Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ich8lan.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  Linux NICS <[email protected]>
24  e1000-devel Mailing List <[email protected]>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73 
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
77 
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
80 
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94  (ID_LED_DEF1_OFF2 << 8) | \
95  (ID_LED_DEF1_ON2 << 4) | \
96  (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK 0x0C000000
109 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC 0x08000000
110 
111 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
113 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
114 
115 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
116 
117 #define E1000_ICH_RAR_ENTRIES 7
118 #define E1000_PCH2_RAR_ENTRIES 5 /* RAR[0], SHRA[0-3] */
119 #define E1000_PCH_LPT_RAR_ENTRIES 12 /* RAR[0], SHRA[0-10] */
120 
121 #define PHY_PAGE_SHIFT 5
122 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
123  ((reg) & MAX_PHY_REG_ADDRESS))
124 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
125 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
126 
127 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
128 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
129 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
130 
131 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
132 
133 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
134 
135 /* SMBus Control Phy Register */
136 #define CV_SMB_CTRL PHY_REG(769, 23)
137 #define CV_SMB_CTRL_FORCE_SMBUS 0x0001
138 
139 /* SMBus Address Phy Register */
140 #define HV_SMB_ADDR PHY_REG(768, 26)
141 #define HV_SMB_ADDR_MASK 0x007F
142 #define HV_SMB_ADDR_PEC_EN 0x0200
143 #define HV_SMB_ADDR_VALID 0x0080
144 #define HV_SMB_ADDR_FREQ_MASK 0x1100
145 #define HV_SMB_ADDR_FREQ_LOW_SHIFT 8
146 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT 12
147 
148 /* PHY Power Management Control */
149 #define HV_PM_CTRL PHY_REG(770, 17)
150 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA 0x100
151 
152 /* PHY Low Power Idle Control */
153 #define I82579_LPI_CTRL PHY_REG(772, 20)
154 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
155 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
156 
157 /* EMI Registers */
158 #define I82579_EMI_ADDR 0x10
159 #define I82579_EMI_DATA 0x11
160 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
161 #define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */
162 #define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */
163 #define I217_EEE_ADVERTISEMENT 0x8001 /* IEEE MMD Register 7.60 */
164 #define I217_EEE_LP_ABILITY 0x8002 /* IEEE MMD Register 7.61 */
165 #define I217_EEE_100_SUPPORTED (1 << 1) /* 100BaseTx EEE supported */
166 
167 /* Intel Rapid Start Technology Support */
168 #define I217_PROXY_CTRL BM_PHY_REG(BM_WUC_PAGE, 70)
169 #define I217_PROXY_CTRL_AUTO_DISABLE 0x0080
170 #define I217_SxCTRL PHY_REG(BM_PORT_CTRL_PAGE, 28)
171 #define I217_SxCTRL_ENABLE_LPI_RESET 0x1000
172 #define I217_CGFREG PHY_REG(772, 29)
173 #define I217_CGFREG_ENABLE_MTA_RESET 0x0002
174 #define I217_MEMPWR PHY_REG(772, 26)
175 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
176 
177 /* Strapping Option Register - RO */
178 #define E1000_STRAP 0x0000C
179 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
180 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
181 #define E1000_STRAP_SMT_FREQ_MASK 0x00003000
182 #define E1000_STRAP_SMT_FREQ_SHIFT 12
183 
184 /* OEM Bits Phy Register */
185 #define HV_OEM_BITS PHY_REG(768, 25)
186 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
187 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
188 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
189 
190 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
191 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
192 
193 /* KMRN Mode Control */
194 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
195 #define HV_KMRN_MDIO_SLOW 0x0400
196 
197 /* KMRN FIFO Control and Status */
198 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
200 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
201 
202 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
203 /* Offset 04h HSFSTS */
205  struct ich8_hsfsts {
206  u16 flcdone :1; /* bit 0 Flash Cycle Done */
207  u16 flcerr :1; /* bit 1 Flash Cycle Error */
208  u16 dael :1; /* bit 2 Direct Access error Log */
209  u16 berasesz :2; /* bit 4:3 Sector Erase Size */
210  u16 flcinprog :1; /* bit 5 flash cycle in Progress */
211  u16 reserved1 :2; /* bit 13:6 Reserved */
212  u16 reserved2 :6; /* bit 13:6 Reserved */
213  u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
214  u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
215  } hsf_status;
217 };
218 
219 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
220 /* Offset 06h FLCTL */
222  struct ich8_hsflctl {
223  u16 flcgo :1; /* 0 Flash Cycle Go */
224  u16 flcycle :2; /* 2:1 Flash Cycle */
225  u16 reserved :5; /* 7:3 Reserved */
226  u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
227  u16 flockdn :6; /* 15:10 Reserved */
228  } hsf_ctrl;
230 };
231 
232 /* ICH Flash Region Access Permissions */
234  struct ich8_flracc {
235  u32 grra :8; /* 0:7 GbE region Read Access */
236  u32 grwa :8; /* 8:15 GbE region Write Access */
237  u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
238  u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
239  } hsf_flregacc;
241 };
242 
243 /* ICH Flash Protected Region */
245  struct ich8_pr {
246  u32 base:13; /* 0:12 Protected Range Base */
247  u32 reserved1:2; /* 13:14 Reserved */
248  u32 rpe:1; /* 15 Read Protection Enable */
249  u32 limit:13; /* 16:28 Protected Range Limit */
250  u32 reserved2:2; /* 29:30 Reserved */
251  u32 wpe:1; /* 31 Write Protection Enable */
252  } range;
254 };
255 
256 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
257 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
258 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
259 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
260 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
261  u32 offset, u8 byte);
262 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
263  u8 *data);
264 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
265  u16 *data);
266 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
267  u8 size, u16 *data);
268 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
269 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
270 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
271 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
272 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
273 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
274 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
275 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
276 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
277 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
278 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
279 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
280 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
281 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
282 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
283 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
284 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
285 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
286 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
287 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
288 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
289 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
290 
291 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
292 {
293  return readw(hw->flash_address + reg);
294 }
295 
296 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
297 {
298  return readl(hw->flash_address + reg);
299 }
300 
301 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
302 {
303  writew(val, hw->flash_address + reg);
304 }
305 
306 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
307 {
308  writel(val, hw->flash_address + reg);
309 }
310 
311 #define er16flash(reg) __er16flash(hw, (reg))
312 #define er32flash(reg) __er32flash(hw, (reg))
313 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
314 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
315 
326 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
327 {
328  u16 phy_reg = 0;
329  u32 phy_id = 0;
330  s32 ret_val;
332 
333  for (retry_count = 0; retry_count < 2; retry_count++) {
334  ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
335  if (ret_val || (phy_reg == 0xFFFF))
336  continue;
337  phy_id = (u32)(phy_reg << 16);
338 
339  ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
340  if (ret_val || (phy_reg == 0xFFFF)) {
341  phy_id = 0;
342  continue;
343  }
344  phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
345  break;
346  }
347 
348  if (hw->phy.id) {
349  if (hw->phy.id == phy_id)
350  return true;
351  } else if (phy_id) {
352  hw->phy.id = phy_id;
353  hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
354  return true;
355  }
356 
357  /*
358  * In case the PHY needs to be in mdio slow mode,
359  * set slow mode and try to get the PHY id again.
360  */
361  hw->phy.ops.release(hw);
362  ret_val = e1000_set_mdio_slow_mode_hv(hw);
363  if (!ret_val)
364  ret_val = e1000e_get_phy_id(hw);
365  hw->phy.ops.acquire(hw);
366 
367  return !ret_val;
368 }
369 
377 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
378 {
379  u32 mac_reg, fwsm = er32(FWSM);
380  s32 ret_val;
381  u16 phy_reg;
382 
383  ret_val = hw->phy.ops.acquire(hw);
384  if (ret_val) {
385  e_dbg("Failed to initialize PHY flow\n");
386  return ret_val;
387  }
388 
389  /*
390  * The MAC-PHY interconnect may be in SMBus mode. If the PHY is
391  * inaccessible and resetting the PHY is not blocked, toggle the
392  * LANPHYPC Value bit to force the interconnect to PCIe mode.
393  */
394  switch (hw->mac.type) {
395  case e1000_pch_lpt:
396  if (e1000_phy_is_accessible_pchlan(hw))
397  break;
398 
399  /*
400  * Before toggling LANPHYPC, see if PHY is accessible by
401  * forcing MAC to SMBus mode first.
402  */
403  mac_reg = er32(CTRL_EXT);
404  mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
405  ew32(CTRL_EXT, mac_reg);
406 
407  /* fall-through */
408  case e1000_pch2lan:
409  /*
410  * Gate automatic PHY configuration by hardware on
411  * non-managed 82579
412  */
413  if ((hw->mac.type == e1000_pch2lan) &&
414  !(fwsm & E1000_ICH_FWSM_FW_VALID))
415  e1000_gate_hw_phy_config_ich8lan(hw, true);
416 
417  if (e1000_phy_is_accessible_pchlan(hw)) {
418  if (hw->mac.type == e1000_pch_lpt) {
419  /* Unforce SMBus mode in PHY */
420  e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
421  phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
422  e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
423 
424  /* Unforce SMBus mode in MAC */
425  mac_reg = er32(CTRL_EXT);
426  mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
427  ew32(CTRL_EXT, mac_reg);
428  }
429  break;
430  }
431 
432  /* fall-through */
433  case e1000_pchlan:
434  if ((hw->mac.type == e1000_pchlan) &&
435  (fwsm & E1000_ICH_FWSM_FW_VALID))
436  break;
437 
438  if (hw->phy.ops.check_reset_block(hw)) {
439  e_dbg("Required LANPHYPC toggle blocked by ME\n");
440  break;
441  }
442 
443  e_dbg("Toggling LANPHYPC\n");
444 
445  /* Set Phy Config Counter to 50msec */
446  mac_reg = er32(FEXTNVM3);
449  ew32(FEXTNVM3, mac_reg);
450 
451  /* Toggle LANPHYPC Value bit */
452  mac_reg = er32(CTRL);
453  mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
454  mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
455  ew32(CTRL, mac_reg);
456  e1e_flush();
457  udelay(10);
458  mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
459  ew32(CTRL, mac_reg);
460  e1e_flush();
461  if (hw->mac.type < e1000_pch_lpt) {
462  msleep(50);
463  } else {
464  u16 count = 20;
465  do {
466  usleep_range(5000, 10000);
467  } while (!(er32(CTRL_EXT) &
468  E1000_CTRL_EXT_LPCD) && count--);
469  }
470  break;
471  default:
472  break;
473  }
474 
475  hw->phy.ops.release(hw);
476 
477  /*
478  * Reset the PHY before any access to it. Doing so, ensures
479  * that the PHY is in a known good state before we read/write
480  * PHY registers. The generic reset is sufficient here,
481  * because we haven't determined the PHY type yet.
482  */
483  ret_val = e1000e_phy_hw_reset_generic(hw);
484 
485  /* Ungate automatic PHY configuration on non-managed 82579 */
486  if ((hw->mac.type == e1000_pch2lan) &&
487  !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
488  usleep_range(10000, 20000);
489  e1000_gate_hw_phy_config_ich8lan(hw, false);
490  }
491 
492  return ret_val;
493 }
494 
501 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
502 {
503  struct e1000_phy_info *phy = &hw->phy;
504  s32 ret_val = 0;
505 
506  phy->addr = 1;
507  phy->reset_delay_us = 100;
508 
509  phy->ops.set_page = e1000_set_page_igp;
510  phy->ops.read_reg = e1000_read_phy_reg_hv;
511  phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
512  phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
513  phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
514  phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
515  phy->ops.write_reg = e1000_write_phy_reg_hv;
516  phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
517  phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
518  phy->ops.power_up = e1000_power_up_phy_copper;
519  phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
521 
522  phy->id = e1000_phy_unknown;
523 
524  ret_val = e1000_init_phy_workarounds_pchlan(hw);
525  if (ret_val)
526  return ret_val;
527 
528  if (phy->id == e1000_phy_unknown)
529  switch (hw->mac.type) {
530  default:
531  ret_val = e1000e_get_phy_id(hw);
532  if (ret_val)
533  return ret_val;
534  if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
535  break;
536  /* fall-through */
537  case e1000_pch2lan:
538  case e1000_pch_lpt:
539  /*
540  * In case the PHY needs to be in mdio slow mode,
541  * set slow mode and try to get the PHY id again.
542  */
543  ret_val = e1000_set_mdio_slow_mode_hv(hw);
544  if (ret_val)
545  return ret_val;
546  ret_val = e1000e_get_phy_id(hw);
547  if (ret_val)
548  return ret_val;
549  break;
550  }
551  phy->type = e1000e_get_phy_type_from_id(phy->id);
552 
553  switch (phy->type) {
554  case e1000_phy_82577:
555  case e1000_phy_82579:
556  case e1000_phy_i217:
557  phy->ops.check_polarity = e1000_check_polarity_82577;
558  phy->ops.force_speed_duplex =
560  phy->ops.get_cable_length = e1000_get_cable_length_82577;
561  phy->ops.get_info = e1000_get_phy_info_82577;
562  phy->ops.commit = e1000e_phy_sw_reset;
563  break;
564  case e1000_phy_82578:
565  phy->ops.check_polarity = e1000_check_polarity_m88;
566  phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
567  phy->ops.get_cable_length = e1000e_get_cable_length_m88;
568  phy->ops.get_info = e1000e_get_phy_info_m88;
569  break;
570  default:
571  ret_val = -E1000_ERR_PHY;
572  break;
573  }
574 
575  return ret_val;
576 }
577 
584 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
585 {
586  struct e1000_phy_info *phy = &hw->phy;
587  s32 ret_val;
588  u16 i = 0;
589 
590  phy->addr = 1;
591  phy->reset_delay_us = 100;
592 
593  phy->ops.power_up = e1000_power_up_phy_copper;
594  phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
595 
596  /*
597  * We may need to do this twice - once for IGP and if that fails,
598  * we'll set BM func pointers and try again
599  */
600  ret_val = e1000e_determine_phy_address(hw);
601  if (ret_val) {
602  phy->ops.write_reg = e1000e_write_phy_reg_bm;
603  phy->ops.read_reg = e1000e_read_phy_reg_bm;
604  ret_val = e1000e_determine_phy_address(hw);
605  if (ret_val) {
606  e_dbg("Cannot determine PHY addr. Erroring out\n");
607  return ret_val;
608  }
609  }
610 
611  phy->id = 0;
613  (i++ < 100)) {
614  usleep_range(1000, 2000);
615  ret_val = e1000e_get_phy_id(hw);
616  if (ret_val)
617  return ret_val;
618  }
619 
620  /* Verify phy id */
621  switch (phy->id) {
622  case IGP03E1000_E_PHY_ID:
623  phy->type = e1000_phy_igp_3;
625  phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
626  phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
627  phy->ops.get_info = e1000e_get_phy_info_igp;
628  phy->ops.check_polarity = e1000_check_polarity_igp;
629  phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
630  break;
631  case IFE_E_PHY_ID:
632  case IFE_PLUS_E_PHY_ID:
633  case IFE_C_E_PHY_ID:
634  phy->type = e1000_phy_ife;
636  phy->ops.get_info = e1000_get_phy_info_ife;
637  phy->ops.check_polarity = e1000_check_polarity_ife;
638  phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
639  break;
640  case BME1000_E_PHY_ID:
641  phy->type = e1000_phy_bm;
643  phy->ops.read_reg = e1000e_read_phy_reg_bm;
644  phy->ops.write_reg = e1000e_write_phy_reg_bm;
645  phy->ops.commit = e1000e_phy_sw_reset;
646  phy->ops.get_info = e1000e_get_phy_info_m88;
647  phy->ops.check_polarity = e1000_check_polarity_m88;
648  phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
649  break;
650  default:
651  return -E1000_ERR_PHY;
652  break;
653  }
654 
655  return 0;
656 }
657 
665 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
666 {
667  struct e1000_nvm_info *nvm = &hw->nvm;
668  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
669  u32 gfpreg, sector_base_addr, sector_end_addr;
670  u16 i;
671 
672  /* Can't read flash registers if the register set isn't mapped. */
673  if (!hw->flash_address) {
674  e_dbg("ERROR: Flash registers not mapped\n");
675  return -E1000_ERR_CONFIG;
676  }
677 
678  nvm->type = e1000_nvm_flash_sw;
679 
680  gfpreg = er32flash(ICH_FLASH_GFPREG);
681 
682  /*
683  * sector_X_addr is a "sector"-aligned address (4096 bytes)
684  * Add 1 to sector_end_addr since this sector is included in
685  * the overall size.
686  */
687  sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
688  sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
689 
690  /* flash_base_addr is byte-aligned */
691  nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
692 
693  /*
694  * find total size of the NVM, then cut in half since the total
695  * size represents two separate NVM banks.
696  */
697  nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
698  << FLASH_SECTOR_ADDR_SHIFT;
699  nvm->flash_bank_size /= 2;
700  /* Adjust to word count */
701  nvm->flash_bank_size /= sizeof(u16);
702 
704 
705  /* Clear shadow ram */
706  for (i = 0; i < nvm->word_size; i++) {
707  dev_spec->shadow_ram[i].modified = false;
708  dev_spec->shadow_ram[i].value = 0xFFFF;
709  }
710 
711  return 0;
712 }
713 
721 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
722 {
723  struct e1000_mac_info *mac = &hw->mac;
724 
725  /* Set media type function pointer */
726  hw->phy.media_type = e1000_media_type_copper;
727 
728  /* Set mta register count */
729  mac->mta_reg_count = 32;
730  /* Set rar entry count */
732  if (mac->type == e1000_ich8lan)
733  mac->rar_entry_count--;
734  /* FWSM register */
735  mac->has_fwsm = true;
736  /* ARC subsystem not supported */
737  mac->arc_subsystem_valid = false;
738  /* Adaptive IFS supported */
739  mac->adaptive_ifs = true;
740 
741  /* LED and other operations */
742  switch (mac->type) {
743  case e1000_ich8lan:
744  case e1000_ich9lan:
745  case e1000_ich10lan:
746  /* check management mode */
747  mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
748  /* ID LED init */
749  mac->ops.id_led_init = e1000e_id_led_init_generic;
750  /* blink LED */
751  mac->ops.blink_led = e1000e_blink_led_generic;
752  /* setup LED */
753  mac->ops.setup_led = e1000e_setup_led_generic;
754  /* cleanup LED */
755  mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
756  /* turn on/off LED */
757  mac->ops.led_on = e1000_led_on_ich8lan;
758  mac->ops.led_off = e1000_led_off_ich8lan;
759  break;
760  case e1000_pch2lan:
762  mac->ops.rar_set = e1000_rar_set_pch2lan;
763  /* fall-through */
764  case e1000_pch_lpt:
765  case e1000_pchlan:
766  /* check management mode */
767  mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
768  /* ID LED init */
769  mac->ops.id_led_init = e1000_id_led_init_pchlan;
770  /* setup LED */
771  mac->ops.setup_led = e1000_setup_led_pchlan;
772  /* cleanup LED */
773  mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
774  /* turn on/off LED */
775  mac->ops.led_on = e1000_led_on_pchlan;
776  mac->ops.led_off = e1000_led_off_pchlan;
777  break;
778  default:
779  break;
780  }
781 
782  if (mac->type == e1000_pch_lpt) {
784  mac->ops.rar_set = e1000_rar_set_pch_lpt;
785  }
786 
787  /* Enable PCS Lock-loss workaround for ICH8 */
788  if (mac->type == e1000_ich8lan)
790 
791  /*
792  * Gate automatic PHY configuration by hardware on managed
793  * 82579 and i217
794  */
795  if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
796  (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
797  e1000_gate_hw_phy_config_ich8lan(hw, true);
798 
799  return 0;
800 }
801 
809 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
810 {
811  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
812  s32 ret_val = 0;
813  u16 phy_reg;
814 
815  if ((hw->phy.type != e1000_phy_82579) &&
816  (hw->phy.type != e1000_phy_i217))
817  return 0;
818 
819  ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
820  if (ret_val)
821  return ret_val;
822 
823  if (dev_spec->eee_disable)
824  phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
825  else
826  phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
827 
828  ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
829  if (ret_val)
830  return ret_val;
831 
832  if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
833  /* Save off link partner's EEE ability */
834  ret_val = hw->phy.ops.acquire(hw);
835  if (ret_val)
836  return ret_val;
837  ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
839  if (ret_val)
840  goto release;
841  e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
842 
843  /*
844  * EEE is not supported in 100Half, so ignore partner's EEE
845  * in 100 ability if full-duplex is not advertised.
846  */
847  e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
848  if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
850 release:
851  hw->phy.ops.release(hw);
852  }
853 
854  return 0;
855 }
856 
865 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
866 {
867  struct e1000_mac_info *mac = &hw->mac;
868  s32 ret_val;
869  bool link;
870  u16 phy_reg;
871 
872  /*
873  * We only want to go out to the PHY registers to see if Auto-Neg
874  * has completed and/or if our link status has changed. The
875  * get_link_status flag is set upon receiving a Link Status
876  * Change or Rx Sequence Error interrupt.
877  */
878  if (!mac->get_link_status)
879  return 0;
880 
881  /*
882  * First we want to see if the MII Status Register reports
883  * link. If so, then we want to get the current speed/duplex
884  * of the PHY.
885  */
886  ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
887  if (ret_val)
888  return ret_val;
889 
890  if (hw->mac.type == e1000_pchlan) {
891  ret_val = e1000_k1_gig_workaround_hv(hw, link);
892  if (ret_val)
893  return ret_val;
894  }
895 
896  /* Clear link partner's EEE ability */
897  hw->dev_spec.ich8lan.eee_lp_ability = 0;
898 
899  if (!link)
900  return 0; /* No link detected */
901 
902  mac->get_link_status = false;
903 
904  switch (hw->mac.type) {
905  case e1000_pch2lan:
906  ret_val = e1000_k1_workaround_lv(hw);
907  if (ret_val)
908  return ret_val;
909  /* fall-thru */
910  case e1000_pchlan:
911  if (hw->phy.type == e1000_phy_82578) {
912  ret_val = e1000_link_stall_workaround_hv(hw);
913  if (ret_val)
914  return ret_val;
915  }
916 
917  /*
918  * Workaround for PCHx parts in half-duplex:
919  * Set the number of preambles removed from the packet
920  * when it is passed from the PHY to the MAC to prevent
921  * the MAC from misinterpreting the packet type.
922  */
923  e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
925 
926  if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
927  phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
928 
929  e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
930  break;
931  default:
932  break;
933  }
934 
935  /*
936  * Check if there was DownShift, must be checked
937  * immediately after link-up
938  */
940 
941  /* Enable/Disable EEE after link up */
942  ret_val = e1000_set_eee_pchlan(hw);
943  if (ret_val)
944  return ret_val;
945 
946  /*
947  * If we are forcing speed/duplex, then we simply return since
948  * we have already determined whether we have link or not.
949  */
950  if (!mac->autoneg)
951  return -E1000_ERR_CONFIG;
952 
953  /*
954  * Auto-Neg is enabled. Auto Speed Detection takes care
955  * of MAC speed/duplex configuration. So we only need to
956  * configure Collision Distance in the MAC.
957  */
958  mac->ops.config_collision_dist(hw);
959 
960  /*
961  * Configure Flow Control now that Auto-Neg has completed.
962  * First, we need to restore the desired flow control
963  * settings because we may have had to re-autoneg with a
964  * different link partner.
965  */
966  ret_val = e1000e_config_fc_after_link_up(hw);
967  if (ret_val)
968  e_dbg("Error configuring flow control\n");
969 
970  return ret_val;
971 }
972 
973 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
974 {
975  struct e1000_hw *hw = &adapter->hw;
976  s32 rc;
977 
978  rc = e1000_init_mac_params_ich8lan(hw);
979  if (rc)
980  return rc;
981 
982  rc = e1000_init_nvm_params_ich8lan(hw);
983  if (rc)
984  return rc;
985 
986  switch (hw->mac.type) {
987  case e1000_ich8lan:
988  case e1000_ich9lan:
989  case e1000_ich10lan:
990  rc = e1000_init_phy_params_ich8lan(hw);
991  break;
992  case e1000_pchlan:
993  case e1000_pch2lan:
994  case e1000_pch_lpt:
995  rc = e1000_init_phy_params_pchlan(hw);
996  break;
997  default:
998  break;
999  }
1000  if (rc)
1001  return rc;
1002 
1003  /*
1004  * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005  * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006  */
1007  if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008  ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009  (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010  adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1012 
1013  hw->mac.ops.blink_led = NULL;
1014  }
1015 
1016  if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017  (adapter->hw.phy.type != e1000_phy_ife))
1018  adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019 
1020  /* Enable workaround for 82579 w/ ME enabled */
1021  if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022  (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023  adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024 
1025  /* Disable EEE by default until IEEE802.3az spec is finalized */
1026  if (adapter->flags2 & FLAG2_HAS_EEE)
1027  adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028 
1029  return 0;
1030 }
1031 
1032 static DEFINE_MUTEX(nvm_mutex);
1033 
1040 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041 {
1042  mutex_lock(&nvm_mutex);
1043 
1044  return 0;
1045 }
1046 
1053 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054 {
1055  mutex_unlock(&nvm_mutex);
1056 }
1057 
1065 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066 {
1067  u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068  s32 ret_val = 0;
1069 
1071  &hw->adapter->state)) {
1072  e_dbg("contention for Phy access\n");
1073  return -E1000_ERR_PHY;
1074  }
1075 
1076  while (timeout) {
1077  extcnf_ctrl = er32(EXTCNF_CTRL);
1078  if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079  break;
1080 
1081  mdelay(1);
1082  timeout--;
1083  }
1084 
1085  if (!timeout) {
1086  e_dbg("SW has already locked the resource.\n");
1087  ret_val = -E1000_ERR_CONFIG;
1088  goto out;
1089  }
1090 
1091  timeout = SW_FLAG_TIMEOUT;
1092 
1093  extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094  ew32(EXTCNF_CTRL, extcnf_ctrl);
1095 
1096  while (timeout) {
1097  extcnf_ctrl = er32(EXTCNF_CTRL);
1098  if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099  break;
1100 
1101  mdelay(1);
1102  timeout--;
1103  }
1104 
1105  if (!timeout) {
1106  e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107  er32(FWSM), extcnf_ctrl);
1108  extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109  ew32(EXTCNF_CTRL, extcnf_ctrl);
1110  ret_val = -E1000_ERR_CONFIG;
1111  goto out;
1112  }
1113 
1114 out:
1115  if (ret_val)
1117 
1118  return ret_val;
1119 }
1120 
1128 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129 {
1130  u32 extcnf_ctrl;
1131 
1132  extcnf_ctrl = er32(EXTCNF_CTRL);
1133 
1134  if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135  extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136  ew32(EXTCNF_CTRL, extcnf_ctrl);
1137  } else {
1138  e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139  }
1140 
1142 }
1143 
1152 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153 {
1154  u32 fwsm;
1155 
1156  fwsm = er32(FWSM);
1157  return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158  ((fwsm & E1000_FWSM_MODE_MASK) ==
1160 }
1161 
1170 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171 {
1172  u32 fwsm;
1173 
1174  fwsm = er32(FWSM);
1175  return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1177 }
1178 
1190 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191 {
1192  u32 rar_low, rar_high;
1193 
1194  /*
1195  * HW expects these in little endian so we reverse the byte order
1196  * from network order (big endian) to little endian
1197  */
1198  rar_low = ((u32)addr[0] |
1199  ((u32)addr[1] << 8) |
1200  ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201 
1202  rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203 
1204  /* If MAC address zero, no need to set the AV bit */
1205  if (rar_low || rar_high)
1206  rar_high |= E1000_RAH_AV;
1207 
1208  if (index == 0) {
1209  ew32(RAL(index), rar_low);
1210  e1e_flush();
1211  ew32(RAH(index), rar_high);
1212  e1e_flush();
1213  return;
1214  }
1215 
1216  if (index < hw->mac.rar_entry_count) {
1217  s32 ret_val;
1218 
1219  ret_val = e1000_acquire_swflag_ich8lan(hw);
1220  if (ret_val)
1221  goto out;
1222 
1223  ew32(SHRAL(index - 1), rar_low);
1224  e1e_flush();
1225  ew32(SHRAH(index - 1), rar_high);
1226  e1e_flush();
1227 
1228  e1000_release_swflag_ich8lan(hw);
1229 
1230  /* verify the register updates */
1231  if ((er32(SHRAL(index - 1)) == rar_low) &&
1232  (er32(SHRAH(index - 1)) == rar_high))
1233  return;
1234 
1235  e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236  (index - 1), er32(FWSM));
1237  }
1238 
1239 out:
1240  e_dbg("Failed to write receive address at index %d\n", index);
1241 }
1242 
1254 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255 {
1256  u32 rar_low, rar_high;
1257  u32 wlock_mac;
1258 
1259  /*
1260  * HW expects these in little endian so we reverse the byte order
1261  * from network order (big endian) to little endian
1262  */
1263  rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264  ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265 
1266  rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267 
1268  /* If MAC address zero, no need to set the AV bit */
1269  if (rar_low || rar_high)
1270  rar_high |= E1000_RAH_AV;
1271 
1272  if (index == 0) {
1273  ew32(RAL(index), rar_low);
1274  e1e_flush();
1275  ew32(RAH(index), rar_high);
1276  e1e_flush();
1277  return;
1278  }
1279 
1280  /*
1281  * The manageability engine (ME) can lock certain SHRAR registers that
1282  * it is using - those registers are unavailable for use.
1283  */
1284  if (index < hw->mac.rar_entry_count) {
1285  wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286  wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287 
1288  /* Check if all SHRAR registers are locked */
1289  if (wlock_mac == 1)
1290  goto out;
1291 
1292  if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293  s32 ret_val;
1294 
1295  ret_val = e1000_acquire_swflag_ich8lan(hw);
1296 
1297  if (ret_val)
1298  goto out;
1299 
1300  ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301  e1e_flush();
1302  ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303  e1e_flush();
1304 
1305  e1000_release_swflag_ich8lan(hw);
1306 
1307  /* verify the register updates */
1308  if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309  (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310  return;
1311  }
1312  }
1313 
1314 out:
1315  e_dbg("Failed to write receive address at index %d\n", index);
1316 }
1317 
1326 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327 {
1328  u32 fwsm;
1329 
1330  fwsm = er32(FWSM);
1331 
1332  return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1333 }
1334 
1342 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343 {
1344  u16 phy_data;
1345  u32 strap = er32(STRAP);
1346  u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1348  s32 ret_val = 0;
1349 
1351 
1352  ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353  if (ret_val)
1354  return ret_val;
1355 
1356  phy_data &= ~HV_SMB_ADDR_MASK;
1357  phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358  phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359 
1360  if (hw->phy.type == e1000_phy_i217) {
1361  /* Restore SMBus frequency */
1362  if (freq--) {
1363  phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364  phy_data |= (freq & (1 << 0)) <<
1366  phy_data |= (freq & (1 << 1)) <<
1368  } else {
1369  e_dbg("Unsupported SMB frequency in PHY\n");
1370  }
1371  }
1372 
1373  return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374 }
1375 
1383 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384 {
1385  struct e1000_phy_info *phy = &hw->phy;
1386  u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387  s32 ret_val = 0;
1388  u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389 
1390  /*
1391  * Initialize the PHY from the NVM on ICH platforms. This
1392  * is needed due to an issue where the NVM configuration is
1393  * not properly autoloaded after power transitions.
1394  * Therefore, after each PHY reset, we will load the
1395  * configuration data out of the NVM manually.
1396  */
1397  switch (hw->mac.type) {
1398  case e1000_ich8lan:
1399  if (phy->type != e1000_phy_igp_3)
1400  return ret_val;
1401 
1402  if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403  (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404  sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405  break;
1406  }
1407  /* Fall-thru */
1408  case e1000_pchlan:
1409  case e1000_pch2lan:
1410  case e1000_pch_lpt:
1411  sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412  break;
1413  default:
1414  return ret_val;
1415  }
1416 
1417  ret_val = hw->phy.ops.acquire(hw);
1418  if (ret_val)
1419  return ret_val;
1420 
1421  data = er32(FEXTNVM);
1422  if (!(data & sw_cfg_mask))
1423  goto release;
1424 
1425  /*
1426  * Make sure HW does not configure LCD from PHY
1427  * extended configuration before SW configuration
1428  */
1429  data = er32(EXTCNF_CTRL);
1430  if ((hw->mac.type < e1000_pch2lan) &&
1432  goto release;
1433 
1434  cnf_size = er32(EXTCNF_SIZE);
1437  if (!cnf_size)
1438  goto release;
1439 
1440  cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441  cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442 
1443  if (((hw->mac.type == e1000_pchlan) &&
1445  (hw->mac.type > e1000_pchlan)) {
1446  /*
1447  * HW configures the SMBus address and LEDs when the
1448  * OEM and LCD Write Enable bits are set in the NVM.
1449  * When both NVM bits are cleared, SW will configure
1450  * them instead.
1451  */
1452  ret_val = e1000_write_smbus_addr(hw);
1453  if (ret_val)
1454  goto release;
1455 
1456  data = er32(LEDCTL);
1458  (u16)data);
1459  if (ret_val)
1460  goto release;
1461  }
1462 
1463  /* Configure LCD from extended configuration region. */
1464 
1465  /* cnf_base_addr is in DWORD */
1466  word_addr = (u16)(cnf_base_addr << 1);
1467 
1468  for (i = 0; i < cnf_size; i++) {
1469  ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470  &reg_data);
1471  if (ret_val)
1472  goto release;
1473 
1474  ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475  1, &reg_addr);
1476  if (ret_val)
1477  goto release;
1478 
1479  /* Save off the PHY page for future writes. */
1480  if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481  phy_page = reg_data;
1482  continue;
1483  }
1484 
1485  reg_addr &= PHY_REG_MASK;
1486  reg_addr |= phy_page;
1487 
1488  ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489  if (ret_val)
1490  goto release;
1491  }
1492 
1493 release:
1494  hw->phy.ops.release(hw);
1495  return ret_val;
1496 }
1497 
1508 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509 {
1510  s32 ret_val = 0;
1511  u16 status_reg = 0;
1512  bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513 
1514  if (hw->mac.type != e1000_pchlan)
1515  return 0;
1516 
1517  /* Wrap the whole flow with the sw flag */
1518  ret_val = hw->phy.ops.acquire(hw);
1519  if (ret_val)
1520  return ret_val;
1521 
1522  /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523  if (link) {
1524  if (hw->phy.type == e1000_phy_82578) {
1525  ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526  &status_reg);
1527  if (ret_val)
1528  goto release;
1529 
1530  status_reg &= BM_CS_STATUS_LINK_UP |
1533 
1534  if (status_reg == (BM_CS_STATUS_LINK_UP |
1537  k1_enable = false;
1538  }
1539 
1540  if (hw->phy.type == e1000_phy_82577) {
1541  ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542  if (ret_val)
1543  goto release;
1544 
1545  status_reg &= HV_M_STATUS_LINK_UP |
1548 
1549  if (status_reg == (HV_M_STATUS_LINK_UP |
1552  k1_enable = false;
1553  }
1554 
1555  /* Link stall fix for link up */
1556  ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557  if (ret_val)
1558  goto release;
1559 
1560  } else {
1561  /* Link stall fix for link down */
1562  ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563  if (ret_val)
1564  goto release;
1565  }
1566 
1567  ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568 
1569 release:
1570  hw->phy.ops.release(hw);
1571 
1572  return ret_val;
1573 }
1574 
1585 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586 {
1587  s32 ret_val = 0;
1588  u32 ctrl_reg = 0;
1589  u32 ctrl_ext = 0;
1590  u32 reg = 0;
1591  u16 kmrn_reg = 0;
1592 
1594  &kmrn_reg);
1595  if (ret_val)
1596  return ret_val;
1597 
1598  if (k1_enable)
1599  kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600  else
1601  kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602 
1604  kmrn_reg);
1605  if (ret_val)
1606  return ret_val;
1607 
1608  udelay(20);
1609  ctrl_ext = er32(CTRL_EXT);
1610  ctrl_reg = er32(CTRL);
1611 
1612  reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613  reg |= E1000_CTRL_FRCSPD;
1614  ew32(CTRL, reg);
1615 
1616  ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617  e1e_flush();
1618  udelay(20);
1619  ew32(CTRL, ctrl_reg);
1620  ew32(CTRL_EXT, ctrl_ext);
1621  e1e_flush();
1622  udelay(20);
1623 
1624  return 0;
1625 }
1626 
1636 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637 {
1638  s32 ret_val = 0;
1639  u32 mac_reg;
1640  u16 oem_reg;
1641 
1642  if (hw->mac.type < e1000_pchlan)
1643  return ret_val;
1644 
1645  ret_val = hw->phy.ops.acquire(hw);
1646  if (ret_val)
1647  return ret_val;
1648 
1649  if (hw->mac.type == e1000_pchlan) {
1650  mac_reg = er32(EXTCNF_CTRL);
1651  if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652  goto release;
1653  }
1654 
1655  mac_reg = er32(FEXTNVM);
1656  if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657  goto release;
1658 
1659  mac_reg = er32(PHY_CTRL);
1660 
1661  ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662  if (ret_val)
1663  goto release;
1664 
1665  oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666 
1667  if (d0_state) {
1668  if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669  oem_reg |= HV_OEM_BITS_GBE_DIS;
1670 
1671  if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672  oem_reg |= HV_OEM_BITS_LPLU;
1673  } else {
1674  if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1676  oem_reg |= HV_OEM_BITS_GBE_DIS;
1677 
1678  if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1680  oem_reg |= HV_OEM_BITS_LPLU;
1681  }
1682 
1683  /* Set Restart auto-neg to activate the bits */
1684  if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685  !hw->phy.ops.check_reset_block(hw))
1686  oem_reg |= HV_OEM_BITS_RESTART_AN;
1687 
1688  ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689 
1690 release:
1691  hw->phy.ops.release(hw);
1692 
1693  return ret_val;
1694 }
1695 
1696 
1701 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702 {
1703  s32 ret_val;
1704  u16 data;
1705 
1706  ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707  if (ret_val)
1708  return ret_val;
1709 
1710  data |= HV_KMRN_MDIO_SLOW;
1711 
1712  ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713 
1714  return ret_val;
1715 }
1716 
1721 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722 {
1723  s32 ret_val = 0;
1724  u16 phy_data;
1725 
1726  if (hw->mac.type != e1000_pchlan)
1727  return 0;
1728 
1729  /* Set MDIO slow mode before any other MDIO access */
1730  if (hw->phy.type == e1000_phy_82577) {
1731  ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732  if (ret_val)
1733  return ret_val;
1734  }
1735 
1736  if (((hw->phy.type == e1000_phy_82577) &&
1737  ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738  ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739  /* Disable generation of early preamble */
1740  ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741  if (ret_val)
1742  return ret_val;
1743 
1744  /* Preamble tuning for SSC */
1745  ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746  if (ret_val)
1747  return ret_val;
1748  }
1749 
1750  if (hw->phy.type == e1000_phy_82578) {
1751  /*
1752  * Return registers to default by doing a soft reset then
1753  * writing 0x3140 to the control register.
1754  */
1755  if (hw->phy.revision < 2) {
1756  e1000e_phy_sw_reset(hw);
1757  ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758  }
1759  }
1760 
1761  /* Select page 0 */
1762  ret_val = hw->phy.ops.acquire(hw);
1763  if (ret_val)
1764  return ret_val;
1765 
1766  hw->phy.addr = 1;
1768  hw->phy.ops.release(hw);
1769  if (ret_val)
1770  return ret_val;
1771 
1772  /*
1773  * Configure the K1 Si workaround during phy reset assuming there is
1774  * link so that it disables K1 if link is in 1Gbps.
1775  */
1776  ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777  if (ret_val)
1778  return ret_val;
1779 
1780  /* Workaround for link disconnects on a busy hub in half duplex */
1781  ret_val = hw->phy.ops.acquire(hw);
1782  if (ret_val)
1783  return ret_val;
1784  ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785  if (ret_val)
1786  goto release;
1787  ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1788 release:
1789  hw->phy.ops.release(hw);
1790 
1791  return ret_val;
1792 }
1793 
1799 {
1800  u32 mac_reg;
1801  u16 i, phy_reg = 0;
1802  s32 ret_val;
1803 
1804  ret_val = hw->phy.ops.acquire(hw);
1805  if (ret_val)
1806  return;
1807  ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808  if (ret_val)
1809  goto release;
1810 
1811  /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812  for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813  mac_reg = er32(RAL(i));
1814  hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815  (u16)(mac_reg & 0xFFFF));
1816  hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817  (u16)((mac_reg >> 16) & 0xFFFF));
1818 
1819  mac_reg = er32(RAH(i));
1820  hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821  (u16)(mac_reg & 0xFFFF));
1822  hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823  (u16)((mac_reg & E1000_RAH_AV)
1824  >> 16));
1825  }
1826 
1828 
1829 release:
1830  hw->phy.ops.release(hw);
1831 }
1832 
1840 {
1841  s32 ret_val = 0;
1842  u16 phy_reg, data;
1843  u32 mac_reg;
1844  u16 i;
1845 
1846  if (hw->mac.type < e1000_pch2lan)
1847  return 0;
1848 
1849  /* disable Rx path while enabling/disabling workaround */
1850  e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851  ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852  if (ret_val)
1853  return ret_val;
1854 
1855  if (enable) {
1856  /*
1857  * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858  * SHRAL/H) and initial CRC values to the MAC
1859  */
1860  for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861  u8 mac_addr[ETH_ALEN] = {0};
1863 
1864  addr_high = er32(RAH(i));
1865  if (!(addr_high & E1000_RAH_AV))
1866  continue;
1867  addr_low = er32(RAL(i));
1868  mac_addr[0] = (addr_low & 0xFF);
1869  mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870  mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871  mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872  mac_addr[4] = (addr_high & 0xFF);
1873  mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874 
1875  ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876  }
1877 
1878  /* Write Rx addresses to the PHY */
1880 
1881  /* Enable jumbo frame workaround in the MAC */
1882  mac_reg = er32(FFLT_DBG);
1883  mac_reg &= ~(1 << 14);
1884  mac_reg |= (7 << 15);
1885  ew32(FFLT_DBG, mac_reg);
1886 
1887  mac_reg = er32(RCTL);
1888  mac_reg |= E1000_RCTL_SECRC;
1889  ew32(RCTL, mac_reg);
1890 
1891  ret_val = e1000e_read_kmrn_reg(hw,
1893  &data);
1894  if (ret_val)
1895  return ret_val;
1896  ret_val = e1000e_write_kmrn_reg(hw,
1898  data | (1 << 0));
1899  if (ret_val)
1900  return ret_val;
1901  ret_val = e1000e_read_kmrn_reg(hw,
1903  &data);
1904  if (ret_val)
1905  return ret_val;
1906  data &= ~(0xF << 8);
1907  data |= (0xB << 8);
1908  ret_val = e1000e_write_kmrn_reg(hw,
1910  data);
1911  if (ret_val)
1912  return ret_val;
1913 
1914  /* Enable jumbo frame workaround in the PHY */
1915  e1e_rphy(hw, PHY_REG(769, 23), &data);
1916  data &= ~(0x7F << 5);
1917  data |= (0x37 << 5);
1918  ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919  if (ret_val)
1920  return ret_val;
1921  e1e_rphy(hw, PHY_REG(769, 16), &data);
1922  data &= ~(1 << 13);
1923  ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924  if (ret_val)
1925  return ret_val;
1926  e1e_rphy(hw, PHY_REG(776, 20), &data);
1927  data &= ~(0x3FF << 2);
1928  data |= (0x1A << 2);
1929  ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930  if (ret_val)
1931  return ret_val;
1932  ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933  if (ret_val)
1934  return ret_val;
1935  e1e_rphy(hw, HV_PM_CTRL, &data);
1936  ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937  if (ret_val)
1938  return ret_val;
1939  } else {
1940  /* Write MAC register values back to h/w defaults */
1941  mac_reg = er32(FFLT_DBG);
1942  mac_reg &= ~(0xF << 14);
1943  ew32(FFLT_DBG, mac_reg);
1944 
1945  mac_reg = er32(RCTL);
1946  mac_reg &= ~E1000_RCTL_SECRC;
1947  ew32(RCTL, mac_reg);
1948 
1949  ret_val = e1000e_read_kmrn_reg(hw,
1951  &data);
1952  if (ret_val)
1953  return ret_val;
1954  ret_val = e1000e_write_kmrn_reg(hw,
1956  data & ~(1 << 0));
1957  if (ret_val)
1958  return ret_val;
1959  ret_val = e1000e_read_kmrn_reg(hw,
1961  &data);
1962  if (ret_val)
1963  return ret_val;
1964  data &= ~(0xF << 8);
1965  data |= (0xB << 8);
1966  ret_val = e1000e_write_kmrn_reg(hw,
1968  data);
1969  if (ret_val)
1970  return ret_val;
1971 
1972  /* Write PHY register values back to h/w defaults */
1973  e1e_rphy(hw, PHY_REG(769, 23), &data);
1974  data &= ~(0x7F << 5);
1975  ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976  if (ret_val)
1977  return ret_val;
1978  e1e_rphy(hw, PHY_REG(769, 16), &data);
1979  data |= (1 << 13);
1980  ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981  if (ret_val)
1982  return ret_val;
1983  e1e_rphy(hw, PHY_REG(776, 20), &data);
1984  data &= ~(0x3FF << 2);
1985  data |= (0x8 << 2);
1986  ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987  if (ret_val)
1988  return ret_val;
1989  ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990  if (ret_val)
1991  return ret_val;
1992  e1e_rphy(hw, HV_PM_CTRL, &data);
1993  ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994  if (ret_val)
1995  return ret_val;
1996  }
1997 
1998  /* re-enable Rx path after enabling/disabling workaround */
1999  return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000 }
2001 
2006 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007 {
2008  s32 ret_val = 0;
2009 
2010  if (hw->mac.type != e1000_pch2lan)
2011  return 0;
2012 
2013  /* Set MDIO slow mode before any other MDIO access */
2014  ret_val = e1000_set_mdio_slow_mode_hv(hw);
2015 
2016  ret_val = hw->phy.ops.acquire(hw);
2017  if (ret_val)
2018  return ret_val;
2019  ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020  if (ret_val)
2021  goto release;
2022  /* set MSE higher to enable link to stay up when noise is high */
2023  ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024  if (ret_val)
2025  goto release;
2026  ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027  if (ret_val)
2028  goto release;
2029  /* drop link after 5 times MSE threshold was reached */
2030  ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031 release:
2032  hw->phy.ops.release(hw);
2033 
2034  return ret_val;
2035 }
2036 
2043 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044 {
2045  s32 ret_val = 0;
2046  u16 status_reg = 0;
2047  u32 mac_reg;
2048  u16 phy_reg;
2049 
2050  if (hw->mac.type != e1000_pch2lan)
2051  return 0;
2052 
2053  /* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054  ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055  if (ret_val)
2056  return ret_val;
2057 
2058  if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2060  mac_reg = er32(FEXTNVM4);
2062 
2063  ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064  if (ret_val)
2065  return ret_val;
2066 
2067  if (status_reg & HV_M_STATUS_SPEED_1000) {
2068  u16 pm_phy_reg;
2069 
2072  /* LV 1G Packet drop issue wa */
2073  ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074  if (ret_val)
2075  return ret_val;
2076  pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077  ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078  if (ret_val)
2079  return ret_val;
2080  } else {
2083  }
2084  ew32(FEXTNVM4, mac_reg);
2085  ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086  }
2087 
2088  return ret_val;
2089 }
2090 
2099 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100 {
2101  u32 extcnf_ctrl;
2102 
2103  if (hw->mac.type < e1000_pch2lan)
2104  return;
2105 
2106  extcnf_ctrl = er32(EXTCNF_CTRL);
2107 
2108  if (gate)
2109  extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110  else
2111  extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112 
2113  ew32(EXTCNF_CTRL, extcnf_ctrl);
2114 }
2115 
2123 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124 {
2126 
2127  /* Wait for basic configuration completes before proceeding */
2128  do {
2129  data = er32(STATUS);
2131  udelay(100);
2132  } while ((!data) && --loop);
2133 
2134  /*
2135  * If basic configuration is incomplete before the above loop
2136  * count reaches 0, loading the configuration from NVM will
2137  * leave the PHY in a bad state possibly resulting in no link.
2138  */
2139  if (loop == 0)
2140  e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141 
2142  /* Clear the Init Done bit for the next init event */
2143  data = er32(STATUS);
2144  data &= ~E1000_STATUS_LAN_INIT_DONE;
2145  ew32(STATUS, data);
2146 }
2147 
2152 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153 {
2154  s32 ret_val = 0;
2155  u16 reg;
2156 
2157  if (hw->phy.ops.check_reset_block(hw))
2158  return 0;
2159 
2160  /* Allow time for h/w to get to quiescent state after reset */
2161  usleep_range(10000, 20000);
2162 
2163  /* Perform any necessary post-reset workarounds */
2164  switch (hw->mac.type) {
2165  case e1000_pchlan:
2166  ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167  if (ret_val)
2168  return ret_val;
2169  break;
2170  case e1000_pch2lan:
2171  ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172  if (ret_val)
2173  return ret_val;
2174  break;
2175  default:
2176  break;
2177  }
2178 
2179  /* Clear the host wakeup bit after lcd reset */
2180  if (hw->mac.type >= e1000_pchlan) {
2181  e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182  reg &= ~BM_WUC_HOST_WU_BIT;
2183  e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184  }
2185 
2186  /* Configure the LCD with the extended configuration region in NVM */
2187  ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188  if (ret_val)
2189  return ret_val;
2190 
2191  /* Configure the LCD with the OEM bits in NVM */
2192  ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193 
2194  if (hw->mac.type == e1000_pch2lan) {
2195  /* Ungate automatic PHY configuration on non-managed 82579 */
2196  if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197  usleep_range(10000, 20000);
2198  e1000_gate_hw_phy_config_ich8lan(hw, false);
2199  }
2200 
2201  /* Set EEE LPI Update Timer to 200usec */
2202  ret_val = hw->phy.ops.acquire(hw);
2203  if (ret_val)
2204  return ret_val;
2205  ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2207  if (!ret_val)
2208  ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209  hw->phy.ops.release(hw);
2210  }
2211 
2212  return ret_val;
2213 }
2214 
2223 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224 {
2225  s32 ret_val = 0;
2226 
2227  /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228  if ((hw->mac.type == e1000_pch2lan) &&
2229  !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230  e1000_gate_hw_phy_config_ich8lan(hw, true);
2231 
2232  ret_val = e1000e_phy_hw_reset_generic(hw);
2233  if (ret_val)
2234  return ret_val;
2235 
2236  return e1000_post_phy_reset_ich8lan(hw);
2237 }
2238 
2250 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251 {
2252  s32 ret_val = 0;
2253  u16 oem_reg;
2254 
2255  ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256  if (ret_val)
2257  return ret_val;
2258 
2259  if (active)
2260  oem_reg |= HV_OEM_BITS_LPLU;
2261  else
2262  oem_reg &= ~HV_OEM_BITS_LPLU;
2263 
2264  if (!hw->phy.ops.check_reset_block(hw))
2265  oem_reg |= HV_OEM_BITS_RESTART_AN;
2266 
2267  return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268 }
2269 
2283 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284 {
2285  struct e1000_phy_info *phy = &hw->phy;
2286  u32 phy_ctrl;
2287  s32 ret_val = 0;
2288  u16 data;
2289 
2290  if (phy->type == e1000_phy_ife)
2291  return 0;
2292 
2293  phy_ctrl = er32(PHY_CTRL);
2294 
2295  if (active) {
2296  phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297  ew32(PHY_CTRL, phy_ctrl);
2298 
2299  if (phy->type != e1000_phy_igp_3)
2300  return 0;
2301 
2302  /*
2303  * Call gig speed drop workaround on LPLU before accessing
2304  * any PHY registers
2305  */
2306  if (hw->mac.type == e1000_ich8lan)
2308 
2309  /* When LPLU is enabled, we should disable SmartSpeed */
2310  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2312  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313  if (ret_val)
2314  return ret_val;
2315  } else {
2316  phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317  ew32(PHY_CTRL, phy_ctrl);
2318 
2319  if (phy->type != e1000_phy_igp_3)
2320  return 0;
2321 
2322  /*
2323  * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2324  * during Dx states where the power conservation is most
2325  * important. During driver activity we should enable
2326  * SmartSpeed, so performance is maintained.
2327  */
2328  if (phy->smart_speed == e1000_smart_speed_on) {
2329  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330  &data);
2331  if (ret_val)
2332  return ret_val;
2333 
2335  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336  data);
2337  if (ret_val)
2338  return ret_val;
2339  } else if (phy->smart_speed == e1000_smart_speed_off) {
2340  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341  &data);
2342  if (ret_val)
2343  return ret_val;
2344 
2346  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347  data);
2348  if (ret_val)
2349  return ret_val;
2350  }
2351  }
2352 
2353  return 0;
2354 }
2355 
2369 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370 {
2371  struct e1000_phy_info *phy = &hw->phy;
2372  u32 phy_ctrl;
2373  s32 ret_val = 0;
2374  u16 data;
2375 
2376  phy_ctrl = er32(PHY_CTRL);
2377 
2378  if (!active) {
2379  phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380  ew32(PHY_CTRL, phy_ctrl);
2381 
2382  if (phy->type != e1000_phy_igp_3)
2383  return 0;
2384 
2385  /*
2386  * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2387  * during Dx states where the power conservation is most
2388  * important. During driver activity we should enable
2389  * SmartSpeed, so performance is maintained.
2390  */
2391  if (phy->smart_speed == e1000_smart_speed_on) {
2392  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393  &data);
2394  if (ret_val)
2395  return ret_val;
2396 
2398  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399  data);
2400  if (ret_val)
2401  return ret_val;
2402  } else if (phy->smart_speed == e1000_smart_speed_off) {
2403  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404  &data);
2405  if (ret_val)
2406  return ret_val;
2407 
2409  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410  data);
2411  if (ret_val)
2412  return ret_val;
2413  }
2414  } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2417  phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418  ew32(PHY_CTRL, phy_ctrl);
2419 
2420  if (phy->type != e1000_phy_igp_3)
2421  return 0;
2422 
2423  /*
2424  * Call gig speed drop workaround on LPLU before accessing
2425  * any PHY registers
2426  */
2427  if (hw->mac.type == e1000_ich8lan)
2429 
2430  /* When LPLU is enabled, we should disable SmartSpeed */
2431  ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432  if (ret_val)
2433  return ret_val;
2434 
2436  ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437  }
2438 
2439  return ret_val;
2440 }
2441 
2450 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451 {
2452  u32 eecd;
2453  struct e1000_nvm_info *nvm = &hw->nvm;
2454  u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455  u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2456  u8 sig_byte = 0;
2457  s32 ret_val;
2458 
2459  switch (hw->mac.type) {
2460  case e1000_ich8lan:
2461  case e1000_ich9lan:
2462  eecd = er32(EECD);
2463  if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464  E1000_EECD_SEC1VAL_VALID_MASK) {
2465  if (eecd & E1000_EECD_SEC1VAL)
2466  *bank = 1;
2467  else
2468  *bank = 0;
2469 
2470  return 0;
2471  }
2472  e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473  /* fall-thru */
2474  default:
2475  /* set bank to 0 in case flash read fails */
2476  *bank = 0;
2477 
2478  /* Check bank 0 */
2479  ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480  &sig_byte);
2481  if (ret_val)
2482  return ret_val;
2483  if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2485  *bank = 0;
2486  return 0;
2487  }
2488 
2489  /* Check bank 1 */
2490  ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491  bank1_offset,
2492  &sig_byte);
2493  if (ret_val)
2494  return ret_val;
2495  if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2497  *bank = 1;
2498  return 0;
2499  }
2500 
2501  e_dbg("ERROR: No valid NVM bank present\n");
2502  return -E1000_ERR_NVM;
2503  }
2504 }
2505 
2515 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516  u16 *data)
2517 {
2518  struct e1000_nvm_info *nvm = &hw->nvm;
2519  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520  u32 act_offset;
2521  s32 ret_val = 0;
2522  u32 bank = 0;
2523  u16 i, word;
2524 
2525  if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526  (words == 0)) {
2527  e_dbg("nvm parameter(s) out of bounds\n");
2528  ret_val = -E1000_ERR_NVM;
2529  goto out;
2530  }
2531 
2532  nvm->ops.acquire(hw);
2533 
2534  ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535  if (ret_val) {
2536  e_dbg("Could not detect valid bank, assuming bank 0\n");
2537  bank = 0;
2538  }
2539 
2540  act_offset = (bank) ? nvm->flash_bank_size : 0;
2541  act_offset += offset;
2542 
2543  ret_val = 0;
2544  for (i = 0; i < words; i++) {
2545  if (dev_spec->shadow_ram[offset+i].modified) {
2546  data[i] = dev_spec->shadow_ram[offset+i].value;
2547  } else {
2548  ret_val = e1000_read_flash_word_ich8lan(hw,
2549  act_offset + i,
2550  &word);
2551  if (ret_val)
2552  break;
2553  data[i] = word;
2554  }
2555  }
2556 
2557  nvm->ops.release(hw);
2558 
2559 out:
2560  if (ret_val)
2561  e_dbg("NVM read error: %d\n", ret_val);
2562 
2563  return ret_val;
2564 }
2565 
2573 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574 {
2575  union ich8_hws_flash_status hsfsts;
2576  s32 ret_val = -E1000_ERR_NVM;
2577 
2578  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579 
2580  /* Check if the flash descriptor is valid */
2581  if (!hsfsts.hsf_status.fldesvalid) {
2582  e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
2583  return -E1000_ERR_NVM;
2584  }
2585 
2586  /* Clear FCERR and DAEL in hw status by writing 1 */
2587  hsfsts.hsf_status.flcerr = 1;
2588  hsfsts.hsf_status.dael = 1;
2589 
2590  ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591 
2592  /*
2593  * Either we should have a hardware SPI cycle in progress
2594  * bit to check against, in order to start a new cycle or
2595  * FDONE bit should be changed in the hardware so that it
2596  * is 1 after hardware reset, which can then be used as an
2597  * indication whether a cycle is in progress or has been
2598  * completed.
2599  */
2600 
2601  if (!hsfsts.hsf_status.flcinprog) {
2602  /*
2603  * There is no cycle running at present,
2604  * so we can start a cycle.
2605  * Begin by setting Flash Cycle Done.
2606  */
2607  hsfsts.hsf_status.flcdone = 1;
2608  ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2609  ret_val = 0;
2610  } else {
2611  s32 i;
2612 
2613  /*
2614  * Otherwise poll for sometime so the current
2615  * cycle has a chance to end before giving up.
2616  */
2617  for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619  if (!hsfsts.hsf_status.flcinprog) {
2620  ret_val = 0;
2621  break;
2622  }
2623  udelay(1);
2624  }
2625  if (!ret_val) {
2626  /*
2627  * Successful in waiting for previous cycle to timeout,
2628  * now set the Flash Cycle Done.
2629  */
2630  hsfsts.hsf_status.flcdone = 1;
2631  ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2632  } else {
2633  e_dbg("Flash controller busy, cannot get access\n");
2634  }
2635  }
2636 
2637  return ret_val;
2638 }
2639 
2647 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648 {
2649  union ich8_hws_flash_ctrl hsflctl;
2650  union ich8_hws_flash_status hsfsts;
2651  u32 i = 0;
2652 
2653  /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654  hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2655  hsflctl.hsf_ctrl.flcgo = 1;
2656  ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2657 
2658  /* wait till FDONE bit is set to 1 */
2659  do {
2660  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661  if (hsfsts.hsf_status.flcdone)
2662  break;
2663  udelay(1);
2664  } while (i++ < timeout);
2665 
2666  if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667  return 0;
2668 
2669  return -E1000_ERR_NVM;
2670 }
2671 
2681 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682  u16 *data)
2683 {
2684  /* Must convert offset into bytes. */
2685  offset <<= 1;
2686 
2687  return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688 }
2689 
2698 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699  u8 *data)
2700 {
2701  s32 ret_val;
2702  u16 word = 0;
2703 
2704  ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2705  if (ret_val)
2706  return ret_val;
2707 
2708  *data = (u8)word;
2709 
2710  return 0;
2711 }
2712 
2722 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723  u8 size, u16 *data)
2724 {
2725  union ich8_hws_flash_status hsfsts;
2726  union ich8_hws_flash_ctrl hsflctl;
2727  u32 flash_linear_addr;
2728  u32 flash_data = 0;
2729  s32 ret_val = -E1000_ERR_NVM;
2730  u8 count = 0;
2731 
2732  if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733  return -E1000_ERR_NVM;
2734 
2735  flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736  hw->nvm.flash_base_addr;
2737 
2738  do {
2739  udelay(1);
2740  /* Steps */
2741  ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742  if (ret_val)
2743  break;
2744 
2745  hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746  /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747  hsflctl.hsf_ctrl.fldbcount = size - 1;
2748  hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749  ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750 
2751  ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752 
2753  ret_val = e1000_flash_cycle_ich8lan(hw,
2754  ICH_FLASH_READ_COMMAND_TIMEOUT);
2755 
2756  /*
2757  * Check if FCERR is set to 1, if set to 1, clear it
2758  * and try the whole sequence a few more times, else
2759  * read in (shift in) the Flash Data0, the order is
2760  * least significant byte first msb to lsb
2761  */
2762  if (!ret_val) {
2763  flash_data = er32flash(ICH_FLASH_FDATA0);
2764  if (size == 1)
2765  *data = (u8)(flash_data & 0x000000FF);
2766  else if (size == 2)
2767  *data = (u16)(flash_data & 0x0000FFFF);
2768  break;
2769  } else {
2770  /*
2771  * If we've gotten here, then things are probably
2772  * completely hosed, but if the error condition is
2773  * detected, it won't hurt to give it another try...
2774  * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775  */
2776  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777  if (hsfsts.hsf_status.flcerr) {
2778  /* Repeat for some time before giving up. */
2779  continue;
2780  } else if (!hsfsts.hsf_status.flcdone) {
2781  e_dbg("Timeout error - flash cycle did not complete.\n");
2782  break;
2783  }
2784  }
2785  } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786 
2787  return ret_val;
2788 }
2789 
2799 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800  u16 *data)
2801 {
2802  struct e1000_nvm_info *nvm = &hw->nvm;
2803  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804  u16 i;
2805 
2806  if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807  (words == 0)) {
2808  e_dbg("nvm parameter(s) out of bounds\n");
2809  return -E1000_ERR_NVM;
2810  }
2811 
2812  nvm->ops.acquire(hw);
2813 
2814  for (i = 0; i < words; i++) {
2815  dev_spec->shadow_ram[offset+i].modified = true;
2816  dev_spec->shadow_ram[offset+i].value = data[i];
2817  }
2818 
2819  nvm->ops.release(hw);
2820 
2821  return 0;
2822 }
2823 
2835 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836 {
2837  struct e1000_nvm_info *nvm = &hw->nvm;
2838  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839  u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840  s32 ret_val;
2841  u16 data;
2842 
2843  ret_val = e1000e_update_nvm_checksum_generic(hw);
2844  if (ret_val)
2845  goto out;
2846 
2847  if (nvm->type != e1000_nvm_flash_sw)
2848  goto out;
2849 
2850  nvm->ops.acquire(hw);
2851 
2852  /*
2853  * We're writing to the opposite bank so if we're on bank 1,
2854  * write to bank 0 etc. We also need to erase the segment that
2855  * is going to be written
2856  */
2857  ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858  if (ret_val) {
2859  e_dbg("Could not detect valid bank, assuming bank 0\n");
2860  bank = 0;
2861  }
2862 
2863  if (bank == 0) {
2864  new_bank_offset = nvm->flash_bank_size;
2865  old_bank_offset = 0;
2866  ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867  if (ret_val)
2868  goto release;
2869  } else {
2870  old_bank_offset = nvm->flash_bank_size;
2871  new_bank_offset = 0;
2872  ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873  if (ret_val)
2874  goto release;
2875  }
2876 
2877  for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878  /*
2879  * Determine whether to write the value stored
2880  * in the other NVM bank or a modified value stored
2881  * in the shadow RAM
2882  */
2883  if (dev_spec->shadow_ram[i].modified) {
2884  data = dev_spec->shadow_ram[i].value;
2885  } else {
2886  ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887  old_bank_offset,
2888  &data);
2889  if (ret_val)
2890  break;
2891  }
2892 
2893  /*
2894  * If the word is 0x13, then make sure the signature bits
2895  * (15:14) are 11b until the commit has completed.
2896  * This will allow us to write 10b which indicates the
2897  * signature is valid. We want to do this after the write
2898  * has completed so that we don't mark the segment valid
2899  * while the write is still in progress
2900  */
2901  if (i == E1000_ICH_NVM_SIG_WORD)
2902  data |= E1000_ICH_NVM_SIG_MASK;
2903 
2904  /* Convert offset to bytes. */
2905  act_offset = (i + new_bank_offset) << 1;
2906 
2907  udelay(100);
2908  /* Write the bytes to the new bank. */
2909  ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910  act_offset,
2911  (u8)data);
2912  if (ret_val)
2913  break;
2914 
2915  udelay(100);
2916  ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917  act_offset + 1,
2918  (u8)(data >> 8));
2919  if (ret_val)
2920  break;
2921  }
2922 
2923  /*
2924  * Don't bother writing the segment valid bits if sector
2925  * programming failed.
2926  */
2927  if (ret_val) {
2928  /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929  e_dbg("Flash commit failed.\n");
2930  goto release;
2931  }
2932 
2933  /*
2934  * Finally validate the new segment by setting bit 15:14
2935  * to 10b in word 0x13 , this can be done without an
2936  * erase as well since these bits are 11 to start with
2937  * and we need to change bit 14 to 0b
2938  */
2939  act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940  ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941  if (ret_val)
2942  goto release;
2943 
2944  data &= 0xBFFF;
2945  ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946  act_offset * 2 + 1,
2947  (u8)(data >> 8));
2948  if (ret_val)
2949  goto release;
2950 
2951  /*
2952  * And invalidate the previously valid segment by setting
2953  * its signature word (0x13) high_byte to 0b. This can be
2954  * done without an erase because flash erase sets all bits
2955  * to 1's. We can write 1's to 0's without an erase
2956  */
2957  act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958  ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959  if (ret_val)
2960  goto release;
2961 
2962  /* Great! Everything worked, we can now clear the cached entries. */
2963  for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964  dev_spec->shadow_ram[i].modified = false;
2965  dev_spec->shadow_ram[i].value = 0xFFFF;
2966  }
2967 
2968 release:
2969  nvm->ops.release(hw);
2970 
2971  /*
2972  * Reload the EEPROM, or else modifications will not appear
2973  * until after the next adapter reset.
2974  */
2975  if (!ret_val) {
2976  nvm->ops.reload(hw);
2977  usleep_range(10000, 20000);
2978  }
2979 
2980 out:
2981  if (ret_val)
2982  e_dbg("NVM update error: %d\n", ret_val);
2983 
2984  return ret_val;
2985 }
2986 
2995 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996 {
2997  s32 ret_val;
2998  u16 data;
2999 
3000  /*
3001  * Read 0x19 and check bit 6. If this bit is 0, the checksum
3002  * needs to be fixed. This bit is an indication that the NVM
3003  * was prepared by OEM software and did not calculate the
3004  * checksum...a likely scenario.
3005  */
3006  ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
3007  if (ret_val)
3008  return ret_val;
3009 
3010  if (!(data & 0x40)) {
3011  data |= 0x40;
3012  ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013  if (ret_val)
3014  return ret_val;
3015  ret_val = e1000e_update_nvm_checksum(hw);
3016  if (ret_val)
3017  return ret_val;
3018  }
3019 
3021 }
3022 
3034 {
3035  struct e1000_nvm_info *nvm = &hw->nvm;
3036  union ich8_flash_protected_range pr0;
3037  union ich8_hws_flash_status hsfsts;
3038  u32 gfpreg;
3039 
3040  nvm->ops.acquire(hw);
3041 
3042  gfpreg = er32flash(ICH_FLASH_GFPREG);
3043 
3044  /* Write-protect GbE Sector of NVM */
3046  pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047  pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048  pr0.range.wpe = true;
3050 
3051  /*
3052  * Lock down a subset of GbE Flash Control Registers, e.g.
3053  * PR0 to prevent the write-protection from being lifted.
3054  * Once FLOCKDN is set, the registers protected by it cannot
3055  * be written until FLOCKDN is cleared by a hardware reset.
3056  */
3057  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058  hsfsts.hsf_status.flockdn = true;
3060 
3061  nvm->ops.release(hw);
3062 }
3063 
3073 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074  u8 size, u16 data)
3075 {
3076  union ich8_hws_flash_status hsfsts;
3077  union ich8_hws_flash_ctrl hsflctl;
3078  u32 flash_linear_addr;
3079  u32 flash_data = 0;
3080  s32 ret_val;
3081  u8 count = 0;
3082 
3083  if (size < 1 || size > 2 || data > size * 0xff ||
3084  offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085  return -E1000_ERR_NVM;
3086 
3087  flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088  hw->nvm.flash_base_addr;
3089 
3090  do {
3091  udelay(1);
3092  /* Steps */
3093  ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094  if (ret_val)
3095  break;
3096 
3097  hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098  /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099  hsflctl.hsf_ctrl.fldbcount = size -1;
3100  hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101  ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3102 
3103  ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104 
3105  if (size == 1)
3106  flash_data = (u32)data & 0x00FF;
3107  else
3108  flash_data = (u32)data;
3109 
3110  ew32flash(ICH_FLASH_FDATA0, flash_data);
3111 
3112  /*
3113  * check if FCERR is set to 1 , if set to 1, clear it
3114  * and try the whole sequence a few more times else done
3115  */
3116  ret_val = e1000_flash_cycle_ich8lan(hw,
3118  if (!ret_val)
3119  break;
3120 
3121  /*
3122  * If we're here, then things are most likely
3123  * completely hosed, but if the error condition
3124  * is detected, it won't hurt to give it another
3125  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126  */
3127  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128  if (hsfsts.hsf_status.flcerr)
3129  /* Repeat for some time before giving up. */
3130  continue;
3131  if (!hsfsts.hsf_status.flcdone) {
3132  e_dbg("Timeout error - flash cycle did not complete.\n");
3133  break;
3134  }
3135  } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136 
3137  return ret_val;
3138 }
3139 
3148 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149  u8 data)
3150 {
3151  u16 word = (u16)data;
3152 
3153  return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154 }
3155 
3165 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166  u32 offset, u8 byte)
3167 {
3168  s32 ret_val;
3169  u16 program_retries;
3170 
3171  ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172  if (!ret_val)
3173  return ret_val;
3174 
3175  for (program_retries = 0; program_retries < 100; program_retries++) {
3176  e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177  udelay(100);
3178  ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179  if (!ret_val)
3180  break;
3181  }
3182  if (program_retries == 100)
3183  return -E1000_ERR_NVM;
3184 
3185  return 0;
3186 }
3187 
3196 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197 {
3198  struct e1000_nvm_info *nvm = &hw->nvm;
3199  union ich8_hws_flash_status hsfsts;
3200  union ich8_hws_flash_ctrl hsflctl;
3201  u32 flash_linear_addr;
3202  /* bank size is in 16bit words - adjust to bytes */
3203  u32 flash_bank_size = nvm->flash_bank_size * 2;
3204  s32 ret_val;
3205  s32 count = 0;
3206  s32 j, iteration, sector_size;
3207 
3208  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209 
3210  /*
3211  * Determine HW Sector size: Read BERASE bits of hw flash status
3212  * register
3213  * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214  * consecutive sectors. The start index for the nth Hw sector
3215  * can be calculated as = bank * 4096 + n * 256
3216  * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217  * The start index for the nth Hw sector can be calculated
3218  * as = bank * 4096
3219  * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220  * (ich9 only, otherwise error condition)
3221  * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222  */
3223  switch (hsfsts.hsf_status.berasesz) {
3224  case 0:
3225  /* Hw sector size 256 */
3226  sector_size = ICH_FLASH_SEG_SIZE_256;
3227  iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228  break;
3229  case 1:
3230  sector_size = ICH_FLASH_SEG_SIZE_4K;
3231  iteration = 1;
3232  break;
3233  case 2:
3234  sector_size = ICH_FLASH_SEG_SIZE_8K;
3235  iteration = 1;
3236  break;
3237  case 3:
3238  sector_size = ICH_FLASH_SEG_SIZE_64K;
3239  iteration = 1;
3240  break;
3241  default:
3242  return -E1000_ERR_NVM;
3243  }
3244 
3245  /* Start with the base address, then add the sector offset. */
3246  flash_linear_addr = hw->nvm.flash_base_addr;
3247  flash_linear_addr += (bank) ? flash_bank_size : 0;
3248 
3249  for (j = 0; j < iteration ; j++) {
3250  do {
3251  /* Steps */
3252  ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253  if (ret_val)
3254  return ret_val;
3255 
3256  /*
3257  * Write a value 11 (block Erase) in Flash
3258  * Cycle field in hw flash control
3259  */
3260  hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3261  hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262  ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3263 
3264  /*
3265  * Write the last 24 bits of an index within the
3266  * block into Flash Linear address field in Flash
3267  * Address.
3268  */
3269  flash_linear_addr += (j * sector_size);
3270  ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271 
3272  ret_val = e1000_flash_cycle_ich8lan(hw,
3274  if (!ret_val)
3275  break;
3276 
3277  /*
3278  * Check if FCERR is set to 1. If 1,
3279  * clear it and try the whole sequence
3280  * a few more times else Done
3281  */
3282  hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283  if (hsfsts.hsf_status.flcerr)
3284  /* repeat for some time before giving up */
3285  continue;
3286  else if (!hsfsts.hsf_status.flcdone)
3287  return ret_val;
3288  } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289  }
3290 
3291  return 0;
3292 }
3293 
3303 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304 {
3305  s32 ret_val;
3306 
3307  ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308  if (ret_val) {
3309  e_dbg("NVM Read Error\n");
3310  return ret_val;
3311  }
3312 
3313  if (*data == ID_LED_RESERVED_0000 ||
3314  *data == ID_LED_RESERVED_FFFF)
3315  *data = ID_LED_DEFAULT_ICH8LAN;
3316 
3317  return 0;
3318 }
3319 
3333 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334 {
3335  struct e1000_mac_info *mac = &hw->mac;
3336  s32 ret_val;
3337  const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338  const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339  u16 data, i, temp, shift;
3340 
3341  /* Get default ID LED modes */
3342  ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343  if (ret_val)
3344  return ret_val;
3345 
3346  mac->ledctl_default = er32(LEDCTL);
3347  mac->ledctl_mode1 = mac->ledctl_default;
3348  mac->ledctl_mode2 = mac->ledctl_default;
3349 
3350  for (i = 0; i < 4; i++) {
3351  temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352  shift = (i * 5);
3353  switch (temp) {
3354  case ID_LED_ON1_DEF2:
3355  case ID_LED_ON1_ON2:
3356  case ID_LED_ON1_OFF2:
3357  mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358  mac->ledctl_mode1 |= (ledctl_on << shift);
3359  break;
3360  case ID_LED_OFF1_DEF2:
3361  case ID_LED_OFF1_ON2:
3362  case ID_LED_OFF1_OFF2:
3363  mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364  mac->ledctl_mode1 |= (ledctl_off << shift);
3365  break;
3366  default:
3367  /* Do nothing */
3368  break;
3369  }
3370  switch (temp) {
3371  case ID_LED_DEF1_ON2:
3372  case ID_LED_ON1_ON2:
3373  case ID_LED_OFF1_ON2:
3374  mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375  mac->ledctl_mode2 |= (ledctl_on << shift);
3376  break;
3377  case ID_LED_DEF1_OFF2:
3378  case ID_LED_ON1_OFF2:
3379  case ID_LED_OFF1_OFF2:
3380  mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381  mac->ledctl_mode2 |= (ledctl_off << shift);
3382  break;
3383  default:
3384  /* Do nothing */
3385  break;
3386  }
3387  }
3388 
3389  return 0;
3390 }
3391 
3399 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400 {
3401  struct e1000_bus_info *bus = &hw->bus;
3402  s32 ret_val;
3403 
3404  ret_val = e1000e_get_bus_info_pcie(hw);
3405 
3406  /*
3407  * ICH devices are "PCI Express"-ish. They have
3408  * a configuration space, but do not contain
3409  * PCI Express Capability registers, so bus width
3410  * must be hardcoded.
3411  */
3412  if (bus->width == e1000_bus_width_unknown)
3414 
3415  return ret_val;
3416 }
3417 
3425 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426 {
3427  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428  u16 kum_cfg;
3429  u32 ctrl, reg;
3430  s32 ret_val;
3431 
3432  /*
3433  * Prevent the PCI-E bus from sticking if there is no TLP connection
3434  * on the last TLP read/write transaction when MAC is reset.
3435  */
3436  ret_val = e1000e_disable_pcie_master(hw);
3437  if (ret_val)
3438  e_dbg("PCI-E Master disable polling has failed.\n");
3439 
3440  e_dbg("Masking off all interrupts\n");
3441  ew32(IMC, 0xffffffff);
3442 
3443  /*
3444  * Disable the Transmit and Receive units. Then delay to allow
3445  * any pending transactions to complete before we hit the MAC
3446  * with the global reset.
3447  */
3448  ew32(RCTL, 0);
3450  e1e_flush();
3451 
3452  usleep_range(10000, 20000);
3453 
3454  /* Workaround for ICH8 bit corruption issue in FIFO memory */
3455  if (hw->mac.type == e1000_ich8lan) {
3456  /* Set Tx and Rx buffer allocation to 8k apiece. */
3457  ew32(PBA, E1000_PBA_8K);
3458  /* Set Packet Buffer Size to 16k. */
3459  ew32(PBS, E1000_PBS_16K);
3460  }
3461 
3462  if (hw->mac.type == e1000_pchlan) {
3463  /* Save the NVM K1 bit setting */
3464  ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465  if (ret_val)
3466  return ret_val;
3467 
3468  if (kum_cfg & E1000_NVM_K1_ENABLE)
3469  dev_spec->nvm_k1_enabled = true;
3470  else
3471  dev_spec->nvm_k1_enabled = false;
3472  }
3473 
3474  ctrl = er32(CTRL);
3475 
3476  if (!hw->phy.ops.check_reset_block(hw)) {
3477  /*
3478  * Full-chip reset requires MAC and PHY reset at the same
3479  * time to make sure the interface between MAC and the
3480  * external PHY is reset.
3481  */
3482  ctrl |= E1000_CTRL_PHY_RST;
3483 
3484  /*
3485  * Gate automatic PHY configuration by hardware on
3486  * non-managed 82579
3487  */
3488  if ((hw->mac.type == e1000_pch2lan) &&
3489  !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490  e1000_gate_hw_phy_config_ich8lan(hw, true);
3491  }
3492  ret_val = e1000_acquire_swflag_ich8lan(hw);
3493  e_dbg("Issuing a global reset to ich8lan\n");
3494  ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495  /* cannot issue a flush here because it hangs the hardware */
3496  msleep(20);
3497 
3498  /* Set Phy Config Counter to 50msec */
3499  if (hw->mac.type == e1000_pch2lan) {
3500  reg = er32(FEXTNVM3);
3503  ew32(FEXTNVM3, reg);
3504  }
3505 
3506  if (!ret_val)
3508 
3509  if (ctrl & E1000_CTRL_PHY_RST) {
3510  ret_val = hw->phy.ops.get_cfg_done(hw);
3511  if (ret_val)
3512  return ret_val;
3513 
3514  ret_val = e1000_post_phy_reset_ich8lan(hw);
3515  if (ret_val)
3516  return ret_val;
3517  }
3518 
3519  /*
3520  * For PCH, this write will make sure that any noise
3521  * will be detected as a CRC error and be dropped rather than show up
3522  * as a bad packet to the DMA engine.
3523  */
3524  if (hw->mac.type == e1000_pchlan)
3525  ew32(CRC_OFFSET, 0x65656565);
3526 
3527  ew32(IMC, 0xffffffff);
3528  er32(ICR);
3529 
3530  reg = er32(KABGTXD);
3531  reg |= E1000_KABGTXD_BGSQLBIAS;
3532  ew32(KABGTXD, reg);
3533 
3534  return 0;
3535 }
3536 
3549 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550 {
3551  struct e1000_mac_info *mac = &hw->mac;
3552  u32 ctrl_ext, txdctl, snoop;
3553  s32 ret_val;
3554  u16 i;
3555 
3556  e1000_initialize_hw_bits_ich8lan(hw);
3557 
3558  /* Initialize identification LED */
3559  ret_val = mac->ops.id_led_init(hw);
3560  if (ret_val)
3561  e_dbg("Error initializing identification LED\n");
3562  /* This is not fatal and we should not stop init due to this */
3563 
3564  /* Setup the receive address. */
3566 
3567  /* Zero out the Multicast HASH table */
3568  e_dbg("Zeroing the MTA\n");
3569  for (i = 0; i < mac->mta_reg_count; i++)
3570  E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571 
3572  /*
3573  * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574  * the ME. Disable wakeup by clearing the host wakeup bit.
3575  * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576  */
3577  if (hw->phy.type == e1000_phy_82578) {
3578  e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579  i &= ~BM_WUC_HOST_WU_BIT;
3580  e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581  ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582  if (ret_val)
3583  return ret_val;
3584  }
3585 
3586  /* Setup link and flow control */
3587  ret_val = mac->ops.setup_link(hw);
3588 
3589  /* Set the transmit descriptor write-back policy for both queues */
3590  txdctl = er32(TXDCTL(0));
3591  txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3593  txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3595  ew32(TXDCTL(0), txdctl);
3596  txdctl = er32(TXDCTL(1));
3597  txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3599  txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3601  ew32(TXDCTL(1), txdctl);
3602 
3603  /*
3604  * ICH8 has opposite polarity of no_snoop bits.
3605  * By default, we should use snoop behavior.
3606  */
3607  if (mac->type == e1000_ich8lan)
3608  snoop = PCIE_ICH8_SNOOP_ALL;
3609  else
3610  snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611  e1000e_set_pcie_no_snoop(hw, snoop);
3612 
3613  ctrl_ext = er32(CTRL_EXT);
3614  ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615  ew32(CTRL_EXT, ctrl_ext);
3616 
3617  /*
3618  * Clear all of the statistics registers (clear on read). It is
3619  * important that we do this after we have tried to establish link
3620  * because the symbol error count will increment wildly if there
3621  * is no link.
3622  */
3623  e1000_clear_hw_cntrs_ich8lan(hw);
3624 
3625  return ret_val;
3626 }
3634 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635 {
3636  u32 reg;
3637 
3638  /* Extended Device Control */
3639  reg = er32(CTRL_EXT);
3640  reg |= (1 << 22);
3641  /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642  if (hw->mac.type >= e1000_pchlan)
3643  reg |= E1000_CTRL_EXT_PHYPDEN;
3644  ew32(CTRL_EXT, reg);
3645 
3646  /* Transmit Descriptor Control 0 */
3647  reg = er32(TXDCTL(0));
3648  reg |= (1 << 22);
3649  ew32(TXDCTL(0), reg);
3650 
3651  /* Transmit Descriptor Control 1 */
3652  reg = er32(TXDCTL(1));
3653  reg |= (1 << 22);
3654  ew32(TXDCTL(1), reg);
3655 
3656  /* Transmit Arbitration Control 0 */
3657  reg = er32(TARC(0));
3658  if (hw->mac.type == e1000_ich8lan)
3659  reg |= (1 << 28) | (1 << 29);
3660  reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661  ew32(TARC(0), reg);
3662 
3663  /* Transmit Arbitration Control 1 */
3664  reg = er32(TARC(1));
3665  if (er32(TCTL) & E1000_TCTL_MULR)
3666  reg &= ~(1 << 28);
3667  else
3668  reg |= (1 << 28);
3669  reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670  ew32(TARC(1), reg);
3671 
3672  /* Device Status */
3673  if (hw->mac.type == e1000_ich8lan) {
3674  reg = er32(STATUS);
3675  reg &= ~(1 << 31);
3676  ew32(STATUS, reg);
3677  }
3678 
3679  /*
3680  * work-around descriptor data corruption issue during nfs v2 udp
3681  * traffic, just disable the nfs filtering capability
3682  */
3683  reg = er32(RFCTL);
3685 
3686  /*
3687  * Disable IPv6 extension header parsing because some malformed
3688  * IPv6 headers can hang the Rx.
3689  */
3690  if (hw->mac.type == e1000_ich8lan)
3692  ew32(RFCTL, reg);
3693 }
3694 
3705 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706 {
3707  s32 ret_val;
3708 
3709  if (hw->phy.ops.check_reset_block(hw))
3710  return 0;
3711 
3712  /*
3713  * ICH parts do not have a word in the NVM to determine
3714  * the default flow control setting, so we explicitly
3715  * set it to full.
3716  */
3717  if (hw->fc.requested_mode == e1000_fc_default) {
3718  /* Workaround h/w hang when Tx flow control enabled */
3719  if (hw->mac.type == e1000_pchlan)
3720  hw->fc.requested_mode = e1000_fc_rx_pause;
3721  else
3722  hw->fc.requested_mode = e1000_fc_full;
3723  }
3724 
3725  /*
3726  * Save off the requested flow control mode for use later. Depending
3727  * on the link partner's capabilities, we may or may not use this mode.
3728  */
3729  hw->fc.current_mode = hw->fc.requested_mode;
3730 
3731  e_dbg("After fix-ups FlowControl is now = %x\n",
3732  hw->fc.current_mode);
3733 
3734  /* Continue to configure the copper link. */
3735  ret_val = hw->mac.ops.setup_physical_interface(hw);
3736  if (ret_val)
3737  return ret_val;
3738 
3739  ew32(FCTTV, hw->fc.pause_time);
3740  if ((hw->phy.type == e1000_phy_82578) ||
3741  (hw->phy.type == e1000_phy_82579) ||
3742  (hw->phy.type == e1000_phy_i217) ||
3743  (hw->phy.type == e1000_phy_82577)) {
3744  ew32(FCRTV_PCH, hw->fc.refresh_time);
3745 
3746  ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747  hw->fc.pause_time);
3748  if (ret_val)
3749  return ret_val;
3750  }
3751 
3752  return e1000e_set_fc_watermarks(hw);
3753 }
3754 
3763 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764 {
3765  u32 ctrl;
3766  s32 ret_val;
3767  u16 reg_data;
3768 
3769  ctrl = er32(CTRL);
3770  ctrl |= E1000_CTRL_SLU;
3771  ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772  ew32(CTRL, ctrl);
3773 
3774  /*
3775  * Set the mac to wait the maximum time between each iteration
3776  * and increase the max iterations when polling the phy;
3777  * this fixes erroneous timeouts at 10Mbps.
3778  */
3779  ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780  if (ret_val)
3781  return ret_val;
3783  &reg_data);
3784  if (ret_val)
3785  return ret_val;
3786  reg_data |= 0x3F;
3788  reg_data);
3789  if (ret_val)
3790  return ret_val;
3791 
3792  switch (hw->phy.type) {
3793  case e1000_phy_igp_3:
3794  ret_val = e1000e_copper_link_setup_igp(hw);
3795  if (ret_val)
3796  return ret_val;
3797  break;
3798  case e1000_phy_bm:
3799  case e1000_phy_82578:
3800  ret_val = e1000e_copper_link_setup_m88(hw);
3801  if (ret_val)
3802  return ret_val;
3803  break;
3804  case e1000_phy_82577:
3805  case e1000_phy_82579:
3806  case e1000_phy_i217:
3807  ret_val = e1000_copper_link_setup_82577(hw);
3808  if (ret_val)
3809  return ret_val;
3810  break;
3811  case e1000_phy_ife:
3812  ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813  if (ret_val)
3814  return ret_val;
3815 
3816  reg_data &= ~IFE_PMC_AUTO_MDIX;
3817 
3818  switch (hw->phy.mdix) {
3819  case 1:
3820  reg_data &= ~IFE_PMC_FORCE_MDIX;
3821  break;
3822  case 2:
3823  reg_data |= IFE_PMC_FORCE_MDIX;
3824  break;
3825  case 0:
3826  default:
3827  reg_data |= IFE_PMC_AUTO_MDIX;
3828  break;
3829  }
3830  ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831  if (ret_val)
3832  return ret_val;
3833  break;
3834  default:
3835  break;
3836  }
3837 
3838  return e1000e_setup_copper_link(hw);
3839 }
3840 
3851 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852  u16 *duplex)
3853 {
3854  s32 ret_val;
3855 
3856  ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857  if (ret_val)
3858  return ret_val;
3859 
3860  if ((hw->mac.type == e1000_ich8lan) &&
3861  (hw->phy.type == e1000_phy_igp_3) &&
3862  (*speed == SPEED_1000)) {
3863  ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864  }
3865 
3866  return ret_val;
3867 }
3868 
3884 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885 {
3886  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887  u32 phy_ctrl;
3888  s32 ret_val;
3889  u16 i, data;
3890  bool link;
3891 
3892  if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893  return 0;
3894 
3895  /*
3896  * Make sure link is up before proceeding. If not just return.
3897  * Attempting this while link is negotiating fouled up link
3898  * stability
3899  */
3900  ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901  if (!link)
3902  return 0;
3903 
3904  for (i = 0; i < 10; i++) {
3905  /* read once to clear */
3906  ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907  if (ret_val)
3908  return ret_val;
3909  /* and again to get new status */
3910  ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911  if (ret_val)
3912  return ret_val;
3913 
3914  /* check for PCS lock */
3915  if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916  return 0;
3917 
3918  /* Issue PHY reset */
3919  e1000_phy_hw_reset(hw);
3920  mdelay(5);
3921  }
3922  /* Disable GigE link negotiation */
3923  phy_ctrl = er32(PHY_CTRL);
3924  phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3926  ew32(PHY_CTRL, phy_ctrl);
3927 
3928  /*
3929  * Call gig speed drop workaround on Gig disable before accessing
3930  * any PHY registers
3931  */
3933 
3934  /* unable to acquire PCS lock */
3935  return -E1000_ERR_PHY;
3936 }
3937 
3947  bool state)
3948 {
3949  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950 
3951  if (hw->mac.type != e1000_ich8lan) {
3952  e_dbg("Workaround applies to ICH8 only.\n");
3953  return;
3954  }
3955 
3957 }
3958 
3970 {
3971  u32 reg;
3972  u16 data;
3973  u8 retry = 0;
3974 
3975  if (hw->phy.type != e1000_phy_igp_3)
3976  return;
3977 
3978  /* Try the workaround twice (if needed) */
3979  do {
3980  /* Disable link */
3981  reg = er32(PHY_CTRL);
3982  reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3984  ew32(PHY_CTRL, reg);
3985 
3986  /*
3987  * Call gig speed drop workaround on Gig disable before
3988  * accessing any PHY registers
3989  */
3990  if (hw->mac.type == e1000_ich8lan)
3992 
3993  /* Write VR power-down enable */
3994  e1e_rphy(hw, IGP3_VR_CTRL, &data);
3996  e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997 
3998  /* Read it back and test */
3999  e1e_rphy(hw, IGP3_VR_CTRL, &data);
4001  if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002  break;
4003 
4004  /* Issue PHY reset and repeat at most one more time */
4005  reg = er32(CTRL);
4006  ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007  retry++;
4008  } while (retry);
4009 }
4010 
4022 {
4023  s32 ret_val;
4024  u16 reg_data;
4025 
4026  if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027  return;
4028 
4030  &reg_data);
4031  if (ret_val)
4032  return;
4033  reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4035  reg_data);
4036  if (ret_val)
4037  return;
4038  reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4040  reg_data);
4041 }
4042 
4058 {
4059  struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060  u32 phy_ctrl;
4061  s32 ret_val;
4062 
4063  phy_ctrl = er32(PHY_CTRL);
4064  phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4065  if (hw->phy.type == e1000_phy_i217) {
4066  u16 phy_reg;
4067 
4068  ret_val = hw->phy.ops.acquire(hw);
4069  if (ret_val)
4070  goto out;
4071 
4072  if (!dev_spec->eee_disable) {
4073  u16 eee_advert;
4074 
4075  ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4077  if (ret_val)
4078  goto release;
4079  e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080 
4081  /*
4082  * Disable LPLU if both link partners support 100BaseT
4083  * EEE and 100Full is advertised on both ends of the
4084  * link.
4085  */
4086  if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087  (dev_spec->eee_lp_ability &
4088  I217_EEE_100_SUPPORTED) &&
4089  (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090  phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4092  }
4093 
4094  /*
4095  * For i217 Intel Rapid Start Technology support,
4096  * when the system is going into Sx and no manageability engine
4097  * is present, the driver must configure proxy to reset only on
4098  * power good. LPI (Low Power Idle) state must also reset only
4099  * on power good, as well as the MTA (Multicast table array).
4100  * The SMBus release must also be disabled on LCD reset.
4101  */
4102  if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103 
4104  /* Enable proxy to reset only on power good. */
4105  e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106  phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107  e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108 
4109  /*
4110  * Set bit enable LPI (EEE) to reset only on
4111  * power good.
4112  */
4113  e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114  phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115  e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116 
4117  /* Disable the SMB release on LCD reset. */
4118  e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119  phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120  e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121  }
4122 
4123  /*
4124  * Enable MTA to reset for Intel Rapid Start Technology
4125  * Support
4126  */
4127  e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128  phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129  e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130 
4131 release:
4132  hw->phy.ops.release(hw);
4133  }
4134 out:
4135  ew32(PHY_CTRL, phy_ctrl);
4136 
4137  if (hw->mac.type == e1000_ich8lan)
4139 
4140  if (hw->mac.type >= e1000_pchlan) {
4141  e1000_oem_bits_config_ich8lan(hw, false);
4142 
4143  /* Reset PHY to activate OEM bits on 82577/8 */
4144  if (hw->mac.type == e1000_pchlan)
4146 
4147  ret_val = hw->phy.ops.acquire(hw);
4148  if (ret_val)
4149  return;
4150  e1000_write_smbus_addr(hw);
4151  hw->phy.ops.release(hw);
4152  }
4153 }
4154 
4166 {
4167  s32 ret_val;
4168 
4169  if (hw->mac.type < e1000_pch2lan)
4170  return;
4171 
4172  ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173  if (ret_val) {
4174  e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175  return;
4176  }
4177 
4178  /*
4179  * For i217 Intel Rapid Start Technology support when the system
4180  * is transitioning from Sx and no manageability engine is present
4181  * configure SMBus to restore on reset, disable proxy, and enable
4182  * the reset on MTA (Multicast table array).
4183  */
4184  if (hw->phy.type == e1000_phy_i217) {
4185  u16 phy_reg;
4186 
4187  ret_val = hw->phy.ops.acquire(hw);
4188  if (ret_val) {
4189  e_dbg("Failed to setup iRST\n");
4190  return;
4191  }
4192 
4193  if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194  /*
4195  * Restore clear on SMB if no manageability engine
4196  * is present
4197  */
4198  ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199  if (ret_val)
4200  goto release;
4202  e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203 
4204  /* Disable Proxy */
4205  e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206  }
4207  /* Enable reset on MTA */
4208  ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209  if (ret_val)
4210  goto release;
4211  phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212  e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213 release:
4214  if (ret_val)
4215  e_dbg("Error %d in resume workarounds\n", ret_val);
4216  hw->phy.ops.release(hw);
4217  }
4218 }
4219 
4226 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227 {
4228  if (hw->phy.type == e1000_phy_ife)
4229  return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230 
4231  ew32(LEDCTL, hw->mac.ledctl_default);
4232  return 0;
4233 }
4234 
4241 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242 {
4243  if (hw->phy.type == e1000_phy_ife)
4244  return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4246 
4247  ew32(LEDCTL, hw->mac.ledctl_mode2);
4248  return 0;
4249 }
4250 
4257 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258 {
4259  if (hw->phy.type == e1000_phy_ife)
4260  return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4263 
4264  ew32(LEDCTL, hw->mac.ledctl_mode1);
4265  return 0;
4266 }
4267 
4274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275 {
4276  return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277 }
4278 
4285 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286 {
4287  return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288 }
4289 
4296 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297 {
4298  u16 data = (u16)hw->mac.ledctl_mode2;
4299  u32 i, led;
4300 
4301  /*
4302  * If no link, then turn LED on by setting the invert bit
4303  * for each LED that's mode is "link_up" in ledctl_mode2.
4304  */
4305  if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306  for (i = 0; i < 3; i++) {
4307  led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308  if ((led & E1000_PHY_LED0_MODE_MASK) !=
4310  continue;
4311  if (led & E1000_PHY_LED0_IVRT)
4312  data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313  else
4314  data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315  }
4316  }
4317 
4318  return e1e_wphy(hw, HV_LED_CONFIG, data);
4319 }
4320 
4327 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328 {
4329  u16 data = (u16)hw->mac.ledctl_mode1;
4330  u32 i, led;
4331 
4332  /*
4333  * If no link, then turn LED off by clearing the invert bit
4334  * for each LED that's mode is "link_up" in ledctl_mode1.
4335  */
4336  if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337  for (i = 0; i < 3; i++) {
4338  led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339  if ((led & E1000_PHY_LED0_MODE_MASK) !=
4341  continue;
4342  if (led & E1000_PHY_LED0_IVRT)
4343  data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344  else
4345  data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346  }
4347  }
4348 
4349  return e1e_wphy(hw, HV_LED_CONFIG, data);
4350 }
4351 
4364 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365 {
4366  s32 ret_val = 0;
4367  u32 bank = 0;
4368  u32 status;
4369 
4370  e1000e_get_cfg_done(hw);
4371 
4372  /* Wait for indication from h/w that it has completed basic config */
4373  if (hw->mac.type >= e1000_ich10lan) {
4374  e1000_lan_init_done_ich8lan(hw);
4375  } else {
4376  ret_val = e1000e_get_auto_rd_done(hw);
4377  if (ret_val) {
4378  /*
4379  * When auto config read does not complete, do not
4380  * return with an error. This can happen in situations
4381  * where there is no eeprom and prevents getting link.
4382  */
4383  e_dbg("Auto Read Done did not complete\n");
4384  ret_val = 0;
4385  }
4386  }
4387 
4388  /* Clear PHY Reset Asserted bit */
4389  status = er32(STATUS);
4390  if (status & E1000_STATUS_PHYRA)
4391  ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392  else
4393  e_dbg("PHY Reset Asserted not set - needs delay\n");
4394 
4395  /* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396  if (hw->mac.type <= e1000_ich9lan) {
4397  if (!(er32(EECD) & E1000_EECD_PRES) &&
4398  (hw->phy.type == e1000_phy_igp_3)) {
4400  }
4401  } else {
4402  if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403  /* Maybe we should do a basic PHY config */
4404  e_dbg("EEPROM not present\n");
4405  ret_val = -E1000_ERR_CONFIG;
4406  }
4407  }
4408 
4409  return ret_val;
4410 }
4411 
4419 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420 {
4421  /* If the management interface is not enabled, then power down */
4422  if (!(hw->mac.ops.check_mng_mode(hw) ||
4423  hw->phy.ops.check_reset_block(hw)))
4425 }
4426 
4434 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435 {
4436  u16 phy_data;
4437  s32 ret_val;
4438 
4440 
4441  er32(ALGNERRC);
4442  er32(RXERRC);
4443  er32(TNCRS);
4444  er32(CEXTERR);
4445  er32(TSCTC);
4446  er32(TSCTFC);
4447 
4448  er32(MGTPRC);
4449  er32(MGTPDC);
4450  er32(MGTPTC);
4451 
4452  er32(IAC);
4453  er32(ICRXOC);
4454 
4455  /* Clear PHY statistics registers */
4456  if ((hw->phy.type == e1000_phy_82578) ||
4457  (hw->phy.type == e1000_phy_82579) ||
4458  (hw->phy.type == e1000_phy_i217) ||
4459  (hw->phy.type == e1000_phy_82577)) {
4460  ret_val = hw->phy.ops.acquire(hw);
4461  if (ret_val)
4462  return;
4463  ret_val = hw->phy.ops.set_page(hw,
4465  if (ret_val)
4466  goto release;
4467  hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468  hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469  hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470  hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471  hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472  hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473  hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474  hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475  hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476  hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477  hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478  hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479  hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480  hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481 release:
4482  hw->phy.ops.release(hw);
4483  }
4484 }
4485 
4486 static const struct e1000_mac_operations ich8_mac_ops = {
4487  /* check_mng_mode dependent on mac type */
4488  .check_for_link = e1000_check_for_copper_link_ich8lan,
4489  /* cleanup_led dependent on mac type */
4490  .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4491  .get_bus_info = e1000_get_bus_info_ich8lan,
4492  .set_lan_id = e1000_set_lan_id_single_port,
4493  .get_link_up_info = e1000_get_link_up_info_ich8lan,
4494  /* led_on dependent on mac type */
4495  /* led_off dependent on mac type */
4496  .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4497  .reset_hw = e1000_reset_hw_ich8lan,
4498  .init_hw = e1000_init_hw_ich8lan,
4499  .setup_link = e1000_setup_link_ich8lan,
4500  .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501  /* id_led_init dependent on mac type */
4502  .config_collision_dist = e1000e_config_collision_dist_generic,
4503  .rar_set = e1000e_rar_set_generic,
4504 };
4505 
4506 static const struct e1000_phy_operations ich8_phy_ops = {
4507  .acquire = e1000_acquire_swflag_ich8lan,
4508  .check_reset_block = e1000_check_reset_block_ich8lan,
4509  .commit = NULL,
4510  .get_cfg_done = e1000_get_cfg_done_ich8lan,
4511  .get_cable_length = e1000e_get_cable_length_igp_2,
4512  .read_reg = e1000e_read_phy_reg_igp,
4513  .release = e1000_release_swflag_ich8lan,
4514  .reset = e1000_phy_hw_reset_ich8lan,
4515  .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4516  .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4517  .write_reg = e1000e_write_phy_reg_igp,
4518 };
4519 
4520 static const struct e1000_nvm_operations ich8_nvm_ops = {
4521  .acquire = e1000_acquire_nvm_ich8lan,
4522  .read = e1000_read_nvm_ich8lan,
4523  .release = e1000_release_nvm_ich8lan,
4524  .reload = e1000e_reload_nvm_generic,
4525  .update = e1000_update_nvm_checksum_ich8lan,
4526  .valid_led_default = e1000_valid_led_default_ich8lan,
4527  .validate = e1000_validate_nvm_checksum_ich8lan,
4528  .write = e1000_write_nvm_ich8lan,
4529 };
4530 
4531 const struct e1000_info e1000_ich8_info = {
4532  .mac = e1000_ich8lan,
4533  .flags = FLAG_HAS_WOL
4534  | FLAG_IS_ICH
4536  | FLAG_HAS_AMT
4537  | FLAG_HAS_FLASH
4538  | FLAG_APME_IN_WUC,
4539  .pba = 8,
4540  .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4541  .get_variants = e1000_get_variants_ich8lan,
4542  .mac_ops = &ich8_mac_ops,
4543  .phy_ops = &ich8_phy_ops,
4544  .nvm_ops = &ich8_nvm_ops,
4545 };
4546 
4547 const struct e1000_info e1000_ich9_info = {
4548  .mac = e1000_ich9lan,
4549  .flags = FLAG_HAS_JUMBO_FRAMES
4550  | FLAG_IS_ICH
4551  | FLAG_HAS_WOL
4553  | FLAG_HAS_AMT
4554  | FLAG_HAS_FLASH
4555  | FLAG_APME_IN_WUC,
4556  .pba = 18,
4557  .max_hw_frame_size = DEFAULT_JUMBO,
4558  .get_variants = e1000_get_variants_ich8lan,
4559  .mac_ops = &ich8_mac_ops,
4560  .phy_ops = &ich8_phy_ops,
4561  .nvm_ops = &ich8_nvm_ops,
4562 };
4563 
4565  .mac = e1000_ich10lan,
4566  .flags = FLAG_HAS_JUMBO_FRAMES
4567  | FLAG_IS_ICH
4568  | FLAG_HAS_WOL
4570  | FLAG_HAS_AMT
4571  | FLAG_HAS_FLASH
4572  | FLAG_APME_IN_WUC,
4573  .pba = 18,
4574  .max_hw_frame_size = DEFAULT_JUMBO,
4575  .get_variants = e1000_get_variants_ich8lan,
4576  .mac_ops = &ich8_mac_ops,
4577  .phy_ops = &ich8_phy_ops,
4578  .nvm_ops = &ich8_nvm_ops,
4579 };
4580 
4581 const struct e1000_info e1000_pch_info = {
4582  .mac = e1000_pchlan,
4583  .flags = FLAG_IS_ICH
4584  | FLAG_HAS_WOL
4586  | FLAG_HAS_AMT
4587  | FLAG_HAS_FLASH
4589  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590  | FLAG_APME_IN_WUC,
4591  .flags2 = FLAG2_HAS_PHY_STATS,
4592  .pba = 26,
4593  .max_hw_frame_size = 4096,
4594  .get_variants = e1000_get_variants_ich8lan,
4595  .mac_ops = &ich8_mac_ops,
4596  .phy_ops = &ich8_phy_ops,
4597  .nvm_ops = &ich8_nvm_ops,
4598 };
4599 
4600 const struct e1000_info e1000_pch2_info = {
4601  .mac = e1000_pch2lan,
4602  .flags = FLAG_IS_ICH
4603  | FLAG_HAS_WOL
4605  | FLAG_HAS_AMT
4606  | FLAG_HAS_FLASH
4608  | FLAG_APME_IN_WUC,
4609  .flags2 = FLAG2_HAS_PHY_STATS
4610  | FLAG2_HAS_EEE,
4611  .pba = 26,
4612  .max_hw_frame_size = DEFAULT_JUMBO,
4613  .get_variants = e1000_get_variants_ich8lan,
4614  .mac_ops = &ich8_mac_ops,
4615  .phy_ops = &ich8_phy_ops,
4616  .nvm_ops = &ich8_nvm_ops,
4617 };
4618 
4620  .mac = e1000_pch_lpt,
4621  .flags = FLAG_IS_ICH
4622  | FLAG_HAS_WOL
4624  | FLAG_HAS_AMT
4625  | FLAG_HAS_FLASH
4627  | FLAG_APME_IN_WUC,
4628  .flags2 = FLAG2_HAS_PHY_STATS
4629  | FLAG2_HAS_EEE,
4630  .pba = 26,
4631  .max_hw_frame_size = DEFAULT_JUMBO,
4632  .get_variants = e1000_get_variants_ich8lan,
4633  .mac_ops = &ich8_mac_ops,
4634  .phy_ops = &ich8_phy_ops,
4635  .nvm_ops = &ich8_nvm_ops,
4636 };