs_rate(rspec[k]) &&
6784  is_single_stream(rspec[k] & RSPEC_RATE_MASK)) ||
6785  is_ofdm_rate(rspec[k]))
6786  && ((rspec[k] & RSPEC_OVERRIDE_MCS_ONLY)
6787  || !(rspec[k] & RSPEC_OVERRIDE))) {
6788  rspec[k] &= ~(RSPEC_STF_MASK | RSPEC_STC_MASK);
6789 
6790  /* For SISO MCS use STBC if possible */
6791  if (is_mcs_rate(rspec[k])
6792  && BRCMS_STF_SS_STBC_TX(wlc, scb)) {
6793  u8 stc;
6794 
6795  /* Nss for single stream is always 1 */
6796  stc = 1;
6797  rspec[k] |= (PHY_TXC1_MODE_STBC <<
6798  RSPEC_STF_SHIFT) |
6799  (stc << RSPEC_STC_SHIFT);
6800  } else
6801  rspec[k] |=
6802  (phyctl1_stf << RSPEC_STF_SHIFT);
6803  }
6804 
6805  /*
6806  * Is the phy configured to use 40MHZ frames? If
6807  * so then pick the desired txbw
6808  */
6809  if (brcms_chspec_bw(wlc->chanspec) == BRCMS_40_MHZ) {
6810  /* default txbw is 20in40 SB */
6811  mimo_ctlchbw = mimo_txbw =
6813  wlc->band->pi))
6815 
6816  if (is_mcs_rate(rspec[k])) {
6817  /* mcs 32 must be 40b/w DUP */
6818  if ((rspec[k] & RSPEC_RATE_MASK)
6819  == 32) {
6820  mimo_txbw =
6822  /* use override */
6823  } else if (wlc->mimo_40txbw != AUTO)
6824  mimo_txbw = wlc->mimo_40txbw;
6825  /* else check if dst is using 40 Mhz */
6826  else if (scb->flags & SCB_IS40)
6827  mimo_txbw = PHY_TXC1_BW_40MHZ;
6828  } else if (is_ofdm_rate(rspec[k])) {
6829  if (wlc->ofdm_40txbw != AUTO)
6830  mimo_txbw = wlc->ofdm_40txbw;
6831  } else if (wlc->cck_40txbw != AUTO) {
6832  mimo_txbw = wlc->cck_40txbw;
6833  }
6834  } else {
6835  /*
6836  * mcs32 is 40 b/w only.
6837  * This is possible for probe packets on
6838  * a STA during SCAN
6839  */
6840  if ((rspec[k] & RSPEC_RATE_MASK) == 32)
6841  /* mcs 0 */
6842  rspec[k] = RSPEC_MIMORATE;
6843 
6844  mimo_txbw = PHY_TXC1_BW_20MHZ;
6845  }
6846 
6847  /* Set channel width */
6848  rspec[k] &= ~RSPEC_BW_MASK;
6849  if ((k == 0) || ((k > 0) && is_mcs_rate(rspec[k])))
6850  rspec[k] |= (mimo_txbw << RSPEC_BW_SHIFT);
6851  else
6852  rspec[k] |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
6853 
6854  /* Disable short GI, not supported yet */
6855  rspec[k] &= ~RSPEC_SHORT_GI;
6856 
6857  mimo_preamble_type = BRCMS_MM_PREAMBLE;
6858  if (txrate[k]->flags & IEEE80211_TX_RC_GREEN_FIELD)
6859  mimo_preamble_type = BRCMS_GF_PREAMBLE;
6860 
6861  if ((txrate[k]->flags & IEEE80211_TX_RC_MCS)
6862  && (!is_mcs_rate(rspec[k]))) {
6863  wiphy_err(wlc->wiphy, "wl%d: %s: IEEE80211_TX_"
6864  "RC_MCS != is_mcs_rate(rspec)\n",
6865  wlc->pub->unit, __func__);
6866  }
6867 
6868  if (is_mcs_rate(rspec[k])) {
6869  preamble_type[k] = mimo_preamble_type;
6870 
6871  /*
6872  * if SGI is selected, then forced mm
6873  * for single stream
6874  */
6875  if ((rspec[k] & RSPEC_SHORT_GI)
6876  && is_single_stream(rspec[k] &
6877  RSPEC_RATE_MASK))
6878  preamble_type[k] = BRCMS_MM_PREAMBLE;
6879  }
6880 
6881  /* should be better conditionalized */
6882  if (!is_mcs_rate(rspec[0])
6883  && (tx_info->control.rates[0].
6885  preamble_type[k] = BRCMS_SHORT_PREAMBLE;
6886  }
6887  } else {
6888  for (k = 0; k < hw->max_rates; k++) {
6889  /* Set ctrlchbw as 20Mhz */
6890  rspec[k] &= ~RSPEC_BW_MASK;
6891  rspec[k] |= (PHY_TXC1_BW_20MHZ << RSPEC_BW_SHIFT);
6892 
6893  /* for nphy, stf of ofdm frames must follow policies */
6894  if (BRCMS_ISNPHY(wlc->band) && is_ofdm_rate(rspec[k])) {
6895  rspec[k] &= ~RSPEC_STF_MASK;
6896  rspec[k] |= phyctl1_stf << RSPEC_STF_SHIFT;
6897  }
6898  }
6899  }
6900 
6901  /* Reset these for use with AMPDU's */
6902  txrate[0]->count = 0;
6903  txrate[1]->count = 0;
6904 
6905  /* (2) PROTECTION, may change rspec */
6906  if ((ieee80211_is_data(h->frame_control) ||
6907  ieee80211_is_mgmt(h->frame_control)) &&
6908  (phylen > wlc->RTSThresh) && !is_multicast_ether_addr(h->addr1))
6909  use_rts = true;
6910 
6911  /* (3) PLCP: determine PLCP header and MAC duration,
6912  * fill struct d11txh */
6913  brcms_c_compute_plcp(wlc, rspec[0], phylen, plcp);
6914  brcms_c_compute_plcp(wlc, rspec[1], phylen, plcp_fallback);
6915  memcpy(&txh->FragPLCPFallback,
6916  plcp_fallback, sizeof(txh->FragPLCPFallback));
6917 
6918  /* Length field now put in CCK FBR CRC field */
6919  if (is_cck_rate(rspec[1])) {
6920  txh->FragPLCPFallback[4] = phylen & 0xff;
6921  txh->FragPLCPFallback[5] = (phylen & 0xff00) >> 8;
6922  }
6923 
6924  /* MIMO-RATE: need validation ?? */
6925  mainrates = is_ofdm_rate(rspec[0]) ?
6926  D11A_PHY_HDR_GRATE((struct ofdm_phy_hdr *) plcp) :
6927  plcp[0];
6928 
6929  /* DUR field for main rate */
6930  if (!ieee80211_is_pspoll(h->frame_control) &&
6931  !is_multicast_ether_addr(h->addr1) && !use_rifs) {
6932  durid =
6933  brcms_c_compute_frame_dur(wlc, rspec[0], preamble_type[0],
6934  next_frag_len);
6935  h->duration_id = cpu_to_le16(durid);
6936  } else if (use_rifs) {
6937  /* NAV protect to end of next max packet size */
6938  durid =
6939  (u16) brcms_c_calc_frame_time(wlc, rspec[0],
6940  preamble_type[0],
6942  durid += RIFS_11N_TIME;
6943  h->duration_id = cpu_to_le16(durid);
6944  }
6945 
6946  /* DUR field for fallback rate */
6947  if (ieee80211_is_pspoll(h->frame_control))
6948  txh->FragDurFallback = h->duration_id;
6949  else if (is_multicast_ether_addr(h->addr1) || use_rifs)
6950  txh->FragDurFallback = 0;
6951  else {
6952  durid = brcms_c_compute_frame_dur(wlc, rspec[1],
6953  preamble_type[1], next_frag_len);
6954  txh->FragDurFallback = cpu_to_le16(durid);
6955  }
6956 
6957  /* (4) MAC-HDR: MacTxControlLow */
6958  if (frag == 0)
6959  mcl |= TXC_STARTMSDU;
6960 
6961  if (!is_multicast_ether_addr(h->addr1))
6962  mcl |= TXC_IMMEDACK;
6963 
6964  if (wlc->band->bandtype == BRCM_BAND_5G)
6965  mcl |= TXC_FREQBAND_5G;
6966 
6967  if (CHSPEC_IS40(wlc_phy_chanspec_get(wlc->band->pi)))
6968  mcl |= TXC_BW_40;
6969 
6970  /* set AMIC bit if using hardware TKIP MIC */
6971  if (hwtkmic)
6972  mcl |= TXC_AMIC;
6973 
6974  txh->MacTxControlLow = cpu_to_le16(mcl);
6975 
6976  /* MacTxControlHigh */
6977  mch = 0;
6978 
6979  /* Set fallback rate preamble type */
6980  if ((preamble_type[1] == BRCMS_SHORT_PREAMBLE) ||
6981  (preamble_type[1] == BRCMS_GF_PREAMBLE)) {
6982  if (rspec2rate(rspec[1]) != BRCM_RATE_1M)
6984  }
6985 
6986  /* MacFrameControl */
6987  memcpy(&txh->MacFrameControl, &h->frame_control, sizeof(u16));
6988  txh->TxFesTimeNormal = cpu_to_le16(0);
6989 
6990  txh->TxFesTimeFallback = cpu_to_le16(0);
6991 
6992  /* TxFrameRA */
6993  memcpy(&txh->TxFrameRA, &h->addr1, ETH_ALEN);
6994 
6995  /* TxFrameID */
6996  txh->TxFrameID = cpu_to_le16(frameid);
6997 
6998  /*
6999  * TxStatus, Note the case of recreating the first frag of a suppressed
7000  * frame then we may need to reset the retry cnt's via the status reg
7001  */
7002  txh->TxStatus = cpu_to_le16(status);
7003 
7004  /*
7005  * extra fields for ucode AMPDU aggregation, the new fields are added to
7006  * the END of previous structure so that it's compatible in driver.
7007  */
7008  txh->MaxNMpdus = cpu_to_le16(0);
7009  txh->MaxABytes_MRT = cpu_to_le16(0);
7010  txh->MaxABytes_FBR = cpu_to_le16(0);
7011  txh->MinMBytes = cpu_to_le16(0);
7012 
7013  /* (5) RTS/CTS: determine RTS/CTS PLCP header and MAC duration,
7014  * furnish struct d11txh */
7015  /* RTS PLCP header and RTS frame */
7016  if (use_rts || use_cts) {
7017  if (use_rts && use_cts)
7018  use_cts = false;
7019 
7020  for (k = 0; k < 2; k++) {
7021  rts_rspec[k] = brcms_c_rspec_to_rts_rspec(wlc, rspec[k],
7022  false,
7023  mimo_ctlchbw);
7024  }
7025 
7026  if (!is_ofdm_rate(rts_rspec[0]) &&
7027  !((rspec2rate(rts_rspec[0]) == BRCM_RATE_1M) ||
7028  (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
7029  rts_preamble_type[0] = BRCMS_SHORT_PREAMBLE;
7031  }
7032 
7033  if (!is_ofdm_rate(rts_rspec[1]) &&
7034  !((rspec2rate(rts_rspec[1]) == BRCM_RATE_1M) ||
7035  (wlc->PLCPHdr_override == BRCMS_PLCP_LONG))) {
7036  rts_preamble_type[1] = BRCMS_SHORT_PREAMBLE;
7038  }
7039 
7040  /* RTS/CTS additions to MacTxControlLow */
7041  if (use_cts) {
7043  } else {
7046  }
7047 
7048  /* RTS PLCP header */
7049  rts_plcp = txh->RTSPhyHeader;
7050  if (use_cts)
7051  rts_phylen = DOT11_CTS_LEN + FCS_LEN;
7052  else
7053  rts_phylen = DOT11_RTS_LEN + FCS_LEN;
7054 
7055  brcms_c_compute_plcp(wlc, rts_rspec[0], rts_phylen, rts_plcp);
7056 
7057  /* fallback rate version of RTS PLCP header */
7058  brcms_c_compute_plcp(wlc, rts_rspec[1], rts_phylen,
7059  rts_plcp_fallback);
7060  memcpy(&txh->RTSPLCPFallback, rts_plcp_fallback,
7061  sizeof(txh->RTSPLCPFallback));
7062 
7063  /* RTS frame fields... */
7064  rts = (struct ieee80211_rts *)&txh->rts_frame;
7065 
7066  durid = brcms_c_compute_rtscts_dur(wlc, use_cts, rts_rspec[0],
7067  rspec[0], rts_preamble_type[0],
7068  preamble_type[0], phylen, false);
7069  rts->duration = cpu_to_le16(durid);
7070  /* fallback rate version of RTS DUR field */
7071  durid = brcms_c_compute_rtscts_dur(wlc, use_cts,
7072  rts_rspec[1], rspec[1],
7073  rts_preamble_type[1],
7074  preamble_type[1], phylen, false);
7075  txh->RTSDurFallback = cpu_to_le16(durid);
7076 
7077  if (use_cts) {
7080 
7081  memcpy(&rts->ra, &h->addr2, ETH_ALEN);
7082  } else {
7085 
7086  memcpy(&rts->ra, &h->addr1, 2 * ETH_ALEN);
7087  }
7088 
7089  /* mainrate
7090  * low 8 bits: main frag rate/mcs,
7091  * high 8 bits: rts/cts rate/mcs
7092  */
7093  mainrates |= (is_ofdm_rate(rts_rspec[0]) ?
7095  (struct ofdm_phy_hdr *) rts_plcp) :
7096  rts_plcp[0]) << 8;
7097  } else {
7098  memset((char *)txh->RTSPhyHeader, 0, D11_PHY_HDR_LEN);
7099  memset((char *)&txh->rts_frame, 0,
7100  sizeof(struct ieee80211_rts));
7101  memset((char *)txh->RTSPLCPFallback, 0,
7102  sizeof(txh->RTSPLCPFallback));
7103  txh->RTSDurFallback = 0;
7104  }
7105 
7106 #ifdef SUPPORT_40MHZ
7107  /* add null delimiter count */
7108  if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && is_mcs_rate(rspec))
7110  brcm_c_ampdu_null_delim_cnt(wlc->ampdu, scb, rspec, phylen);
7111 
7112 #endif
7113 
7114  /*
7115  * Now that RTS/RTS FB preamble types are updated, write
7116  * the final value
7117  */
7118  txh->MacTxControlHigh = cpu_to_le16(mch);
7119 
7120  /*
7121  * MainRates (both the rts and frag plcp rates have
7122  * been calculated now)
7123  */
7124  txh->MainRates = cpu_to_le16(mainrates);
7125 
7126  /* XtraFrameTypes */
7127  xfts = frametype(rspec[1], wlc->mimoft);
7128  xfts |= (frametype(rts_rspec[0], wlc->mimoft) << XFTS_RTS_FT_SHIFT);
7129  xfts |= (frametype(rts_rspec[1], wlc->mimoft) << XFTS_FBRRTS_FT_SHIFT);
7130  xfts |= CHSPEC_CHANNEL(wlc_phy_chanspec_get(wlc->band->pi)) <<
7132  txh->XtraFrameTypes = cpu_to_le16(xfts);
7133 
7134  /* PhyTxControlWord */
7135  phyctl = frametype(rspec[0], wlc->mimoft);
7136  if ((preamble_type[0] == BRCMS_SHORT_PREAMBLE) ||
7137  (preamble_type[0] == BRCMS_GF_PREAMBLE)) {
7138  if (rspec2rate(rspec[0]) != BRCM_RATE_1M)
7139  phyctl |= PHY_TXC_SHORT_HDR;
7140  }
7141 
7142  /* phytxant is properly bit shifted */
7143  phyctl |= brcms_c_stf_d11hdrs_phyctl_txant(wlc, rspec[0]);
7144  txh->PhyTxControlWord = cpu_to_le16(phyctl);
7145 
7146  /* PhyTxControlWord_1 */
7147  if (BRCMS_PHY_11N_CAP(wlc->band)) {
7148  u16 phyctl1 = 0;
7149 
7150  phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[0]);
7151  txh->PhyTxControlWord_1 = cpu_to_le16(phyctl1);
7152  phyctl1 = brcms_c_phytxctl1_calc(wlc, rspec[1]);
7153  txh->PhyTxControlWord_1_Fbr = cpu_to_le16(phyctl1);
7154 
7155  if (use_rts || use_cts) {
7156  phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[0]);
7157  txh->PhyTxControlWord_1_Rts = cpu_to_le16(phyctl1);
7158  phyctl1 = brcms_c_phytxctl1_calc(wlc, rts_rspec[1]);
7159  txh->PhyTxControlWord_1_FbrRts = cpu_to_le16(phyctl1);
7160  }
7161 
7162  /*
7163  * For mcs frames, if mixedmode(overloaded with long preamble)
7164  * is going to be set, fill in non-zero MModeLen and/or
7165  * MModeFbrLen it will be unnecessary if they are separated
7166  */
7167  if (is_mcs_rate(rspec[0]) &&
7168  (preamble_type[0] == BRCMS_MM_PREAMBLE)) {
7169  u16 mmodelen =
7170  brcms_c_calc_lsig_len(wlc, rspec[0], phylen);
7171  txh->MModeLen = cpu_to_le16(mmodelen);
7172  }
7173 
7174  if (is_mcs_rate(rspec[1]) &&
7175  (preamble_type[1] == BRCMS_MM_PREAMBLE)) {
7176  u16 mmodefbrlen =
7177  brcms_c_calc_lsig_len(wlc, rspec[1], phylen);
7178  txh->MModeFbrLen = cpu_to_le16(mmodefbrlen);
7179  }
7180  }
7181 
7182  ac = skb_get_queue_mapping(p);
7183  if ((scb->flags & SCB_WMECAP) && qos && wlc->edcf_txop[ac]) {
7184  uint frag_dur, dur, dur_fallback;
7185 
7186  /* WME: Update TXOP threshold */
7187  if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU) && frag == 0) {
7188  frag_dur =
7189  brcms_c_calc_frame_time(wlc, rspec[0],
7190  preamble_type[0], phylen);
7191 
7192  if (rts) {
7193  /* 1 RTS or CTS-to-self frame */
7194  dur =
7195  brcms_c_calc_cts_time(wlc, rts_rspec[0],
7196  rts_preamble_type[0]);
7197  dur_fallback =
7198  brcms_c_calc_cts_time(wlc, rts_rspec[1],
7199  rts_preamble_type[1]);
7200  /* (SIFS + CTS) + SIFS + frame + SIFS + ACK */
7201  dur += le16_to_cpu(rts->duration);
7202  dur_fallback +=
7204  } else if (use_rifs) {
7205  dur = frag_dur;
7206  dur_fallback = 0;
7207  } else {
7208  /* frame + SIFS + ACK */
7209  dur = frag_dur;
7210  dur +=
7211  brcms_c_compute_frame_dur(wlc, rspec[0],
7212  preamble_type[0], 0);
7213 
7214  dur_fallback =
7215  brcms_c_calc_frame_time(wlc, rspec[1],
7216  preamble_type[1],
7217  phylen);
7218  dur_fallback +=
7219  brcms_c_compute_frame_dur(wlc, rspec[1],
7220  preamble_type[1], 0);
7221  }
7222  /* NEED to set TxFesTimeNormal (hard) */
7223  txh->TxFesTimeNormal = cpu_to_le16((u16) dur);
7224  /*
7225  * NEED to set fallback rate version of
7226  * TxFesTimeNormal (hard)
7227  */
7228  txh->TxFesTimeFallback =
7229  cpu_to_le16((u16) dur_fallback);
7230 
7231  /*
7232  * update txop byte threshold (txop minus intraframe
7233  * overhead)
7234  */
7235  if (wlc->edcf_txop[ac] >= (dur - frag_dur)) {
7236  uint newfragthresh;
7237 
7238  newfragthresh =
7239  brcms_c_calc_frame_len(wlc,
7240  rspec[0], preamble_type[0],
7241  (wlc->edcf_txop[ac] -
7242  (dur - frag_dur)));
7243  /* range bound the fragthreshold */
7244  if (newfragthresh < DOT11_MIN_FRAG_LEN)
7245  newfragthresh =
7247  else if (newfragthresh >
7248  wlc->usr_fragthresh)
7249  newfragthresh =
7250  wlc->usr_fragthresh;
7251  /* update the fragthresh and do txc update */
7252  if (wlc->fragthresh[queue] !=
7253  (u16) newfragthresh)
7254  wlc->fragthresh[queue] =
7255  (u16) newfragthresh;
7256  } else {
7257  wiphy_err(wlc->wiphy, "wl%d: %s txop invalid "
7258  "for rate %d\n",
7259  wlc->pub->unit, fifo_names[queue],
7260  rspec2rate(rspec[0]));
7261  }
7262 
7263  if (dur > wlc->edcf_txop[ac])
7264  wiphy_err(wlc->wiphy, "wl%d: %s: %s txop "
7265  "exceeded phylen %d/%d dur %d/%d\n",
7266  wlc->pub->unit, __func__,
7267  fifo_names[queue],
7268  phylen, wlc->fragthresh[queue],
7269  dur, wlc->edcf_txop[ac]);
7270  }
7271  }
7272 
7273  return 0;
7274 }
7275 
7276 void brcms_c_sendpkt_mac80211(struct brcms_c_info *wlc, struct sk_buff *sdu,
7277  struct ieee80211_hw *hw)
7278 {
7279  u8 prio;
7280  uint fifo;
7281  struct scb *scb = &wlc->pri_scb;
7282  struct ieee80211_hdr *d11_header = (struct ieee80211_hdr *)(sdu->data);
7283 
7284  /*
7285  * 802.11 standard requires management traffic
7286  * to go at highest priority
7287  */
7288  prio = ieee80211_is_data(d11_header->frame_control) ? sdu->priority :
7289  MAXPRIO;
7290  fifo = prio2fifo[prio];
7291  if (brcms_c_d11hdrs_mac80211(wlc, hw, sdu, scb, 0, 1, fifo, 0))
7292  return;
7293  brcms_c_txq_enq(wlc, scb, sdu, BRCMS_PRIO_TO_PREC(prio));
7294  brcms_c_send_q(wlc);
7295 }
7296 
7297 void brcms_c_send_q(struct brcms_c_info *wlc)
7298 {
7299  struct sk_buff *pkt[DOT11_MAXNUMFRAGS];
7300  int prec;
7301  u16 prec_map;
7302  int err = 0, i, count;
7303  uint fifo;
7304  struct brcms_txq_info *qi = wlc->pkt_queue;
7305  struct pktq *q = &qi->q;
7306  struct ieee80211_tx_info *tx_info;
7307 
7308  prec_map = wlc->tx_prec_map;
7309 
7310  /* Send all the enq'd pkts that we can.
7311  * Dequeue packets with precedence with empty HW fifo only
7312  */
7313  while (prec_map && (pkt[0] = brcmu_pktq_mdeq(q, prec_map, &prec))) {
7314  tx_info = IEEE80211_SKB_CB(pkt[0]);
7315  if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
7316  err = brcms_c_sendampdu(wlc->ampdu, qi, pkt, prec);
7317  } else {
7318  count = 1;
7319  err = brcms_c_prep_pdu(wlc, pkt[0], &fifo);
7320  if (!err) {
7321  for (i = 0; i < count; i++)
7322  brcms_c_txfifo(wlc, fifo, pkt[i], true,
7323  1);
7324  }
7325  }
7326 
7327  if (err == -EBUSY) {
7328  brcmu_pktq_penq_head(q, prec, pkt[0]);
7329  /*
7330  * If send failed due to any other reason than a
7331  * change in HW FIFO condition, quit. Otherwise,
7332  * read the new prec_map!
7333  */
7334  if (prec_map == wlc->tx_prec_map)
7335  break;
7336  prec_map = wlc->tx_prec_map;
7337  }
7338  }
7339 }
7340 
7341 void
7342 brcms_c_txfifo(struct brcms_c_info *wlc, uint fifo, struct sk_buff *p,
7343  bool commit, s8 txpktpend)
7344 {
7345  u16 frameid = INVALIDFID;
7346  struct d11txh *txh;
7347 
7348  txh = (struct d11txh *) (p->data);
7349 
7350  /* When a BC/MC frame is being committed to the BCMC fifo
7351  * via DMA (NOT PIO), update ucode or BSS info as appropriate.
7352  */
7353  if (fifo == TX_BCMC_FIFO)
7354  frameid = le16_to_cpu(txh->TxFrameID);
7355 
7356  /*
7357  * Bump up pending count for if not using rpc. If rpc is
7358  * used, this will be handled in brcms_b_txfifo()
7359  */
7360  if (commit) {
7361  wlc->core->txpktpend[fifo] += txpktpend;
7362  BCMMSG(wlc->wiphy, "pktpend inc %d to %d\n",
7363  txpktpend, wlc->core->txpktpend[fifo]);
7364  }
7365 
7366  /* Commit BCMC sequence number in the SHM frame ID location */
7367  if (frameid != INVALIDFID) {
7368  /*
7369  * To inform the ucode of the last mcast frame posted
7370  * so that it can clear moredata bit
7371  */
7372  brcms_b_write_shm(wlc->hw, M_BCMC_FID, frameid);
7373  }
7374 
7375  if (dma_txfast(wlc->hw->di[fifo], p, commit) < 0)
7376  wiphy_err(wlc->wiphy, "txfifo: fatal, toss frames !!!\n");
7377 }
7378 
7379 u32
7381  bool use_rspec, u16 mimo_ctlchbw)
7382 {
7383  u32 rts_rspec = 0;
7384 
7385  if (use_rspec)
7386  /* use frame rate as rts rate */
7387  rts_rspec = rspec;
7388  else if (wlc->band->gmode && wlc->protection->_g && !is_cck_rate(rspec))
7389  /* Use 11Mbps as the g protection RTS target rate and fallback.
7390  * Use the brcms_basic_rate() lookup to find the best basic rate
7391  * under the target in case 11 Mbps is not Basic.
7392  * 6 and 9 Mbps are not usually selected by rate selection, but
7393  * even if the OFDM rate we are protecting is 6 or 9 Mbps, 11
7394  * is more robust.
7395  */
7396  rts_rspec = brcms_basic_rate(wlc, BRCM_RATE_11M);
7397  else
7398  /* calculate RTS rate and fallback rate based on the frame rate
7399  * RTS must be sent at a basic rate since it is a
7400  * control frame, sec 9.6 of 802.11 spec
7401  */
7402  rts_rspec = brcms_basic_rate(wlc, rspec);
7403 
7404  if (BRCMS_PHY_11N_CAP(wlc->band)) {
7405  /* set rts txbw to correct side band */
7406  rts_rspec &= ~RSPEC_BW_MASK;
7407 
7408  /*
7409  * if rspec/rspec_fallback is 40MHz, then send RTS on both
7410  * 20MHz channel (DUP), otherwise send RTS on control channel
7411  */
7412  if (rspec_is40mhz(rspec) && !is_cck_rate(rts_rspec))
7413  rts_rspec |= (PHY_TXC1_BW_40MHZ_DUP << RSPEC_BW_SHIFT);
7414  else
7415  rts_rspec |= (mimo_ctlchbw << RSPEC_BW_SHIFT);
7416 
7417  /* pick siso/cdd as default for ofdm */
7418  if (is_ofdm_rate(rts_rspec)) {
7419  rts_rspec &= ~RSPEC_STF_MASK;
7420  rts_rspec |= (wlc->stf->ss_opmode << RSPEC_STF_SHIFT);
7421  }
7422  }
7423  return rts_rspec;
7424 }
7425 
7426 void
7427 brcms_c_txfifo_complete(struct brcms_c_info *wlc, uint fifo, s8 txpktpend)
7428 {
7429  wlc->core->txpktpend[fifo] -= txpktpend;
7430  BCMMSG(wlc->wiphy, "pktpend dec %d to %d\n", txpktpend,
7431  wlc->core->txpktpend[fifo]);
7432 
7433  /* There is more room; mark precedences related to this FIFO sendable */
7434  wlc->tx_prec_map |= wlc->fifo2prec_map[fifo];
7435 
7436  /* figure out which bsscfg is being worked on... */
7437 }
7438 
7439 /* Update beacon listen interval in shared memory */
7440 static void brcms_c_bcn_li_upd(struct brcms_c_info *wlc)
7441 {
7442  /* wake up every DTIM is the default */
7443  if (wlc->bcn_li_dtim == 1)
7444  brcms_b_write_shm(wlc->hw, M_BCN_LI, 0);
7445  else
7447  (wlc->bcn_li_dtim << 8) | wlc->bcn_li_bcn);
7448 }
7449 
7450 static void
7451 brcms_b_read_tsf(struct brcms_hardware *wlc_hw, u32 *tsf_l_ptr,
7452  u32 *tsf_h_ptr)
7453 {
7454  struct bcma_device *core = wlc_hw->d11core;
7455 
7456  /* read the tsf timer low, then high to get an atomic read */
7457  *tsf_l_ptr = bcma_read32(core, D11REGOFFS(tsf_timerlow));
7458  *tsf_h_ptr = bcma_read32(core, D11REGOFFS(tsf_timerhigh));
7459 }
7460 
7461 /*
7462  * recover 64bit TSF value from the 16bit TSF value in the rx header
7463  * given the assumption that the TSF passed in header is within 65ms
7464  * of the current tsf.
7465  *
7466  * 6 5 4 4 3 2 1
7467  * 3.......6.......8.......0.......2.......4.......6.......8......0
7468  * |<---------- tsf_h ----------->||<--- tsf_l -->||<-RxTSFTime ->|
7469  *
7470  * The RxTSFTime are the lowest 16 bits and provided by the ucode. The
7471  * tsf_l is filled in by brcms_b_recv, which is done earlier in the
7472  * receive call sequence after rx interrupt. Only the higher 16 bits
7473  * are used. Finally, the tsf_h is read from the tsf register.
7474  */
7475 static u64 brcms_c_recover_tsf64(struct brcms_c_info *wlc,
7476  struct d11rxhdr *rxh)
7477 {
7478  u32 tsf_h, tsf_l;
7479  u16 rx_tsf_0_15, rx_tsf_16_31;
7480 
7481  brcms_b_read_tsf(wlc->hw, &tsf_l, &tsf_h);
7482 
7483  rx_tsf_16_31 = (u16)(tsf_l >> 16);
7484  rx_tsf_0_15 = rxh->RxTSFTime;
7485 
7486  /*
7487  * a greater tsf time indicates the low 16 bits of
7488  * tsf_l wrapped, so decrement the high 16 bits.
7489  */
7490  if ((u16)tsf_l < rx_tsf_0_15) {
7491  rx_tsf_16_31 -= 1;
7492  if (rx_tsf_16_31 == 0xffff)
7493  tsf_h -= 1;
7494  }
7495 
7496  return ((u64)tsf_h << 32) | (((u32)rx_tsf_16_31 << 16) + rx_tsf_0_15);
7497 }
7498 
7499 static void
7500 prep_mac80211_status(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
7501  struct sk_buff *p,
7503 {
7504  int preamble;
7505  int channel;
7506  u32 rspec;
7507  unsigned char *plcp;
7508 
7509  /* fill in TSF and flag its presence */
7510  rx_status->mactime = brcms_c_recover_tsf64(wlc, rxh);
7511  rx_status->flag |= RX_FLAG_MACTIME_MPDU;
7512 
7513  channel = BRCMS_CHAN_CHANNEL(rxh->RxChan);
7514 
7515  rx_status->band =
7516  channel > 14 ? IEEE80211_BAND_5GHZ : IEEE80211_BAND_2GHZ;
7517  rx_status->freq =
7518  ieee80211_channel_to_frequency(channel, rx_status->band);
7519 
7520  rx_status->signal = wlc_phy_rssi_compute(wlc->hw->band->pi, rxh);
7521 
7522  /* noise */
7523  /* qual */
7524  rx_status->antenna =
7525  (rxh->PhyRxStatus_0 & PRXS0_RXANT_UPSUBBAND) ? 1 : 0;
7526 
7527  plcp = p->data;
7528 
7529  rspec = brcms_c_compute_rspec(rxh, plcp);
7530  if (is_mcs_rate(rspec)) {
7531  rx_status->rate_idx = rspec & RSPEC_RATE_MASK;
7532  rx_status->flag |= RX_FLAG_HT;
7533  if (rspec_is40mhz(rspec))
7534  rx_status->flag |= RX_FLAG_40MHZ;
7535  } else {
7536  switch (rspec2rate(rspec)) {
7537  case BRCM_RATE_1M:
7538  rx_status->rate_idx = 0;
7539  break;
7540  case BRCM_RATE_2M:
7541  rx_status->rate_idx = 1;
7542  break;
7543  case BRCM_RATE_5M5:
7544  rx_status->rate_idx = 2;
7545  break;
7546  case BRCM_RATE_11M:
7547  rx_status->rate_idx = 3;
7548  break;
7549  case BRCM_RATE_6M:
7550  rx_status->rate_idx = 4;
7551  break;
7552  case BRCM_RATE_9M:
7553  rx_status->rate_idx = 5;
7554  break;
7555  case BRCM_RATE_12M:
7556  rx_status->rate_idx = 6;
7557  break;
7558  case BRCM_RATE_18M:
7559  rx_status->rate_idx = 7;
7560  break;
7561  case BRCM_RATE_24M:
7562  rx_status->rate_idx = 8;
7563  break;
7564  case BRCM_RATE_36M:
7565  rx_status->rate_idx = 9;
7566  break;
7567  case BRCM_RATE_48M:
7568  rx_status->rate_idx = 10;
7569  break;
7570  case BRCM_RATE_54M:
7571  rx_status->rate_idx = 11;
7572  break;
7573  default:
7574  wiphy_err(wlc->wiphy, "%s: Unknown rate\n", __func__);
7575  }
7576 
7577  /*
7578  * For 5GHz, we should decrease the index as it is
7579  * a subset of the 2.4G rates. See bitrates field
7580  * of brcms_band_5GHz_nphy (in mac80211_if.c).
7581  */
7582  if (rx_status->band == IEEE80211_BAND_5GHZ)
7583  rx_status->rate_idx -= BRCMS_LEGACY_5G_RATE_OFFSET;
7584 
7585  /* Determine short preamble and rate_idx */
7586  preamble = 0;
7587  if (is_cck_rate(rspec)) {
7588  if (rxh->PhyRxStatus_0 & PRXS0_SHORTH)
7589  rx_status->flag |= RX_FLAG_SHORTPRE;
7590  } else if (is_ofdm_rate(rspec)) {
7591  rx_status->flag |= RX_FLAG_SHORTPRE;
7592  } else {
7593  wiphy_err(wlc->wiphy, "%s: Unknown modulation\n",
7594  __func__);
7595  }
7596  }
7597 
7598  if (plcp3_issgi(plcp[3]))
7599  rx_status->flag |= RX_FLAG_SHORT_GI;
7600 
7601  if (rxh->RxStatus1 & RXS_DECERR) {
7602  rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
7603  wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_PLCP_CRC\n",
7604  __func__);
7605  }
7606  if (rxh->RxStatus1 & RXS_FCSERR) {
7607  rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
7608  wiphy_err(wlc->wiphy, "%s: RX_FLAG_FAILED_FCS_CRC\n",
7609  __func__);
7610  }
7611 }
7612 
7613 static void
7614 brcms_c_recvctl(struct brcms_c_info *wlc, struct d11rxhdr *rxh,
7615  struct sk_buff *p)
7616 {
7617  int len_mpdu;
7618  struct ieee80211_rx_status rx_status;
7619  struct ieee80211_hdr *hdr;
7620 
7621  memset(&rx_status, 0, sizeof(rx_status));
7622  prep_mac80211_status(wlc, rxh, p, &rx_status);
7623 
7624  /* mac header+body length, exclude CRC and plcp header */
7625  len_mpdu = p->len - D11_PHY_HDR_LEN - FCS_LEN;
7627  __skb_trim(p, len_mpdu);
7628 
7629  /* unmute transmit */
7630  if (wlc->hw->suspended_fifos) {
7631  hdr = (struct ieee80211_hdr *)p->data;
7632  if (ieee80211_is_beacon(hdr->frame_control))
7633  brcms_b_mute(wlc->hw, false);
7634  }
7635 
7636  memcpy(IEEE80211_SKB_RXCB(p), &rx_status, sizeof(rx_status));
7637  ieee80211_rx_irqsafe(wlc->pub->ieee_hw, p);
7638 }
7639 
7640 /* calculate frame duration for Mixed-mode L-SIG spoofing, return
7641  * number of bytes goes in the length field
7642  *
7643  * Formula given by HT PHY Spec v 1.13
7644  * len = 3(nsyms + nstream + 3) - 3
7645  */
7646 u16
7648  uint mac_len)
7649 {
7650  uint nsyms, len = 0, kNdps;
7651 
7652  BCMMSG(wlc->wiphy, "wl%d: rate %d, len%d\n",
7653  wlc->pub->unit, rspec2rate(ratespec), mac_len);
7654 
7655  if (is_mcs_rate(ratespec)) {
7656  uint mcs = ratespec & RSPEC_RATE_MASK;
7657  int tot_streams = (mcs_2_txstreams(mcs) + 1) +
7658  rspec_stc(ratespec);
7659 
7660  /*
7661  * the payload duration calculation matches that
7662  * of regular ofdm
7663  */
7664  /* 1000Ndbps = kbps * 4 */
7665  kNdps = mcs_2_rate(mcs, rspec_is40mhz(ratespec),
7666  rspec_issgi(ratespec)) * 4;
7667 
7668  if (rspec_stc(ratespec) == 0)
7669  nsyms =
7670  CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
7671  APHY_TAIL_NBITS) * 1000, kNdps);
7672  else
7673  /* STBC needs to have even number of symbols */
7674  nsyms =
7675  2 *
7676  CEIL((APHY_SERVICE_NBITS + 8 * mac_len +
7677  APHY_TAIL_NBITS) * 1000, 2 * kNdps);
7678 
7679  /* (+3) account for HT-SIG(2) and HT-STF(1) */
7680  nsyms += (tot_streams + 3);
7681  /*
7682  * 3 bytes/symbol @ legacy 6Mbps rate
7683  * (-3) excluding service bits and tail bits
7684  */
7685  len = (3 * nsyms) - 3;
7686  }
7687 
7688  return (u16) len;
7689 }
7690 
7691 static void
7692 brcms_c_mod_prb_rsp_rate_table(struct brcms_c_info *wlc, uint frame_len)
7693 {
7694  const struct brcms_c_rateset *rs_dflt;
7695  struct brcms_c_rateset rs;
7696  u8 rate;
7697  u16 entry_ptr;
7698  u8 plcp[D11_PHY_HDR_LEN];
7699  u16 dur, sifs;
7700  uint i;
7701 
7702  sifs = get_sifs(wlc->band);
7703 
7704  rs_dflt = brcms_c_rateset_get_hwrs(wlc);
7705 
7706  brcms_c_rateset_copy(rs_dflt, &rs);
7707  brcms_c_rateset_mcs_upd(&rs, wlc->stf->txstreams);
7708 
7709  /*
7710  * walk the phy rate table and update MAC core SHM
7711  * basic rate table entries
7712  */
7713  for (i = 0; i < rs.count; i++) {
7714  rate = rs.rates[i] & BRCMS_RATE_MASK;
7715 
7716  entry_ptr = brcms_b_rate_shm_offset(wlc->hw, rate);
7717 
7718  /* Calculate the Probe Response PLCP for the given rate */
7719  brcms_c_compute_plcp(wlc, rate, frame_len, plcp);
7720 
7721  /*
7722  * Calculate the duration of the Probe Response
7723  * frame plus SIFS for the MAC
7724  */
7725  dur = (u16) brcms_c_calc_frame_time(wlc, rate,
7726  BRCMS_LONG_PREAMBLE, frame_len);
7727  dur += sifs;
7728 
7729  /* Update the SHM Rate Table entry Probe Response values */
7730  brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS,
7731  (u16) (plcp[0] + (plcp[1] << 8)));
7732  brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_PLCP_POS + 2,
7733  (u16) (plcp[2] + (plcp[3] << 8)));
7734  brcms_b_write_shm(wlc->hw, entry_ptr + M_RT_PRS_DUR_POS, dur);
7735  }
7736 }
7737 
7738 /* Max buffering needed for beacon template/prb resp template is 142 bytes.
7739  *
7740  * PLCP header is 6 bytes.
7741  * 802.11 A3 header is 24 bytes.
7742  * Max beacon frame body template length is 112 bytes.
7743  * Max probe resp frame body template length is 110 bytes.
7744  *
7745  * *len on input contains the max length of the packet available.
7746  *
7747  * The *len value is set to the number of bytes in buf used, and starts
7748  * with the PLCP and included up to, but not including, the 4 byte FCS.
7749  */
7750 static void
7751 brcms_c_bcn_prb_template(struct brcms_c_info *wlc, u16 type,
7752  u32 bcn_rspec,
7753  struct brcms_bss_cfg *cfg, u16 *buf, int *len)
7754 {
7755  static const u8 ether_bcast[ETH_ALEN] = {255, 255, 255, 255, 255, 255};
7756  struct cck_phy_hdr *plcp;
7757  struct ieee80211_mgmt *h;
7758  int hdr_len, body_len;
7759 
7760  hdr_len = D11_PHY_HDR_LEN + DOT11_MAC_HDR_LEN;
7761 
7762  /* calc buffer size provided for frame body */
7763  body_len = *len - hdr_len;
7764  /* return actual size */
7765  *len = hdr_len + body_len;
7766 
7767  /* format PHY and MAC headers */
7768  memset((char *)buf, 0, hdr_len);
7769 
7770  plcp = (struct cck_phy_hdr *) buf;
7771 
7772  /*
7773  * PLCP for Probe Response frames are filled in from
7774  * core's rate table
7775  */
7776  if (type == IEEE80211_STYPE_BEACON)
7777  /* fill in PLCP */
7778  brcms_c_compute_plcp(wlc, bcn_rspec,
7779  (DOT11_MAC_HDR_LEN + body_len + FCS_LEN),
7780  (u8 *) plcp);
7781 
7782  /* "Regular" and 16 MBSS but not for 4 MBSS */
7783  /* Update the phytxctl for the beacon based on the rspec */
7784  brcms_c_beacon_phytxctl_txant_upd(wlc, bcn_rspec);
7785 
7786  h = (struct ieee80211_mgmt *)&plcp[1];
7787 
7788  /* fill in 802.11 header */
7790 
7791  /* DUR is 0 for multicast bcn, or filled in by MAC for prb resp */
7792  /* A1 filled in by MAC for prb resp, broadcast for bcn */
7793  if (type == IEEE80211_STYPE_BEACON)
7794  memcpy(&h->da, &ether_bcast, ETH_ALEN);
7795  memcpy(&h->sa, &cfg->cur_etheraddr, ETH_ALEN);
7796  memcpy(&h->bssid, &cfg->BSSID, ETH_ALEN);
7797 
7798  /* SEQ filled in by MAC */
7799 }
7800 
7802 {
7803  return TXOFF;
7804 }
7805 
7806 /*
7807  * Update all beacons for the system.
7808  */
7810 {
7811  struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
7812 
7813  if (bsscfg->up && !bsscfg->BSS)
7814  /* Clear the soft intmask */
7815  wlc->defmacintmask &= ~MI_BCNTPL;
7816 }
7817 
7818 /* Write ssid into shared memory */
7819 static void
7820 brcms_c_shm_ssid_upd(struct brcms_c_info *wlc, struct brcms_bss_cfg *cfg)
7821 {
7822  u8 *ssidptr = cfg->SSID;
7823  u16 base = M_SSID;
7824  u8 ssidbuf[IEEE80211_MAX_SSID_LEN];
7825 
7826  /* padding the ssid with zero and copy it into shm */
7827  memset(ssidbuf, 0, IEEE80211_MAX_SSID_LEN);
7828  memcpy(ssidbuf, ssidptr, cfg->SSID_len);
7829 
7830  brcms_c_copyto_shm(wlc, base, ssidbuf, IEEE80211_MAX_SSID_LEN);
7831  brcms_b_write_shm(wlc->hw, M_SSIDLEN, (u16) cfg->SSID_len);
7832 }
7833 
7834 static void
7835 brcms_c_bss_update_probe_resp(struct brcms_c_info *wlc,
7836  struct brcms_bss_cfg *cfg,
7837  bool suspend)
7838 {
7839  u16 prb_resp[BCN_TMPL_LEN / 2];
7840  int len = BCN_TMPL_LEN;
7841 
7842  /*
7843  * write the probe response to hardware, or save in
7844  * the config structure
7845  */
7846 
7847  /* create the probe response template */
7848  brcms_c_bcn_prb_template(wlc, IEEE80211_STYPE_PROBE_RESP, 0,
7849  cfg, prb_resp, &len);
7850 
7851  if (suspend)
7853 
7854  /* write the probe response into the template region */
7856  (len + 3) & ~3, prb_resp);
7857 
7858  /* write the length of the probe response frame (+PLCP/-FCS) */
7860 
7861  /* write the SSID and SSID length */
7862  brcms_c_shm_ssid_upd(wlc, cfg);
7863 
7864  /*
7865  * Write PLCP headers and durations for probe response frames
7866  * at all rates. Use the actual frame length covered by the
7867  * PLCP header for the call to brcms_c_mod_prb_rsp_rate_table()
7868  * by subtracting the PLCP len and adding the FCS.
7869  */
7870  len += (-D11_PHY_HDR_LEN + FCS_LEN);
7871  brcms_c_mod_prb_rsp_rate_table(wlc, (u16) len);
7872 
7873  if (suspend)
7874  brcms_c_enable_mac(wlc);
7875 }
7876 
7877 void brcms_c_update_probe_resp(struct brcms_c_info *wlc, bool suspend)
7878 {
7879  struct brcms_bss_cfg *bsscfg = wlc->bsscfg;
7880 
7881  /* update AP or IBSS probe responses */
7882  if (bsscfg->up && !bsscfg->BSS)
7883  brcms_c_bss_update_probe_resp(wlc, bsscfg, suspend);
7884 }
7885 
7886 /* prepares pdu for transmission. returns BCM error codes */
7887 int brcms_c_prep_pdu(struct brcms_c_info *wlc, struct sk_buff *pdu, uint *fifop)
7888 {
7889  uint fifo;
7890  struct d11txh *txh;
7891  struct ieee80211_hdr *h;
7892  struct scb *scb;
7893 
7894  txh = (struct d11txh *) (pdu->data);
7895  h = (struct ieee80211_hdr *)((u8 *) (txh + 1) + D11_PHY_HDR_LEN);
7896 
7897  /* get the pkt queue info. This was put at brcms_c_sendctl or
7898  * brcms_c_send for PDU */
7899  fifo = le16_to_cpu(txh->TxFrameID) & TXFID_QUEUE_MASK;
7900 
7901  scb = NULL;
7902 
7903  *fifop = fifo;
7904 
7905  /* return if insufficient dma resources */
7906  if (*wlc->core->txavail[fifo] < MAX_DMA_SEGS) {
7907  /* Mark precedences related to this FIFO, unsendable */
7908  /* A fifo is full. Clear precedences related to that FIFO */
7909  wlc->tx_prec_map &= ~(wlc->fifo2prec_map[fifo]);
7910  return -EBUSY;
7911  }
7912  return 0;
7913 }
7914 
7915 int brcms_b_xmtfifo_sz_get(struct brcms_hardware *wlc_hw, uint fifo,
7916  uint *blocks)
7917 {
7918  if (fifo >= NFIFO)
7919  return -EINVAL;
7920 
7921  *blocks = wlc_hw->xmtfifo_sz[fifo];
7922 
7923  return 0;
7924 }
7925 
7926 void
7927 brcms_c_set_addrmatch(struct brcms_c_info *wlc, int match_reg_offset,
7928  const u8 *addr)
7929 {
7930  brcms_b_set_addrmatch(wlc->hw, match_reg_offset, addr);
7931  if (match_reg_offset == RCM_BSSID_OFFSET)
7932  memcpy(wlc->bsscfg->BSSID, addr, ETH_ALEN);
7933 }
7934 
7935 /*
7936  * Flag 'scan in progress' to withhold dynamic phy calibration
7937  */
7939 {
7940  wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, true);
7941 }
7942 
7944 {
7945  wlc_phy_hold_upd(wlc->band->pi, PHY_HOLD_FOR_SCAN, false);
7946 }
7947 
7949 {
7950  wlc->pub->associated = state;
7951  wlc->bsscfg->associated = state;
7952 }
7953 
7954 /*
7955  * When a remote STA/AP is removed by Mac80211, or when it can no longer accept
7956  * AMPDU traffic, packets pending in hardware have to be invalidated so that
7957  * when later on hardware releases them, they can be handled appropriately.
7958  */
7960  struct ieee80211_sta *sta,
7961  void (*dma_callback_fn))
7962 {
7963  struct dma_pub *dmah;
7964  int i;
7965  for (i = 0; i < NFIFO; i++) {
7966  dmah = hw->di[i];
7967  if (dmah != NULL)
7968  dma_walk_packets(dmah, dma_callback_fn, sta);
7969  }
7970 }
7971 
7973 {
7974  return wlc->band->bandunit;
7975 }
7976 
7977 void brcms_c_wait_for_tx_completion(struct brcms_c_info *wlc, bool drop)
7978 {
7979  int timeout = 20;
7980 
7981  /* flush packet queue when requested */
7982  if (drop)
7983  brcmu_pktq_flush(&wlc->pkt_queue->q, false, NULL, NULL);
7984 
7985  /* wait for queue and DMA fifos to run dry */
7986  while (!pktq_empty(&wlc->pkt_queue->q) || brcms_txpktpendtot(wlc) > 0) {
7987  brcms_msleep(wlc->wl, 1);
7988 
7989  if (--timeout == 0)
7990  break;
7991  }
7992 
7993  WARN_ON_ONCE(timeout == 0);
7994 }
7995 
7997 {
7998  wlc->bcn_li_bcn = interval;
7999  if (wlc->pub->up)
8000  brcms_c_bcn_li_upd(wlc);
8001 }
8002 
8003 int brcms_c_set_tx_power(struct brcms_c_info *wlc, int txpwr)
8004 {
8005  uint qdbm;
8006 
8007  /* Remove override bit and clip to max qdbm value */
8008  qdbm = min_t(uint, txpwr * BRCMS_TXPWR_DB_FACTOR, 0xff);
8009  return wlc_phy_txpower_set(wlc->band->pi, qdbm, false);
8010 }
8011 
8013 {
8014  uint qdbm;
8015  bool override;
8016 
8017  wlc_phy_txpower_get(wlc->band->pi, &qdbm, &override);
8018 
8019  /* Return qdbm units */
8020  return (int)(qdbm / BRCMS_TXPWR_DB_FACTOR);
8021 }
8022 
8023 /* Process received frames */
8024 /*
8025  * Return true if more frames need to be processed. false otherwise.
8026  * Param 'bound' indicates max. # frames to process before break out.
8027  */
8028 static void brcms_c_recv(struct brcms_c_info *wlc, struct sk_buff *p)
8029 {
8030  struct d11rxhdr *rxh;
8031  struct ieee80211_hdr *h;
8032  uint len;
8033  bool is_amsdu;
8034 
8035  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
8036 
8037  /* frame starts with rxhdr */
8038  rxh = (struct d11rxhdr *) (p->data);
8039 
8040  /* strip off rxhdr */
8041  skb_pull(p, BRCMS_HWRXOFF);
8042 
8043  /* MAC inserts 2 pad bytes for a4 headers or QoS or A-MSDU subframes */
8044  if (rxh->RxStatus1 & RXS_PBPRES) {
8045  if (p->len < 2) {
8046  wiphy_err(wlc->wiphy, "wl%d: recv: rcvd runt of "
8047  "len %d\n", wlc->pub->unit, p->len);
8048  goto toss;
8049  }
8050  skb_pull(p, 2);
8051  }
8052 
8053  h = (struct ieee80211_hdr *)(p->data + D11_PHY_HDR_LEN);
8054  len = p->len;
8055 
8056  if (rxh->RxStatus1 & RXS_FCSERR) {
8057  if (!(wlc->filter_flags & FIF_FCSFAIL))
8058  goto toss;
8059  }
8060 
8061  /* check received pkt has at least frame control field */
8062  if (len < D11_PHY_HDR_LEN + sizeof(h->frame_control))
8063  goto toss;
8064 
8065  /* not supporting A-MSDU */
8066  is_amsdu = rxh->RxStatus2 & RXS_AMSDU_MASK;
8067  if (is_amsdu)
8068  goto toss;
8069 
8070  brcms_c_recvctl(wlc, rxh, p);
8071  return;
8072 
8073  toss:
8075 }
8076 
8077 /* Process received frames */
8078 /*
8079  * Return true if more frames need to be processed. false otherwise.
8080  * Param 'bound' indicates max. # frames to process before break out.
8081  */
8082 static bool
8083 brcms_b_recv(struct brcms_hardware *wlc_hw, uint fifo, bool bound)
8084 {
8085  struct sk_buff *p;
8086  struct sk_buff *next = NULL;
8087  struct sk_buff_head recv_frames;
8088 
8089  uint n = 0;
8090  uint bound_limit = bound ? RXBND : -1;
8091 
8092  BCMMSG(wlc_hw->wlc->wiphy, "wl%d\n", wlc_hw->unit);
8093  skb_queue_head_init(&recv_frames);
8094 
8095  /* gather received frames */
8096  while (dma_rx(wlc_hw->di[fifo], &recv_frames)) {
8097 
8098  /* !give others some time to run! */
8099  if (++n >= bound_limit)
8100  break;
8101  }
8102 
8103  /* post more rbufs */
8104  dma_rxfill(wlc_hw->di[fifo]);
8105 
8106  /* process each frame */
8107  skb_queue_walk_safe(&recv_frames, p, next) {
8108  struct d11rxhdr_le *rxh_le;
8109  struct d11rxhdr *rxh;
8110 
8111  skb_unlink(p, &recv_frames);
8112  rxh_le = (struct d11rxhdr_le *)p->data;
8113  rxh = (struct d11rxhdr *)p->data;
8114 
8115  /* fixup rx header endianness */
8116  rxh->RxFrameSize = le16_to_cpu(rxh_le->RxFrameSize);
8117  rxh->PhyRxStatus_0 = le16_to_cpu(rxh_le->PhyRxStatus_0);
8118  rxh->PhyRxStatus_1 = le16_to_cpu(rxh_le->PhyRxStatus_1);
8119  rxh->PhyRxStatus_2 = le16_to_cpu(rxh_le->PhyRxStatus_2);
8120  rxh->PhyRxStatus_3 = le16_to_cpu(rxh_le->PhyRxStatus_3);
8121  rxh->PhyRxStatus_4 = le16_to_cpu(rxh_le->PhyRxStatus_4);
8122  rxh->PhyRxStatus_5 = le16_to_cpu(rxh_le->PhyRxStatus_5);
8123  rxh->RxStatus1 = le16_to_cpu(rxh_le->RxStatus1);
8124  rxh->RxStatus2 = le16_to_cpu(rxh_le->RxStatus2);
8125  rxh->RxTSFTime = le16_to_cpu(rxh_le->RxTSFTime);
8126  rxh->RxChan = le16_to_cpu(rxh_le->RxChan);
8127 
8128  brcms_c_recv(wlc_hw->wlc, p);
8129  }
8130 
8131  return n >= bound_limit;
8132 }
8133 
8134 /* second-level interrupt processing
8135  * Return true if another dpc needs to be re-scheduled. false otherwise.
8136  * Param 'bounded' indicates if applicable loops should be bounded.
8137  */
8138 bool brcms_c_dpc(struct brcms_c_info *wlc, bool bounded)
8139 {
8140  u32 macintstatus;
8141  struct brcms_hardware *wlc_hw = wlc->hw;
8142  struct bcma_device *core = wlc_hw->d11core;
8143  struct wiphy *wiphy = wlc->wiphy;
8144 
8145  if (brcms_deviceremoved(wlc)) {
8146  wiphy_err(wiphy, "wl%d: %s: dead chip\n", wlc_hw->unit,
8147  __func__);
8148  brcms_down(wlc->wl);
8149  return false;
8150  }
8151 
8152  /* grab and clear the saved software intstatus bits */
8153  macintstatus = wlc->macintstatus;
8154  wlc->macintstatus = 0;
8155 
8156  BCMMSG(wlc->wiphy, "wl%d: macintstatus 0x%x\n",
8157  wlc_hw->unit, macintstatus);
8158 
8159  WARN_ON(macintstatus & MI_PRQ); /* PRQ Interrupt in non-MBSS */
8160 
8161  /* tx status */
8162  if (macintstatus & MI_TFS) {
8163  bool fatal;
8164  if (brcms_b_txstatus(wlc->hw, bounded, &fatal))
8165  wlc->macintstatus |= MI_TFS;
8166  if (fatal) {
8167  wiphy_err(wiphy, "MI_TFS: fatal\n");
8168  goto fatal;
8169  }
8170  }
8171 
8172  if (macintstatus & (MI_TBTT | MI_DTIM_TBTT))
8173  brcms_c_tbtt(wlc);
8174 
8175  /* ATIM window end */
8176  if (macintstatus & MI_ATIMWINEND) {
8177  BCMMSG(wlc->wiphy, "end of ATIM window\n");
8178  bcma_set32(core, D11REGOFFS(maccommand), wlc->qvalid);
8179  wlc->qvalid = 0;
8180  }
8181 
8182  /*
8183  * received data or control frame, MI_DMAINT is
8184  * indication of RX_FIFO interrupt
8185  */
8186  if (macintstatus & MI_DMAINT)
8187  if (brcms_b_recv(wlc_hw, RX_FIFO, bounded))
8188  wlc->macintstatus |= MI_DMAINT;
8189 
8190  /* noise sample collected */
8191  if (macintstatus & MI_BG_NOISE)
8192  wlc_phy_noise_sample_intr(wlc_hw->band->pi);
8193 
8194  if (macintstatus & MI_GP0) {
8195  wiphy_err(wiphy, "wl%d: PSM microcode watchdog fired at %d "
8196  "(seconds). Resetting.\n", wlc_hw->unit, wlc_hw->now);
8197 
8198  printk_once("%s : PSM Watchdog, chipid 0x%x, chiprev 0x%x\n",
8199  __func__, ai_get_chip_id(wlc_hw->sih),
8200  ai_get_chiprev(wlc_hw->sih));
8201  brcms_fatal_error(wlc_hw->wlc->wl);
8202  }
8203 
8204  /* gptimer timeout */
8205  if (macintstatus & MI_TO)
8206  bcma_write32(core, D11REGOFFS(gptimer), 0);
8207 
8208  if (macintstatus & MI_RFDISABLE) {
8209  BCMMSG(wlc->wiphy, "wl%d: BMAC Detected a change on the"
8210  " RF Disable Input\n", wlc_hw->unit);
8212  }
8213 
8214  /* send any enq'd tx packets. Just makes sure to jump start tx */
8215  if (!pktq_empty(&wlc->pkt_queue->q))
8216  brcms_c_send_q(wlc);
8217 
8218  /* it isn't done and needs to be resched if macintstatus is non-zero */
8219  return wlc->macintstatus != 0;
8220 
8221  fatal:
8222  brcms_fatal_error(wlc_hw->wlc->wl);
8223  return wlc->macintstatus != 0;
8224 }
8225 
8226 void brcms_c_init(struct brcms_c_info *wlc, bool mute_tx)
8227 {
8228  struct bcma_device *core = wlc->hw->d11core;
8229  struct ieee80211_channel *ch = wlc->pub->ieee_hw->conf.channel;
8230  u16 chanspec;
8231 
8232  BCMMSG(wlc->wiphy, "wl%d\n", wlc->pub->unit);
8233 
8234  chanspec = ch20mhz_chspec(ch->hw_value);
8235 
8236  brcms_b_init(wlc->hw, chanspec);
8237 
8238  /* update beacon listen interval */
8239  brcms_c_bcn_li_upd(wlc);
8240 
8241  /* write ethernet address to core */
8242  brcms_c_set_mac(wlc->bsscfg);
8243  brcms_c_set_bssid(wlc->bsscfg);
8244 
8245  /* Update tsf_cfprep if associated and up */
8246  if (wlc->pub->associated && wlc->bsscfg->up) {
8247  u32 bi;
8248 
8249  /* get beacon period and convert to uS */
8250  bi = wlc->bsscfg->current_bss->beacon_period << 10;
8251  /*
8252  * update since init path would reset
8253  * to default value
8254  */
8255  bcma_write32(core, D11REGOFFS(tsf_cfprep),
8256  bi << CFPREP_CBI_SHIFT);
8257 
8258  /* Update maccontrol PM related bits */
8259  brcms_c_set_ps_ctrl(wlc);
8260  }
8261 
8262  brcms_c_bandinit_ordered(wlc, chanspec);
8263 
8264  /* init probe response timeout */
8266 
8267  /* init max burst txop (framebursting) */
8269  (wlc->
8270  _rifs ? (EDCF_AC_VO_TXOP_AP << 5) : MAXFRAMEBURST_TXOP));
8271 
8272  /* initialize maximum allowed duty cycle */
8273  brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_ofdm, true, true);
8274  brcms_c_duty_cycle_set(wlc, wlc->tx_duty_cycle_cck, false, true);
8275 
8276  /*
8277  * Update some shared memory locations related to
8278  * max AMPDU size allowed to received
8279  */
8281 
8282  /* band-specific inits */
8283  brcms_c_bsinit(wlc);
8284 
8285  /* Enable EDCF mode (while the MAC is suspended) */
8286  bcma_set16(core, D11REGOFFS(ifs_ctl), IFS_USEEDCF);
8287  brcms_c_edcf_setparams(wlc, false);
8288 
8289  /* Init precedence maps for empty FIFOs */
8290  brcms_c_tx_prec_map_init(wlc);
8291 
8292  /* read the ucode version if we have not yet done so */
8293  if (wlc->ucode_rev == 0) {
8294  wlc->ucode_rev =
8297  }
8298 
8299  /* ..now really unleash hell (allow the MAC out of suspend) */
8300  brcms_c_enable_mac(wlc);
8301 
8302  /* suspend the tx fifos and mute the phy for preism cac time */
8303  if (mute_tx)
8304  brcms_b_mute(wlc->hw, true);
8305 
8306  /* clear tx flow control */
8307  brcms_c_txflowcontrol_reset(wlc);
8308 
8309  /* enable the RF Disable Delay timer */
8310  bcma_write32(core, D11REGOFFS(rfdisabledly), RFDISABLE_DEFAULT);
8311 
8312  /*
8313  * Initialize WME parameters; if they haven't been set by some other
8314  * mechanism (IOVar, etc) then read them from the hardware.
8315  */
8316  if (GFIELD(wlc->wme_retries[0], EDCF_SHORT) == 0) {
8317  /* Uninitialized; read from HW */
8318  int ac;
8319 
8320  for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
8321  wlc->wme_retries[ac] =
8322  brcms_b_read_shm(wlc->hw, M_AC_TXLMT_ADDR(ac));
8323  }
8324 }
8325 
8326 /*
8327  * The common driver entry routine. Error codes should be unique
8328  */
8329 struct brcms_c_info *
8330 brcms_c_attach(struct brcms_info *wl, struct bcma_device *core, uint unit,
8331  bool piomode, uint *perr)
8332 {
8333  struct brcms_c_info *wlc;
8334  uint err = 0;
8335  uint i, j;
8336  struct brcms_pub *pub;
8337 
8338  /* allocate struct brcms_c_info state and its substructures */
8339  wlc = brcms_c_attach_malloc(unit, &err, 0);
8340  if (wlc == NULL)
8341  goto fail;
8342  wlc->wiphy = wl->wiphy;
8343  pub = wlc->pub;
8344 
8345 #if defined(DEBUG)
8346  wlc_info_dbg = wlc;
8347 #endif
8348 
8349  wlc->band = wlc->bandstate[0];
8350  wlc->core = wlc->corestate;
8351  wlc->wl = wl;
8352  pub->unit = unit;
8353  pub->_piomode = piomode;
8354  wlc->bandinit_pending = false;
8355 
8356  /* populate struct brcms_c_info with default values */
8357  brcms_c_info_init(wlc, unit);
8358 
8359  /* update sta/ap related parameters */
8360  brcms_c_ap_upd(wlc);
8361 
8362  /*
8363  * low level attach steps(all hw accesses go
8364  * inside, no more in rest of the attach)
8365  */
8366  err = brcms_b_attach(wlc, core, unit, piomode);
8367  if (err)
8368  goto fail;
8369 
8371 
8372  pub->phy_11ncapable = BRCMS_PHY_11N_CAP(wlc->band);
8373 
8374  /* disable allowed duty cycle */
8375  wlc->tx_duty_cycle_ofdm = 0;
8376  wlc->tx_duty_cycle_cck = 0;
8377 
8379 
8380  /* txchain 1: txant 0, txchain 2: txant 1 */
8381  if (BRCMS_ISNPHY(wlc->band) && (wlc->stf->txstreams == 1))
8382  wlc->stf->txant = wlc->stf->hw_txchain - 1;
8383 
8384  /* push to BMAC driver */
8385  wlc_phy_stf_chain_init(wlc->band->pi, wlc->stf->hw_txchain,
8386  wlc->stf->hw_rxchain);
8387 
8388  /* pull up some info resulting from the low attach */
8389  for (i = 0; i < NFIFO; i++)
8390  wlc->core->txavail[i] = wlc->hw->txavail[i];
8391 
8392  memcpy(&wlc->perm_etheraddr, &wlc->hw->etheraddr, ETH_ALEN);
8393  memcpy(&pub->cur_etheraddr, &wlc->hw->etheraddr, ETH_ALEN);
8394 
8395  for (j = 0; j < wlc->pub->_nbands; j++) {
8396  wlc->band = wlc->bandstate[j];
8397 
8398  if (!brcms_c_attach_stf_ant_init(wlc)) {
8399  err = 24;
8400  goto fail;
8401  }
8402 
8403  /* default contention windows size limits */
8404  wlc->band->CWmin = APHY_CWMIN;
8405  wlc->band->CWmax = PHY_CWMAX;
8406 
8407  /* init gmode value */
8408  if (wlc->band->bandtype == BRCM_BAND_2G) {
8409  wlc->band->gmode = GMODE_AUTO;
8411  wlc->band->gmode);
8412  }
8413 
8414  /* init _n_enab supported mode */
8415  if (BRCMS_PHY_11N_CAP(wlc->band)) {
8416  pub->_n_enab = SUPPORT_11N;
8418  ((pub->_n_enab ==
8419  SUPPORT_11N) ? WL_11N_2x2 :
8420  WL_11N_3x3));
8421  }
8422 
8423  /* init per-band default rateset, depend on band->gmode */
8424  brcms_default_rateset(wlc, &wlc->band->defrateset);
8425 
8426  /* fill in hw_rateset */
8427  brcms_c_rateset_filter(&wlc->band->defrateset,
8428  &wlc->band->hw_rateset, false,
8429  BRCMS_RATES_CCK_OFDM, BRCMS_RATE_MASK,
8430  (bool) (wlc->pub->_n_enab & SUPPORT_11N));
8431  }
8432 
8433  /*
8434  * update antenna config due to
8435  * wlc->stf->txant/txchain/ant_rx_ovr change
8436  */
8438 
8439  /* attach each modules */
8440  err = brcms_c_attach_module(wlc);
8441  if (err != 0)
8442  goto fail;
8443 
8444  if (!brcms_c_timers_init(wlc, unit)) {
8445  wiphy_err(wl->wiphy, "wl%d: %s: init_timer failed\n", unit,
8446  __func__);
8447  err = 32;
8448  goto fail;
8449  }
8450 
8451  /* depend on rateset, gmode */
8452  wlc->cmi = brcms_c_channel_mgr_attach(wlc);
8453  if (!wlc->cmi) {
8454  wiphy_err(wl->wiphy, "wl%d: %s: channel_mgr_attach failed"
8455  "\n", unit, __func__);
8456  err = 33;
8457  goto fail;
8458  }
8459 
8460  /* init default when all parameters are ready, i.e. ->rateset */
8461  brcms_c_bss_default_init(wlc);
8462 
8463  /*
8464  * Complete the wlc default state initializations..
8465  */
8466 
8467  /* allocate our initial queue */
8468  wlc->pkt_queue = brcms_c_txq_alloc(wlc);
8469  if (wlc->pkt_queue == NULL) {
8470  wiphy_err(wl->wiphy, "wl%d: %s: failed to malloc tx queue\n",
8471  unit, __func__);
8472  err = 100;
8473  goto fail;
8474  }
8475 
8476  wlc->bsscfg->wlc = wlc;
8477 
8478  wlc->mimoft = FT_HT;
8479  wlc->mimo_40txbw = AUTO;
8480  wlc->ofdm_40txbw = AUTO;
8481  wlc->cck_40txbw = AUTO;
8482  brcms_c_update_mimo_band_bwcap(wlc, BRCMS_N_BW_20IN2G_40IN5G);
8483 
8484  /* Set default values of SGI */
8485  if (BRCMS_SGI_CAP_PHY(wlc)) {
8486  brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
8487  BRCMS_N_SGI_40));
8488  } else if (BRCMS_ISSSLPNPHY(wlc->band)) {
8489  brcms_c_ht_update_sgi_rx(wlc, (BRCMS_N_SGI_20 |
8490  BRCMS_N_SGI_40));
8491  } else {
8492  brcms_c_ht_update_sgi_rx(wlc, 0);
8493  }
8494 
8495  brcms_b_antsel_set(wlc->hw, wlc->asi->antsel_avail);
8496 
8497  if (perr)
8498  *perr = 0;
8499 
8500  return wlc;
8501 
8502  fail:
8503  wiphy_err(wl->wiphy, "wl%d: %s: failed with err %d\n",
8504  unit, __func__, err);
8505  if (wlc)
8506  brcms_c_detach(wlc);
8507 
8508  if (perr)
8509  *perr = err;
8510  return NULL;
8511 }