Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
db8500-prcmu.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <[email protected]>
7  * Author: Sundar Iyer <[email protected]>
8  * Author: Mattias Nilsson <[email protected]>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/dbx500-prcmu.h>
34 #include <asm/hardware/gic.h>
35 #include <mach/hardware.h>
36 #include <mach/irqs.h>
37 #include <mach/db8500-regs.h>
38 #include <mach/id.h>
39 #include "dbx500-prcmu-regs.h"
40 
41 /* Offset for the firmware version within the TCPM */
42 #define PRCMU_FW_VERSION_OFFSET 0xA4
43 
44 /* Index of different voltages to be used when accessing AVSData */
45 #define PRCM_AVS_BASE 0x2FC
46 #define PRCM_AVS_VBB_RET (PRCM_AVS_BASE + 0x0)
47 #define PRCM_AVS_VBB_MAX_OPP (PRCM_AVS_BASE + 0x1)
48 #define PRCM_AVS_VBB_100_OPP (PRCM_AVS_BASE + 0x2)
49 #define PRCM_AVS_VBB_50_OPP (PRCM_AVS_BASE + 0x3)
50 #define PRCM_AVS_VARM_MAX_OPP (PRCM_AVS_BASE + 0x4)
51 #define PRCM_AVS_VARM_100_OPP (PRCM_AVS_BASE + 0x5)
52 #define PRCM_AVS_VARM_50_OPP (PRCM_AVS_BASE + 0x6)
53 #define PRCM_AVS_VARM_RET (PRCM_AVS_BASE + 0x7)
54 #define PRCM_AVS_VAPE_100_OPP (PRCM_AVS_BASE + 0x8)
55 #define PRCM_AVS_VAPE_50_OPP (PRCM_AVS_BASE + 0x9)
56 #define PRCM_AVS_VMOD_100_OPP (PRCM_AVS_BASE + 0xA)
57 #define PRCM_AVS_VMOD_50_OPP (PRCM_AVS_BASE + 0xB)
58 #define PRCM_AVS_VSAFE (PRCM_AVS_BASE + 0xC)
59 
60 #define PRCM_AVS_VOLTAGE 0
61 #define PRCM_AVS_VOLTAGE_MASK 0x3f
62 #define PRCM_AVS_ISSLOWSTARTUP 6
63 #define PRCM_AVS_ISSLOWSTARTUP_MASK (1 << PRCM_AVS_ISSLOWSTARTUP)
64 #define PRCM_AVS_ISMODEENABLE 7
65 #define PRCM_AVS_ISMODEENABLE_MASK (1 << PRCM_AVS_ISMODEENABLE)
66 
67 #define PRCM_BOOT_STATUS 0xFFF
68 #define PRCM_ROMCODE_A2P 0xFFE
69 #define PRCM_ROMCODE_P2A 0xFFD
70 #define PRCM_XP70_CUR_PWR_STATE 0xFFC /* 4 BYTES */
71 
72 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
73 
74 #define _PRCM_MBOX_HEADER 0xFE8 /* 16 bytes */
75 #define PRCM_MBOX_HEADER_REQ_MB0 (_PRCM_MBOX_HEADER + 0x0)
76 #define PRCM_MBOX_HEADER_REQ_MB1 (_PRCM_MBOX_HEADER + 0x1)
77 #define PRCM_MBOX_HEADER_REQ_MB2 (_PRCM_MBOX_HEADER + 0x2)
78 #define PRCM_MBOX_HEADER_REQ_MB3 (_PRCM_MBOX_HEADER + 0x3)
79 #define PRCM_MBOX_HEADER_REQ_MB4 (_PRCM_MBOX_HEADER + 0x4)
80 #define PRCM_MBOX_HEADER_REQ_MB5 (_PRCM_MBOX_HEADER + 0x5)
81 #define PRCM_MBOX_HEADER_ACK_MB0 (_PRCM_MBOX_HEADER + 0x8)
82 
83 /* Req Mailboxes */
84 #define PRCM_REQ_MB0 0xFDC /* 12 bytes */
85 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes */
86 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes */
87 #define PRCM_REQ_MB3 0xE4C /* 372 bytes */
88 #define PRCM_REQ_MB4 0xE48 /* 4 bytes */
89 #define PRCM_REQ_MB5 0xE44 /* 4 bytes */
90 
91 /* Ack Mailboxes */
92 #define PRCM_ACK_MB0 0xE08 /* 52 bytes */
93 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
94 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
95 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
96 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
97 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
98 
99 /* Mailbox 0 headers */
100 #define MB0H_POWER_STATE_TRANS 0
101 #define MB0H_CONFIG_WAKEUPS_EXE 1
102 #define MB0H_READ_WAKEUP_ACK 3
103 #define MB0H_CONFIG_WAKEUPS_SLEEP 4
104 
105 #define MB0H_WAKEUP_EXE 2
106 #define MB0H_WAKEUP_SLEEP 5
107 
108 /* Mailbox 0 REQs */
109 #define PRCM_REQ_MB0_AP_POWER_STATE (PRCM_REQ_MB0 + 0x0)
110 #define PRCM_REQ_MB0_AP_PLL_STATE (PRCM_REQ_MB0 + 0x1)
111 #define PRCM_REQ_MB0_ULP_CLOCK_STATE (PRCM_REQ_MB0 + 0x2)
112 #define PRCM_REQ_MB0_DO_NOT_WFI (PRCM_REQ_MB0 + 0x3)
113 #define PRCM_REQ_MB0_WAKEUP_8500 (PRCM_REQ_MB0 + 0x4)
114 #define PRCM_REQ_MB0_WAKEUP_4500 (PRCM_REQ_MB0 + 0x8)
115 
116 /* Mailbox 0 ACKs */
117 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS (PRCM_ACK_MB0 + 0x0)
118 #define PRCM_ACK_MB0_READ_POINTER (PRCM_ACK_MB0 + 0x1)
119 #define PRCM_ACK_MB0_WAKEUP_0_8500 (PRCM_ACK_MB0 + 0x4)
120 #define PRCM_ACK_MB0_WAKEUP_0_4500 (PRCM_ACK_MB0 + 0x8)
121 #define PRCM_ACK_MB0_WAKEUP_1_8500 (PRCM_ACK_MB0 + 0x1C)
122 #define PRCM_ACK_MB0_WAKEUP_1_4500 (PRCM_ACK_MB0 + 0x20)
123 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
124 
125 /* Mailbox 1 headers */
126 #define MB1H_ARM_APE_OPP 0x0
127 #define MB1H_RESET_MODEM 0x2
128 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
129 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
130 #define MB1H_RELEASE_USB_WAKEUP 0x5
131 #define MB1H_PLL_ON_OFF 0x6
132 
133 /* Mailbox 1 Requests */
134 #define PRCM_REQ_MB1_ARM_OPP (PRCM_REQ_MB1 + 0x0)
135 #define PRCM_REQ_MB1_APE_OPP (PRCM_REQ_MB1 + 0x1)
136 #define PRCM_REQ_MB1_PLL_ON_OFF (PRCM_REQ_MB1 + 0x4)
137 #define PLL_SOC0_OFF 0x1
138 #define PLL_SOC0_ON 0x2
139 #define PLL_SOC1_OFF 0x4
140 #define PLL_SOC1_ON 0x8
141 
142 /* Mailbox 1 ACKs */
143 #define PRCM_ACK_MB1_CURRENT_ARM_OPP (PRCM_ACK_MB1 + 0x0)
144 #define PRCM_ACK_MB1_CURRENT_APE_OPP (PRCM_ACK_MB1 + 0x1)
145 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
146 #define PRCM_ACK_MB1_DVFS_STATUS (PRCM_ACK_MB1 + 0x3)
147 
148 /* Mailbox 2 headers */
149 #define MB2H_DPS 0x0
150 #define MB2H_AUTO_PWR 0x1
151 
152 /* Mailbox 2 REQs */
153 #define PRCM_REQ_MB2_SVA_MMDSP (PRCM_REQ_MB2 + 0x0)
154 #define PRCM_REQ_MB2_SVA_PIPE (PRCM_REQ_MB2 + 0x1)
155 #define PRCM_REQ_MB2_SIA_MMDSP (PRCM_REQ_MB2 + 0x2)
156 #define PRCM_REQ_MB2_SIA_PIPE (PRCM_REQ_MB2 + 0x3)
157 #define PRCM_REQ_MB2_SGA (PRCM_REQ_MB2 + 0x4)
158 #define PRCM_REQ_MB2_B2R2_MCDE (PRCM_REQ_MB2 + 0x5)
159 #define PRCM_REQ_MB2_ESRAM12 (PRCM_REQ_MB2 + 0x6)
160 #define PRCM_REQ_MB2_ESRAM34 (PRCM_REQ_MB2 + 0x7)
161 #define PRCM_REQ_MB2_AUTO_PM_SLEEP (PRCM_REQ_MB2 + 0x8)
162 #define PRCM_REQ_MB2_AUTO_PM_IDLE (PRCM_REQ_MB2 + 0xC)
163 
164 /* Mailbox 2 ACKs */
165 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
166 #define HWACC_PWR_ST_OK 0xFE
167 
168 /* Mailbox 3 headers */
169 #define MB3H_ANC 0x0
170 #define MB3H_SIDETONE 0x1
171 #define MB3H_SYSCLK 0xE
172 
173 /* Mailbox 3 Requests */
174 #define PRCM_REQ_MB3_ANC_FIR_COEFF (PRCM_REQ_MB3 + 0x0)
175 #define PRCM_REQ_MB3_ANC_IIR_COEFF (PRCM_REQ_MB3 + 0x20)
176 #define PRCM_REQ_MB3_ANC_SHIFTER (PRCM_REQ_MB3 + 0x60)
177 #define PRCM_REQ_MB3_ANC_WARP (PRCM_REQ_MB3 + 0x64)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN (PRCM_REQ_MB3 + 0x68)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
180 #define PRCM_REQ_MB3_SYSCLK_MGT (PRCM_REQ_MB3 + 0x16C)
181 
182 /* Mailbox 4 headers */
183 #define MB4H_DDR_INIT 0x0
184 #define MB4H_MEM_ST 0x1
185 #define MB4H_HOTDOG 0x12
186 #define MB4H_HOTMON 0x13
187 #define MB4H_HOT_PERIOD 0x14
188 #define MB4H_A9WDOG_CONF 0x16
189 #define MB4H_A9WDOG_EN 0x17
190 #define MB4H_A9WDOG_DIS 0x18
191 #define MB4H_A9WDOG_LOAD 0x19
192 #define MB4H_A9WDOG_KICK 0x20
193 
194 /* Mailbox 4 Requests */
195 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE (PRCM_REQ_MB4 + 0x0)
196 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE (PRCM_REQ_MB4 + 0x1)
197 #define PRCM_REQ_MB4_ESRAM0_ST (PRCM_REQ_MB4 + 0x3)
198 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD (PRCM_REQ_MB4 + 0x0)
199 #define PRCM_REQ_MB4_HOTMON_LOW (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_HIGH (PRCM_REQ_MB4 + 0x1)
201 #define PRCM_REQ_MB4_HOTMON_CONFIG (PRCM_REQ_MB4 + 0x2)
202 #define PRCM_REQ_MB4_HOT_PERIOD (PRCM_REQ_MB4 + 0x0)
203 #define HOTMON_CONFIG_LOW BIT(0)
204 #define HOTMON_CONFIG_HIGH BIT(1)
205 #define PRCM_REQ_MB4_A9WDOG_0 (PRCM_REQ_MB4 + 0x0)
206 #define PRCM_REQ_MB4_A9WDOG_1 (PRCM_REQ_MB4 + 0x1)
207 #define PRCM_REQ_MB4_A9WDOG_2 (PRCM_REQ_MB4 + 0x2)
208 #define PRCM_REQ_MB4_A9WDOG_3 (PRCM_REQ_MB4 + 0x3)
209 #define A9WDOG_AUTO_OFF_EN BIT(7)
210 #define A9WDOG_AUTO_OFF_DIS 0
211 #define A9WDOG_ID_MASK 0xf
212 
213 /* Mailbox 5 Requests */
214 #define PRCM_REQ_MB5_I2C_SLAVE_OP (PRCM_REQ_MB5 + 0x0)
215 #define PRCM_REQ_MB5_I2C_HW_BITS (PRCM_REQ_MB5 + 0x1)
216 #define PRCM_REQ_MB5_I2C_REG (PRCM_REQ_MB5 + 0x2)
217 #define PRCM_REQ_MB5_I2C_VAL (PRCM_REQ_MB5 + 0x3)
218 #define PRCMU_I2C_WRITE(slave) \
219  (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
220 #define PRCMU_I2C_READ(slave) \
221  (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
222 #define PRCMU_I2C_STOP_EN BIT(3)
223 
224 /* Mailbox 5 ACKs */
225 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
226 #define PRCM_ACK_MB5_I2C_VAL (PRCM_ACK_MB5 + 0x3)
227 #define I2C_WR_OK 0x1
228 #define I2C_RD_OK 0x2
229 
230 #define NUM_MB 8
231 #define MBOX_BIT BIT
232 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
233 
234 /*
235  * Wakeups/IRQs
236  */
237 
238 #define WAKEUP_BIT_RTC BIT(0)
239 #define WAKEUP_BIT_RTT0 BIT(1)
240 #define WAKEUP_BIT_RTT1 BIT(2)
241 #define WAKEUP_BIT_HSI0 BIT(3)
242 #define WAKEUP_BIT_HSI1 BIT(4)
243 #define WAKEUP_BIT_CA_WAKE BIT(5)
244 #define WAKEUP_BIT_USB BIT(6)
245 #define WAKEUP_BIT_ABB BIT(7)
246 #define WAKEUP_BIT_ABB_FIFO BIT(8)
247 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
248 #define WAKEUP_BIT_CA_SLEEP BIT(10)
249 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
250 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
251 #define WAKEUP_BIT_ANC_OK BIT(13)
252 #define WAKEUP_BIT_SW_ERROR BIT(14)
253 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
254 #define WAKEUP_BIT_ARM BIT(17)
255 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
256 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
257 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
258 #define WAKEUP_BIT_GPIO0 BIT(23)
259 #define WAKEUP_BIT_GPIO1 BIT(24)
260 #define WAKEUP_BIT_GPIO2 BIT(25)
261 #define WAKEUP_BIT_GPIO3 BIT(26)
262 #define WAKEUP_BIT_GPIO4 BIT(27)
263 #define WAKEUP_BIT_GPIO5 BIT(28)
264 #define WAKEUP_BIT_GPIO6 BIT(29)
265 #define WAKEUP_BIT_GPIO7 BIT(30)
266 #define WAKEUP_BIT_GPIO8 BIT(31)
267 
268 static struct {
269  bool valid;
271 } fw_info;
272 
273 static struct irq_domain *db8500_irq_domain;
274 
275 /*
276  * This vector maps irq numbers to the bits in the bit field used in
277  * communication with the PRCMU firmware.
278  *
279  * The reason for having this is to keep the irq numbers contiguous even though
280  * the bits in the bit field are not. (The bits also have a tendency to move
281  * around, to further complicate matters.)
282  */
283 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
284 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
285 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
286  IRQ_ENTRY(RTC),
287  IRQ_ENTRY(RTT0),
288  IRQ_ENTRY(RTT1),
289  IRQ_ENTRY(HSI0),
290  IRQ_ENTRY(HSI1),
291  IRQ_ENTRY(CA_WAKE),
292  IRQ_ENTRY(USB),
293  IRQ_ENTRY(ABB),
294  IRQ_ENTRY(ABB_FIFO),
295  IRQ_ENTRY(CA_SLEEP),
296  IRQ_ENTRY(ARM),
297  IRQ_ENTRY(HOTMON_LOW),
298  IRQ_ENTRY(HOTMON_HIGH),
299  IRQ_ENTRY(MODEM_SW_RESET_REQ),
300  IRQ_ENTRY(GPIO0),
301  IRQ_ENTRY(GPIO1),
302  IRQ_ENTRY(GPIO2),
303  IRQ_ENTRY(GPIO3),
304  IRQ_ENTRY(GPIO4),
305  IRQ_ENTRY(GPIO5),
306  IRQ_ENTRY(GPIO6),
307  IRQ_ENTRY(GPIO7),
309 };
310 
311 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
312 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
313 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
314  WAKEUP_ENTRY(RTC),
315  WAKEUP_ENTRY(RTT0),
316  WAKEUP_ENTRY(RTT1),
317  WAKEUP_ENTRY(HSI0),
318  WAKEUP_ENTRY(HSI1),
319  WAKEUP_ENTRY(USB),
320  WAKEUP_ENTRY(ABB),
321  WAKEUP_ENTRY(ABB_FIFO),
323 };
324 
325 /*
326  * mb0_transfer - state needed for mailbox 0 communication.
327  * @lock: The transaction lock.
328  * @dbb_events_lock: A lock used to handle concurrent access to (parts of)
329  * the request data.
330  * @mask_work: Work structure used for (un)masking wakeup interrupts.
331  * @req: Request data that need to persist between requests.
332  */
333 static struct {
339  struct {
343  } req;
344 } mb0_transfer;
345 
346 /*
347  * mb1_transfer - state needed for mailbox 1 communication.
348  * @lock: The transaction lock.
349  * @work: The transaction completion structure.
350  * @ape_opp: The current APE OPP.
351  * @ack: Reply ("acknowledge") data.
352  */
353 static struct {
354  struct mutex lock;
355  struct completion work;
357  struct {
360  u8 ape_opp;
362  } ack;
363 } mb1_transfer;
364 
365 /*
366  * mb2_transfer - state needed for mailbox 2 communication.
367  * @lock: The transaction lock.
368  * @work: The transaction completion structure.
369  * @auto_pm_lock: The autonomous power management configuration lock.
370  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
371  * @req: Request data that need to persist between requests.
372  * @ack: Reply ("acknowledge") data.
373  */
374 static struct {
375  struct mutex lock;
376  struct completion work;
379  struct {
381  } ack;
382 } mb2_transfer;
383 
384 /*
385  * mb3_transfer - state needed for mailbox 3 communication.
386  * @lock: The request lock.
387  * @sysclk_lock: A lock used to handle concurrent sysclk requests.
388  * @sysclk_work: Work structure used for sysclk requests.
389  */
390 static struct {
394 } mb3_transfer;
395 
396 /*
397  * mb4_transfer - state needed for mailbox 4 communication.
398  * @lock: The transaction lock.
399  * @work: The transaction completion structure.
400  */
401 static struct {
402  struct mutex lock;
403  struct completion work;
404 } mb4_transfer;
405 
406 /*
407  * mb5_transfer - state needed for mailbox 5 communication.
408  * @lock: The transaction lock.
409  * @work: The transaction completion structure.
410  * @ack: Reply ("acknowledge") data.
411  */
412 static struct {
413  struct mutex lock;
414  struct completion work;
415  struct {
416  u8 status;
418  } ack;
419 } mb5_transfer;
420 
421 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
422 
423 /* Functions definition */
424 static void compute_armss_rate(void);
425 
426 /* Spinlocks */
427 static DEFINE_SPINLOCK(prcmu_lock);
428 static DEFINE_SPINLOCK(clkout_lock);
429 
430 /* Global var to runtime determine TCDM base for v2 or v1 */
431 static __iomem void *tcdm_base;
432 
433 struct clk_mgt {
434  void __iomem *reg;
436  int branch;
437  bool clk38div;
438 };
439 
440 enum {
444 };
445 
446 static DEFINE_SPINLOCK(clk_mgt_lock);
447 
448 #define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
449  { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
451  CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
452  CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
453  CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
454  CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
455  CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
456  CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
457  CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
458  CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
459  CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
460  CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
461  CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
462  CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
463  CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
464  CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
465  CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
466  CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
467  CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
468  CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
469  CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
470  CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
471  CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
472  CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
473  CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
474  CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
475  CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
476  CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
477  CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
478  CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
479  CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
480 };
481 
482 struct dsiclk {
486 };
487 
488 static struct dsiclk dsiclk[2] = {
489  {
492  .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
493  },
494  {
497  .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
498  }
499 };
500 
501 struct dsiescclk {
505 };
506 
507 static struct dsiescclk dsiescclk[3] = {
508  {
512  },
513  {
517  },
518  {
522  }
523 };
524 
525 
526 /*
527 * Used by MCDE to setup all necessary PRCMU registers
528 */
529 #define PRCMU_RESET_DSIPLL 0x00004000
530 #define PRCMU_UNCLAMP_DSIPLL 0x00400800
531 
532 #define PRCMU_CLK_PLL_DIV_SHIFT 0
533 #define PRCMU_CLK_PLL_SW_SHIFT 5
534 #define PRCMU_CLK_38 (1 << 9)
535 #define PRCMU_CLK_38_SRC (1 << 10)
536 #define PRCMU_CLK_38_DIV (1 << 11)
537 
538 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
539 #define PRCMU_DSI_CLOCK_SETTING 0x0000008C
540 
541 /* DPI 50000000 Hz */
542 #define PRCMU_DPI_CLOCK_SETTING ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
543  (16 << PRCMU_CLK_PLL_DIV_SHIFT))
544 #define PRCMU_DSI_LP_CLOCK_SETTING 0x00000E00
545 
546 /* D=101, N=1, R=4, SELDIV2=0 */
547 #define PRCMU_PLLDSI_FREQ_SETTING 0x00040165
548 
549 #define PRCMU_ENABLE_PLLDSI 0x00000001
550 #define PRCMU_DISABLE_PLLDSI 0x00000000
551 #define PRCMU_RELEASE_RESET_DSS 0x0000400C
552 #define PRCMU_DSI_PLLOUT_SEL_SETTING 0x00000202
553 /* ESC clk, div0=1, div1=1, div2=3 */
554 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV 0x07030101
555 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV 0x00030101
556 #define PRCMU_DSI_RESET_SW 0x00000007
557 
558 #define PRCMU_PLLDSI_LOCKP_LOCKED 0x3
559 
561 {
562  int i;
563 
564  /* Clear DSIPLL_RESETN */
566  /* Unclamp DSIPLL in/out */
568 
569  /* Set DSI PLL FREQ */
572  /* Enable Escape clocks */
574 
575  /* Start DSI PLL */
577  /* Reset DSI PLL */
579  for (i = 0; i < 10; i++) {
581  == PRCMU_PLLDSI_LOCKP_LOCKED)
582  break;
583  udelay(100);
584  }
585  /* Set DSIPLL_RESETN */
587  return 0;
588 }
589 
591 {
592  /* Disable dsi pll */
594  /* Disable escapeclock */
596  return 0;
597 }
598 
600 {
601  unsigned long flags;
602 
603  spin_lock_irqsave(&clk_mgt_lock, flags);
604 
605  /* Grab the HW semaphore. */
606  while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
607  cpu_relax();
608 
612 
613  /* Release the HW semaphore. */
614  writel(0, PRCM_SEM);
615 
616  spin_unlock_irqrestore(&clk_mgt_lock, flags);
617 
618  return 0;
619 }
620 
621 u32 db8500_prcmu_read(unsigned int reg)
622 {
623  return readl(_PRCMU_BASE + reg);
624 }
625 
626 void db8500_prcmu_write(unsigned int reg, u32 value)
627 {
628  unsigned long flags;
629 
630  spin_lock_irqsave(&prcmu_lock, flags);
631  writel(value, (_PRCMU_BASE + reg));
632  spin_unlock_irqrestore(&prcmu_lock, flags);
633 }
634 
636 {
637  u32 val;
638  unsigned long flags;
639 
640  spin_lock_irqsave(&prcmu_lock, flags);
641  val = readl(_PRCMU_BASE + reg);
642  val = ((val & ~mask) | (value & mask));
643  writel(val, (_PRCMU_BASE + reg));
644  spin_unlock_irqrestore(&prcmu_lock, flags);
645 }
646 
648 {
649  return fw_info.valid ? &fw_info.version : NULL;
650 }
651 
653 {
654  return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
656 }
657 
663 {
664  return readb(tcdm_base + PRCM_BOOT_STATUS);
665 }
666 
676 {
677  if (val < RDY_2_DS || val > RDY_2_XP70_RST)
678  return -EINVAL;
679  writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
680  return 0;
681 }
682 
691 {
692  return readb(tcdm_base + PRCM_ROMCODE_P2A);
693 }
694 
701 {
702  return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
703 }
704 
716 {
717  static int requests[2];
718  int r = 0;
719  unsigned long flags;
720  u32 val;
721  u32 bits;
722  u32 mask;
723  u32 div_mask;
724 
725  BUG_ON(clkout > 1);
726  BUG_ON(div > 63);
727  BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
728 
729  if (!div && !requests[clkout])
730  return -EINVAL;
731 
732  switch (clkout) {
733  case 0:
734  div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
736  bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
737  (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
738  break;
739  case 1:
740  div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
743  bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
744  (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
745  break;
746  }
747  bits &= mask;
748 
749  spin_lock_irqsave(&clkout_lock, flags);
750 
751  val = readl(PRCM_CLKOCR);
752  if (val & div_mask) {
753  if (div) {
754  if ((val & mask) != bits) {
755  r = -EBUSY;
756  goto unlock_and_return;
757  }
758  } else {
759  if ((val & mask & ~div_mask) != bits) {
760  r = -EINVAL;
761  goto unlock_and_return;
762  }
763  }
764  }
765  writel((bits | (val & ~mask)), PRCM_CLKOCR);
766  requests[clkout] += (div ? 1 : -1);
767 
768 unlock_and_return:
769  spin_unlock_irqrestore(&clkout_lock, flags);
770 
771  return r;
772 }
773 
774 int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
775 {
776  unsigned long flags;
777 
778  BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
779 
780  spin_lock_irqsave(&mb0_transfer.lock, flags);
781 
782  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
783  cpu_relax();
784 
786  writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
787  writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
788  writeb((keep_ulp_clk ? 1 : 0),
789  (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
790  writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
792 
793  spin_unlock_irqrestore(&mb0_transfer.lock, flags);
794 
795  return 0;
796 }
797 
799 {
800  return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
801 }
802 
803 /* This function decouple the gic from the prcmu */
805 {
807 
808  /* Set bit 0 register value to 1 */
811 
812  /* Make sure the register is updated */
814 
815  /* Wait a few cycles for the gic mask completion */
816  udelay(1);
817 
818  return 0;
819 }
820 
821 /* This function recouple the gic with the prcmu */
823 {
825 
826  /* Set bit 0 register value to 0 */
828 
829  return 0;
830 }
831 
832 #define PRCMU_GIC_NUMBER_REGS 5
833 
834 /*
835  * This function checks if there are pending irq on the gic. It only
836  * makes sense if the gic has been decoupled before with the
837  * db8500_prcmu_gic_decouple function. Disabling an interrupt only
838  * disables the forwarding of the interrupt to any CPU interface. It
839  * does not prevent the interrupt from changing state, for example
840  * becoming pending, or active and pending if it is already
841  * active. Hence, we have to check the interrupt is pending *and* is
842  * active.
843  */
845 {
846  u32 pr; /* Pending register */
847  u32 er; /* Enable register */
848  void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
849  int i;
850 
851  /* 5 registers. STI & PPI not skipped */
852  for (i = 0; i < PRCMU_GIC_NUMBER_REGS; i++) {
853 
854  pr = readl_relaxed(dist_base + GIC_DIST_PENDING_SET + i * 4);
855  er = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
856 
857  if (pr & er)
858  return true; /* There is a pending interrupt */
859  }
860 
861  return false;
862 }
863 
864 /*
865  * This function checks if there are pending interrupt on the
866  * prcmu which has been delegated to monitor the irqs with the
867  * db8500_prcmu_copy_gic_settings function.
868  */
870 {
871  u32 it, im;
872  int i;
873 
874  for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
875  it = readl(PRCM_ARMITVAL31TO0 + i * 4);
876  im = readl(PRCM_ARMITMSK31TO0 + i * 4);
877  if (it & im)
878  return true; /* There is a pending interrupt */
879  }
880 
881  return false;
882 }
883 
884 /*
885  * This function checks if the specified cpu is in in WFI. It's usage
886  * makes sense only if the gic is decoupled with the db8500_prcmu_gic_decouple
887  * function. Of course passing smp_processor_id() to this function will
888  * always return false...
889  */
891 {
894 }
895 
896 /*
897  * This function copies the gic SPI settings to the prcmu in order to
898  * monitor them and abort/finish the retention/off sequence or state.
899  */
901 {
902  u32 er; /* Enable register */
903  void __iomem *dist_base = __io_address(U8500_GIC_DIST_BASE);
904  int i;
905 
906  /* We skip the STI and PPI */
907  for (i = 0; i < PRCMU_GIC_NUMBER_REGS - 1; i++) {
908  er = readl_relaxed(dist_base +
909  GIC_DIST_ENABLE_SET + (i + 1) * 4);
910  writel(er, PRCM_ARMITMSK31TO0 + i * 4);
911  }
912 
913  return 0;
914 }
915 
916 /* This function should only be called while mb0_transfer.lock is held. */
917 static void config_wakeups(void)
918 {
919  const u8 header[2] = {
922  };
923  static u32 last_dbb_events;
924  static u32 last_abb_events;
925  u32 dbb_events;
926  u32 abb_events;
927  unsigned int i;
928 
929  dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
931 
932  abb_events = mb0_transfer.req.abb_events;
933 
934  if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
935  return;
936 
937  for (i = 0; i < 2; i++) {
938  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
939  cpu_relax();
940  writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
941  writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
942  writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
944  }
945  last_dbb_events = dbb_events;
946  last_abb_events = abb_events;
947 }
948 
950 {
951  unsigned long flags;
952  u32 bits;
953  int i;
954 
955  BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
956 
957  for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
958  if (wakeups & BIT(i))
959  bits |= prcmu_wakeup_bit[i];
960  }
961 
962  spin_lock_irqsave(&mb0_transfer.lock, flags);
963 
964  mb0_transfer.req.dbb_wakeups = bits;
965  config_wakeups();
966 
967  spin_unlock_irqrestore(&mb0_transfer.lock, flags);
968 }
969 
971 {
972  unsigned long flags;
973 
974  spin_lock_irqsave(&mb0_transfer.lock, flags);
975 
976  mb0_transfer.req.abb_events = abb_events;
977  config_wakeups();
978 
979  spin_unlock_irqrestore(&mb0_transfer.lock, flags);
980 }
981 
983 {
984  if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
985  *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
986  else
987  *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
988 }
989 
998 {
999  int r;
1000 
1002  return -EINVAL;
1003 
1004  r = 0;
1005 
1006  mutex_lock(&mb1_transfer.lock);
1007 
1008  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009  cpu_relax();
1010 
1012  writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1013  writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1014 
1016  wait_for_completion(&mb1_transfer.work);
1017 
1018  if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1019  (mb1_transfer.ack.arm_opp != opp))
1020  r = -EIO;
1021 
1022  compute_armss_rate();
1023  mutex_unlock(&mb1_transfer.lock);
1024 
1025  return r;
1026 }
1027 
1034 {
1035  return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
1036 }
1037 
1044 {
1046 }
1047 
1056 {
1058  return -EINVAL;
1059  /* Changing the DDR OPP can hang the hardware pre-v21 */
1060  if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
1062 
1063  return 0;
1064 }
1065 
1066 /* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
1067 static void request_even_slower_clocks(bool enable)
1068 {
1069  void __iomem *clock_reg[] = {
1070  PRCM_ACLK_MGT,
1072  };
1073  unsigned long flags;
1074  unsigned int i;
1075 
1076  spin_lock_irqsave(&clk_mgt_lock, flags);
1077 
1078  /* Grab the HW semaphore. */
1079  while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1080  cpu_relax();
1081 
1082  for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
1083  u32 val;
1084  u32 div;
1085 
1086  val = readl(clock_reg[i]);
1087  div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
1088  if (enable) {
1089  if ((div <= 1) || (div > 15)) {
1090  pr_err("prcmu: Bad clock divider %d in %s\n",
1091  div, __func__);
1092  goto unlock_and_return;
1093  }
1094  div <<= 1;
1095  } else {
1096  if (div <= 2)
1097  goto unlock_and_return;
1098  div >>= 1;
1099  }
1100  val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
1101  (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
1102  writel(val, clock_reg[i]);
1103  }
1104 
1105 unlock_and_return:
1106  /* Release the HW semaphore. */
1107  writel(0, PRCM_SEM);
1108 
1109  spin_unlock_irqrestore(&clk_mgt_lock, flags);
1110 }
1111 
1120 {
1121  int r = 0;
1122 
1123  if (opp == mb1_transfer.ape_opp)
1124  return 0;
1125 
1126  mutex_lock(&mb1_transfer.lock);
1127 
1128  if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1129  request_even_slower_clocks(false);
1130 
1131  if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1132  goto skip_message;
1133 
1134  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1135  cpu_relax();
1136 
1138  writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1139  writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1140  (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1141 
1143  wait_for_completion(&mb1_transfer.work);
1144 
1145  if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1146  (mb1_transfer.ack.ape_opp != opp))
1147  r = -EIO;
1148 
1149 skip_message:
1150  if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1151  (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1152  request_even_slower_clocks(true);
1153  if (!r)
1154  mb1_transfer.ape_opp = opp;
1155 
1156  mutex_unlock(&mb1_transfer.lock);
1157 
1158  return r;
1159 }
1160 
1167 {
1168  return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1169 }
1170 
1178 {
1179  int r = 0;
1180  u8 header;
1181  static unsigned int requests;
1182 
1183  mutex_lock(&mb1_transfer.lock);
1184 
1185  if (enable) {
1186  if (0 != requests++)
1187  goto unlock_and_return;
1189  } else {
1190  if (requests == 0) {
1191  r = -EIO;
1192  goto unlock_and_return;
1193  } else if (1 != requests--) {
1194  goto unlock_and_return;
1195  }
1197  }
1198 
1199  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1200  cpu_relax();
1201 
1202  writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1203 
1205  wait_for_completion(&mb1_transfer.work);
1206 
1207  if ((mb1_transfer.ack.header != header) ||
1208  ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1209  r = -EIO;
1210 
1211 unlock_and_return:
1212  mutex_unlock(&mb1_transfer.lock);
1213 
1214  return r;
1215 }
1216 
1223 {
1224  int r = 0;
1225 
1226  mutex_lock(&mb1_transfer.lock);
1227 
1228  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1229  cpu_relax();
1230 
1232  (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1233 
1235  wait_for_completion(&mb1_transfer.work);
1236 
1237  if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1238  ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1239  r = -EIO;
1240 
1241  mutex_unlock(&mb1_transfer.lock);
1242 
1243  return r;
1244 }
1245 
1246 static int request_pll(u8 clock, bool enable)
1247 {
1248  int r = 0;
1249 
1250  if (clock == PRCMU_PLLSOC0)
1251  clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1252  else if (clock == PRCMU_PLLSOC1)
1253  clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1254  else
1255  return -EINVAL;
1256 
1257  mutex_lock(&mb1_transfer.lock);
1258 
1259  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1260  cpu_relax();
1261 
1263  writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1264 
1266  wait_for_completion(&mb1_transfer.work);
1267 
1268  if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1269  r = -EIO;
1270 
1271  mutex_unlock(&mb1_transfer.lock);
1272 
1273  return r;
1274 }
1275 
1284 int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1285 {
1286  int r = 0;
1287  bool ram_retention = false;
1288  int i;
1289 
1290  /* check argument */
1291  BUG_ON(epod_id >= NUM_EPOD_ID);
1292 
1293  /* set flag if retention is possible */
1294  switch (epod_id) {
1295  case EPOD_ID_SVAMMDSP:
1296  case EPOD_ID_SIAMMDSP:
1297  case EPOD_ID_ESRAM12:
1298  case EPOD_ID_ESRAM34:
1299  ram_retention = true;
1300  break;
1301  }
1302 
1303  /* check argument */
1304  BUG_ON(epod_state > EPOD_STATE_ON);
1305  BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1306 
1307  /* get lock */
1308  mutex_lock(&mb2_transfer.lock);
1309 
1310  /* wait for mailbox */
1311  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1312  cpu_relax();
1313 
1314  /* fill in mailbox */
1315  for (i = 0; i < NUM_EPOD_ID; i++)
1316  writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1317  writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1318 
1319  writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1320 
1322 
1323  /*
1324  * The current firmware version does not handle errors correctly,
1325  * and we cannot recover if there is an error.
1326  * This is expected to change when the firmware is updated.
1327  */
1328  if (!wait_for_completion_timeout(&mb2_transfer.work,
1329  msecs_to_jiffies(20000))) {
1330  pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1331  __func__);
1332  r = -EIO;
1333  goto unlock_and_return;
1334  }
1335 
1336  if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1337  r = -EIO;
1338 
1339 unlock_and_return:
1340  mutex_unlock(&mb2_transfer.lock);
1341  return r;
1342 }
1343 
1350  struct prcmu_auto_pm_config *idle)
1351 {
1352  u32 sleep_cfg;
1353  u32 idle_cfg;
1354  unsigned long flags;
1355 
1356  BUG_ON((sleep == NULL) || (idle == NULL));
1357 
1358  sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1359  sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1360  sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1361  sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1362  sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1363  sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1364 
1365  idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1366  idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1367  idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1368  idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1369  idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1370  idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1371 
1372  spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1373 
1374  /*
1375  * The autonomous power management configuration is done through
1376  * fields in mailbox 2, but these fields are only used as shared
1377  * variables - i.e. there is no need to send a message.
1378  */
1379  writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1380  writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1381 
1382  mb2_transfer.auto_pm_enabled =
1383  ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1384  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1385  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1387 
1388  spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1389 }
1391 
1393 {
1394  return mb2_transfer.auto_pm_enabled;
1395 }
1396 
1397 static int request_sysclk(bool enable)
1398 {
1399  int r;
1400  unsigned long flags;
1401 
1402  r = 0;
1403 
1404  mutex_lock(&mb3_transfer.sysclk_lock);
1405 
1406  spin_lock_irqsave(&mb3_transfer.lock, flags);
1407 
1408  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1409  cpu_relax();
1410 
1411  writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1412 
1415 
1416  spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1417 
1418  /*
1419  * The firmware only sends an ACK if we want to enable the
1420  * SysClk, and it succeeds.
1421  */
1422  if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1423  msecs_to_jiffies(20000))) {
1424  pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1425  __func__);
1426  r = -EIO;
1427  }
1428 
1429  mutex_unlock(&mb3_transfer.sysclk_lock);
1430 
1431  return r;
1432 }
1433 
1434 static int request_timclk(bool enable)
1435 {
1437 
1438  if (!enable)
1439  val |= PRCM_TCR_STOP_TIMERS;
1440  writel(val, PRCM_TCR);
1441 
1442  return 0;
1443 }
1444 
1445 static int request_clock(u8 clock, bool enable)
1446 {
1447  u32 val;
1448  unsigned long flags;
1449 
1450  spin_lock_irqsave(&clk_mgt_lock, flags);
1451 
1452  /* Grab the HW semaphore. */
1453  while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1454  cpu_relax();
1455 
1456  val = readl(clk_mgt[clock].reg);
1457  if (enable) {
1458  val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1459  } else {
1460  clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1462  }
1463  writel(val, clk_mgt[clock].reg);
1464 
1465  /* Release the HW semaphore. */
1466  writel(0, PRCM_SEM);
1467 
1468  spin_unlock_irqrestore(&clk_mgt_lock, flags);
1469 
1470  return 0;
1471 }
1472 
1473 static int request_sga_clock(u8 clock, bool enable)
1474 {
1475  u32 val;
1476  int ret;
1477 
1478  if (enable) {
1479  val = readl(PRCM_CGATING_BYPASS);
1481  }
1482 
1483  ret = request_clock(clock, enable);
1484 
1485  if (!ret && !enable) {
1486  val = readl(PRCM_CGATING_BYPASS);
1488  }
1489 
1490  return ret;
1491 }
1492 
1493 static inline bool plldsi_locked(void)
1494 {
1495  return (readl(PRCM_PLLDSI_LOCKP) &
1500 }
1501 
1502 static int request_plldsi(bool enable)
1503 {
1504  int r = 0;
1505  u32 val;
1506 
1510 
1511  val = readl(PRCM_PLLDSI_ENABLE);
1512  if (enable)
1514  else
1516  writel(val, PRCM_PLLDSI_ENABLE);
1517 
1518  if (enable) {
1519  unsigned int i;
1520  bool locked = plldsi_locked();
1521 
1522  for (i = 10; !locked && (i > 0); --i) {
1523  udelay(100);
1524  locked = plldsi_locked();
1525  }
1526  if (locked) {
1529  } else {
1534  writel(val, PRCM_PLLDSI_ENABLE);
1535  r = -EAGAIN;
1536  }
1537  } else {
1539  }
1540  return r;
1541 }
1542 
1543 static int request_dsiclk(u8 n, bool enable)
1544 {
1545  u32 val;
1546 
1547  val = readl(PRCM_DSI_PLLOUT_SEL);
1548  val &= ~dsiclk[n].divsel_mask;
1549  val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1550  dsiclk[n].divsel_shift);
1552  return 0;
1553 }
1554 
1555 static int request_dsiescclk(u8 n, bool enable)
1556 {
1557  u32 val;
1558 
1559  val = readl(PRCM_DSITVCLK_DIV);
1560  enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1561  writel(val, PRCM_DSITVCLK_DIV);
1562  return 0;
1563 }
1564 
1573 int db8500_prcmu_request_clock(u8 clock, bool enable)
1574 {
1575  if (clock == PRCMU_SGACLK)
1576  return request_sga_clock(clock, enable);
1577  else if (clock < PRCMU_NUM_REG_CLOCKS)
1578  return request_clock(clock, enable);
1579  else if (clock == PRCMU_TIMCLK)
1580  return request_timclk(enable);
1581  else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1582  return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1583  else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1584  return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1585  else if (clock == PRCMU_PLLDSI)
1586  return request_plldsi(enable);
1587  else if (clock == PRCMU_SYSCLK)
1588  return request_sysclk(enable);
1589  else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1590  return request_pll(clock, enable);
1591  else
1592  return -EINVAL;
1593 }
1594 
1595 static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1596  int branch)
1597 {
1598  u64 rate;
1599  u32 val;
1600  u32 d;
1601  u32 div = 1;
1602 
1603  val = readl(reg);
1604 
1605  rate = src_rate;
1606  rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1607 
1609  if (d > 1)
1610  div *= d;
1611 
1613  if (d > 1)
1614  div *= d;
1615 
1616  if (val & PRCM_PLL_FREQ_SELDIV2)
1617  div *= 2;
1618 
1619  if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1620  (val & PRCM_PLL_FREQ_DIV2EN) &&
1621  ((reg == PRCM_PLLSOC0_FREQ) ||
1622  (reg == PRCM_PLLARM_FREQ) ||
1623  (reg == PRCM_PLLDDR_FREQ))))
1624  div *= 2;
1625 
1626  (void)do_div(rate, div);
1627 
1628  return (unsigned long)rate;
1629 }
1630 
1631 #define ROOT_CLOCK_RATE 38400000
1632 
1633 static unsigned long clock_rate(u8 clock)
1634 {
1635  u32 val;
1636  u32 pllsw;
1637  unsigned long rate = ROOT_CLOCK_RATE;
1638 
1639  val = readl(clk_mgt[clock].reg);
1640 
1641  if (val & PRCM_CLK_MGT_CLK38) {
1642  if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1643  rate /= 2;
1644  return rate;
1645  }
1646 
1647  val |= clk_mgt[clock].pllsw;
1648  pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1649 
1650  if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1651  rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1652  else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1653  rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1654  else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1655  rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1656  else
1657  return 0;
1658 
1659  if ((clock == PRCMU_SGACLK) &&
1661  u64 r = (rate * 10);
1662 
1663  (void)do_div(r, 25);
1664  return (unsigned long)r;
1665  }
1667  if (val)
1668  return rate / val;
1669  else
1670  return 0;
1671 }
1672 static unsigned long latest_armss_rate;
1673 static unsigned long armss_rate(void)
1674 {
1675  return latest_armss_rate;
1676 }
1677 
1678 static void compute_armss_rate(void)
1679 {
1680  u32 r;
1681  unsigned long rate;
1682 
1684 
1686  /* External ARMCLKFIX clock */
1687 
1688  rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1689 
1690  /* Check PRCM_ARM_CHGCLKREQ divider */
1692  rate /= 2;
1693 
1694  /* Check PRCM_ARMCLKFIX_MGT divider */
1697  rate /= r;
1698 
1699  } else {/* ARM PLL */
1700  rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1701  }
1702 
1703  latest_armss_rate = rate;
1704 }
1705 
1706 static unsigned long dsiclk_rate(u8 n)
1707 {
1708  u32 divsel;
1709  u32 div = 1;
1710 
1711  divsel = readl(PRCM_DSI_PLLOUT_SEL);
1712  divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1713 
1714  if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1715  divsel = dsiclk[n].divsel;
1716 
1717  switch (divsel) {
1719  div *= 2;
1721  div *= 2;
1723  return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1724  PLL_RAW) / div;
1725  default:
1726  return 0;
1727  }
1728 }
1729 
1730 static unsigned long dsiescclk_rate(u8 n)
1731 {
1732  u32 div;
1733 
1734  div = readl(PRCM_DSITVCLK_DIV);
1735  div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1736  return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1737 }
1738 
1739 unsigned long prcmu_clock_rate(u8 clock)
1740 {
1741  if (clock < PRCMU_NUM_REG_CLOCKS)
1742  return clock_rate(clock);
1743  else if (clock == PRCMU_TIMCLK)
1744  return ROOT_CLOCK_RATE / 16;
1745  else if (clock == PRCMU_SYSCLK)
1746  return ROOT_CLOCK_RATE;
1747  else if (clock == PRCMU_PLLSOC0)
1748  return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1749  else if (clock == PRCMU_PLLSOC1)
1750  return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1751  else if (clock == PRCMU_ARMSS)
1752  return armss_rate();
1753  else if (clock == PRCMU_PLLDDR)
1754  return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1755  else if (clock == PRCMU_PLLDSI)
1756  return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1757  PLL_RAW);
1758  else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1759  return dsiclk_rate(clock - PRCMU_DSI0CLK);
1760  else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1761  return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1762  else
1763  return 0;
1764 }
1765 
1766 static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1767 {
1768  if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1769  return ROOT_CLOCK_RATE;
1770  clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1771  if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1772  return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1773  else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1774  return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1775  else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1776  return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1777  else
1778  return 0;
1779 }
1780 
1781 static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1782 {
1783  u32 div;
1784 
1785  div = (src_rate / rate);
1786  if (div == 0)
1787  return 1;
1788  if (rate < (src_rate / div))
1789  div++;
1790  return div;
1791 }
1792 
1793 static long round_clock_rate(u8 clock, unsigned long rate)
1794 {
1795  u32 val;
1796  u32 div;
1797  unsigned long src_rate;
1798  long rounded_rate;
1799 
1800  val = readl(clk_mgt[clock].reg);
1801  src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1802  clk_mgt[clock].branch);
1803  div = clock_divider(src_rate, rate);
1804  if (val & PRCM_CLK_MGT_CLK38) {
1805  if (clk_mgt[clock].clk38div) {
1806  if (div > 2)
1807  div = 2;
1808  } else {
1809  div = 1;
1810  }
1811  } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1812  u64 r = (src_rate * 10);
1813 
1814  (void)do_div(r, 25);
1815  if (r <= rate)
1816  return (unsigned long)r;
1817  }
1818  rounded_rate = (src_rate / min(div, (u32)31));
1819 
1820  return rounded_rate;
1821 }
1822 
1823 #define MIN_PLL_VCO_RATE 600000000ULL
1824 #define MAX_PLL_VCO_RATE 1680640000ULL
1825 
1826 static long round_plldsi_rate(unsigned long rate)
1827 {
1828  long rounded_rate = 0;
1829  unsigned long src_rate;
1830  unsigned long rem;
1831  u32 r;
1832 
1833  src_rate = clock_rate(PRCMU_HDMICLK);
1834  rem = rate;
1835 
1836  for (r = 7; (rem > 0) && (r > 0); r--) {
1837  u64 d;
1838 
1839  d = (r * rate);
1840  (void)do_div(d, src_rate);
1841  if (d < 6)
1842  d = 6;
1843  else if (d > 255)
1844  d = 255;
1845  d *= src_rate;
1846  if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1847  ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1848  continue;
1849  (void)do_div(d, r);
1850  if (rate < d) {
1851  if (rounded_rate == 0)
1852  rounded_rate = (long)d;
1853  break;
1854  }
1855  if ((rate - d) < rem) {
1856  rem = (rate - d);
1857  rounded_rate = (long)d;
1858  }
1859  }
1860  return rounded_rate;
1861 }
1862 
1863 static long round_dsiclk_rate(unsigned long rate)
1864 {
1865  u32 div;
1866  unsigned long src_rate;
1867  long rounded_rate;
1868 
1869  src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1870  PLL_RAW);
1871  div = clock_divider(src_rate, rate);
1872  rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1873 
1874  return rounded_rate;
1875 }
1876 
1877 static long round_dsiescclk_rate(unsigned long rate)
1878 {
1879  u32 div;
1880  unsigned long src_rate;
1881  long rounded_rate;
1882 
1883  src_rate = clock_rate(PRCMU_TVCLK);
1884  div = clock_divider(src_rate, rate);
1885  rounded_rate = (src_rate / min(div, (u32)255));
1886 
1887  return rounded_rate;
1888 }
1889 
1890 long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1891 {
1892  if (clock < PRCMU_NUM_REG_CLOCKS)
1893  return round_clock_rate(clock, rate);
1894  else if (clock == PRCMU_PLLDSI)
1895  return round_plldsi_rate(rate);
1896  else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1897  return round_dsiclk_rate(rate);
1898  else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1899  return round_dsiescclk_rate(rate);
1900  else
1901  return (long)prcmu_clock_rate(clock);
1902 }
1903 
1904 static void set_clock_rate(u8 clock, unsigned long rate)
1905 {
1906  u32 val;
1907  u32 div;
1908  unsigned long src_rate;
1909  unsigned long flags;
1910 
1911  spin_lock_irqsave(&clk_mgt_lock, flags);
1912 
1913  /* Grab the HW semaphore. */
1914  while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1915  cpu_relax();
1916 
1917  val = readl(clk_mgt[clock].reg);
1918  src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1919  clk_mgt[clock].branch);
1920  div = clock_divider(src_rate, rate);
1921  if (val & PRCM_CLK_MGT_CLK38) {
1922  if (clk_mgt[clock].clk38div) {
1923  if (div > 1)
1924  val |= PRCM_CLK_MGT_CLK38DIV;
1925  else
1926  val &= ~PRCM_CLK_MGT_CLK38DIV;
1927  }
1928  } else if (clock == PRCMU_SGACLK) {
1929  val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1931  if (div == 3) {
1932  u64 r = (src_rate * 10);
1933 
1934  (void)do_div(r, 25);
1935  if (r <= rate) {
1937  div = 0;
1938  }
1939  }
1940  val |= min(div, (u32)31);
1941  } else {
1943  val |= min(div, (u32)31);
1944  }
1945  writel(val, clk_mgt[clock].reg);
1946 
1947  /* Release the HW semaphore. */
1948  writel(0, PRCM_SEM);
1949 
1950  spin_unlock_irqrestore(&clk_mgt_lock, flags);
1951 }
1952 
1953 static int set_plldsi_rate(unsigned long rate)
1954 {
1955  unsigned long src_rate;
1956  unsigned long rem;
1957  u32 pll_freq = 0;
1958  u32 r;
1959 
1960  src_rate = clock_rate(PRCMU_HDMICLK);
1961  rem = rate;
1962 
1963  for (r = 7; (rem > 0) && (r > 0); r--) {
1964  u64 d;
1965  u64 hwrate;
1966 
1967  d = (r * rate);
1968  (void)do_div(d, src_rate);
1969  if (d < 6)
1970  d = 6;
1971  else if (d > 255)
1972  d = 255;
1973  hwrate = (d * src_rate);
1974  if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1975  ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1976  continue;
1977  (void)do_div(hwrate, r);
1978  if (rate < hwrate) {
1979  if (pll_freq == 0)
1980  pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1981  (r << PRCM_PLL_FREQ_R_SHIFT));
1982  break;
1983  }
1984  if ((rate - hwrate) < rem) {
1985  rem = (rate - hwrate);
1986  pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1987  (r << PRCM_PLL_FREQ_R_SHIFT));
1988  }
1989  }
1990  if (pll_freq == 0)
1991  return -EINVAL;
1992 
1993  pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1994  writel(pll_freq, PRCM_PLLDSI_FREQ);
1995 
1996  return 0;
1997 }
1998 
1999 static void set_dsiclk_rate(u8 n, unsigned long rate)
2000 {
2001  u32 val;
2002  u32 div;
2003 
2004  div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
2005  clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
2006 
2007  dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
2008  (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
2009  /* else */ PRCM_DSI_PLLOUT_SEL_PHI_4;
2010 
2011  val = readl(PRCM_DSI_PLLOUT_SEL);
2012  val &= ~dsiclk[n].divsel_mask;
2013  val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
2015 }
2016 
2017 static void set_dsiescclk_rate(u8 n, unsigned long rate)
2018 {
2019  u32 val;
2020  u32 div;
2021 
2022  div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
2023  val = readl(PRCM_DSITVCLK_DIV);
2024  val &= ~dsiescclk[n].div_mask;
2025  val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
2026  writel(val, PRCM_DSITVCLK_DIV);
2027 }
2028 
2029 int prcmu_set_clock_rate(u8 clock, unsigned long rate)
2030 {
2031  if (clock < PRCMU_NUM_REG_CLOCKS)
2032  set_clock_rate(clock, rate);
2033  else if (clock == PRCMU_PLLDSI)
2034  return set_plldsi_rate(rate);
2035  else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
2036  set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
2037  else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
2038  set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
2039  return 0;
2040 }
2041 
2043 {
2044  if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
2045  (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
2046  return -EINVAL;
2047 
2048  mutex_lock(&mb4_transfer.lock);
2049 
2050  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2051  cpu_relax();
2052 
2055  (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2057  (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2058  writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2059 
2061  wait_for_completion(&mb4_transfer.work);
2062 
2063  mutex_unlock(&mb4_transfer.lock);
2064 
2065  return 0;
2066 }
2067 
2069 {
2070  mutex_lock(&mb4_transfer.lock);
2071 
2072  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2073  cpu_relax();
2074 
2075  writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2077 
2079  wait_for_completion(&mb4_transfer.work);
2080 
2081  mutex_unlock(&mb4_transfer.lock);
2082 
2083  return 0;
2084 }
2085 
2087 {
2088  mutex_lock(&mb4_transfer.lock);
2089 
2090  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2091  cpu_relax();
2092 
2093  writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2094  writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2096  (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2098 
2100  wait_for_completion(&mb4_transfer.work);
2101 
2102  mutex_unlock(&mb4_transfer.lock);
2103 
2104  return 0;
2105 }
2106 
2107 static int config_hot_period(u16 val)
2108 {
2109  mutex_lock(&mb4_transfer.lock);
2110 
2111  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2112  cpu_relax();
2113 
2114  writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2116 
2118  wait_for_completion(&mb4_transfer.work);
2119 
2120  mutex_unlock(&mb4_transfer.lock);
2121 
2122  return 0;
2123 }
2124 
2126 {
2127  if (cycles32k == 0xFFFF)
2128  return -EINVAL;
2129 
2130  return config_hot_period(cycles32k);
2131 }
2132 
2134 {
2135  return config_hot_period(0xFFFF);
2136 }
2137 
2138 static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2139 {
2140 
2141  mutex_lock(&mb4_transfer.lock);
2142 
2143  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2144  cpu_relax();
2145 
2146  writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2147  writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2148  writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2149  writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2150 
2151  writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2152 
2154  wait_for_completion(&mb4_transfer.work);
2155 
2156  mutex_unlock(&mb4_transfer.lock);
2157 
2158  return 0;
2159 
2160 }
2161 
2162 int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2163 {
2164  BUG_ON(num == 0 || num > 0xf);
2165  return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2166  sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2168 }
2169 
2171 {
2172  return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2173 }
2174 
2176 {
2177  return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2178 }
2179 
2181 {
2182  return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2183 }
2184 
2185 /*
2186  * timeout is 28 bit, in ms.
2187  */
2189 {
2190  return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2191  (id & A9WDOG_ID_MASK) |
2192  /*
2193  * Put the lowest 28 bits of timeout at
2194  * offset 4. Four first bits are used for id.
2195  */
2196  (u8)((timeout << 4) & 0xf0),
2197  (u8)((timeout >> 4) & 0xff),
2198  (u8)((timeout >> 12) & 0xff),
2199  (u8)((timeout >> 20) & 0xff));
2200 }
2201 
2213 {
2214  int r;
2215 
2216  if (size != 1)
2217  return -EINVAL;
2218 
2219  mutex_lock(&mb5_transfer.lock);
2220 
2221  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222  cpu_relax();
2223 
2224  writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225  writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2227  writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228  writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229 
2231 
2232  if (!wait_for_completion_timeout(&mb5_transfer.work,
2233  msecs_to_jiffies(20000))) {
2234  pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235  __func__);
2236  r = -EIO;
2237  } else {
2238  r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2239  }
2240 
2241  if (!r)
2242  *value = mb5_transfer.ack.value;
2243 
2244  mutex_unlock(&mb5_transfer.lock);
2245 
2246  return r;
2247 }
2248 
2263 {
2264  int r;
2265 
2266  if (size != 1)
2267  return -EINVAL;
2268 
2269  mutex_lock(&mb5_transfer.lock);
2270 
2271  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2272  cpu_relax();
2273 
2274  writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2275  writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2277  writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2278  writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2279 
2281 
2282  if (!wait_for_completion_timeout(&mb5_transfer.work,
2283  msecs_to_jiffies(20000))) {
2284  pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2285  __func__);
2286  r = -EIO;
2287  } else {
2288  r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2289  }
2290 
2291  mutex_unlock(&mb5_transfer.lock);
2292 
2293  return r;
2294 }
2295 
2307 {
2308  u8 mask = ~0;
2309 
2310  return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2311 }
2312 
2317 {
2318  u32 val;
2319  int ret = 0;
2320 
2321  mutex_lock(&mb0_transfer.ac_wake_lock);
2322 
2323  val = readl(PRCM_HOSTACCESS_REQ);
2325  goto unlock_and_return;
2326 
2327  atomic_set(&ac_wake_req_state, 1);
2328 
2329  /*
2330  * Force Modem Wake-up before hostaccess_req ping-pong.
2331  * It prevents Modem to enter in Sleep while acking the hostaccess
2332  * request. The 31us delay has been calculated by HWI.
2333  */
2336 
2337  udelay(31);
2338 
2341 
2342  if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2343  msecs_to_jiffies(5000))) {
2344 #if defined(CONFIG_DBX500_PRCMU_DEBUG)
2345  db8500_prcmu_debug_dump(__func__, true, true);
2346 #endif
2347  pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2348  __func__);
2349  ret = -EFAULT;
2350  }
2351 
2352 unlock_and_return:
2353  mutex_unlock(&mb0_transfer.ac_wake_lock);
2354  return ret;
2355 }
2356 
2361 {
2362  u32 val;
2363 
2364  mutex_lock(&mb0_transfer.ac_wake_lock);
2365 
2366  val = readl(PRCM_HOSTACCESS_REQ);
2368  goto unlock_and_return;
2369 
2370  writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2372 
2373  if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2374  msecs_to_jiffies(5000))) {
2375  pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2376  __func__);
2377  }
2378 
2379  atomic_set(&ac_wake_req_state, 0);
2380 
2381 unlock_and_return:
2382  mutex_unlock(&mb0_transfer.ac_wake_lock);
2383 }
2384 
2386 {
2387  return (atomic_read(&ac_wake_req_state) != 0);
2388 }
2389 
2397 {
2398  writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2400 }
2401 
2409 {
2410  return readw(tcdm_base + PRCM_SW_RST_REASON);
2411 }
2412 
2417 {
2418  mutex_lock(&mb1_transfer.lock);
2419 
2420  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2421  cpu_relax();
2422 
2425  wait_for_completion(&mb1_transfer.work);
2426 
2427  /*
2428  * No need to check return from PRCMU as modem should go in reset state
2429  * This state is already managed by upper layer
2430  */
2431 
2432  mutex_unlock(&mb1_transfer.lock);
2433 }
2434 
2435 static void ack_dbb_wakeup(void)
2436 {
2437  unsigned long flags;
2438 
2439  spin_lock_irqsave(&mb0_transfer.lock, flags);
2440 
2441  while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2442  cpu_relax();
2443 
2446 
2447  spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2448 }
2449 
2450 static inline void print_unknown_header_warning(u8 n, u8 header)
2451 {
2452  pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2453  header, n);
2454 }
2455 
2456 static bool read_mailbox_0(void)
2457 {
2458  bool r;
2459  u32 ev;
2460  unsigned int n;
2461  u8 header;
2462 
2463  header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2464  switch (header) {
2465  case MB0H_WAKEUP_EXE:
2466  case MB0H_WAKEUP_SLEEP:
2467  if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2468  ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2469  else
2470  ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2471 
2473  complete(&mb0_transfer.ac_wake_work);
2474  if (ev & WAKEUP_BIT_SYSCLK_OK)
2475  complete(&mb3_transfer.sysclk_work);
2476 
2477  ev &= mb0_transfer.req.dbb_irqs;
2478 
2479  for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2480  if (ev & prcmu_irq_bit[n])
2481  generic_handle_irq(IRQ_PRCMU_BASE + n);
2482  }
2483  r = true;
2484  break;
2485  default:
2486  print_unknown_header_warning(0, header);
2487  r = false;
2488  break;
2489  }
2491  return r;
2492 }
2493 
2494 static bool read_mailbox_1(void)
2495 {
2496  mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2497  mb1_transfer.ack.arm_opp = readb(tcdm_base +
2499  mb1_transfer.ack.ape_opp = readb(tcdm_base +
2501  mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2504  complete(&mb1_transfer.work);
2505  return false;
2506 }
2507 
2508 static bool read_mailbox_2(void)
2509 {
2510  mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2512  complete(&mb2_transfer.work);
2513  return false;
2514 }
2515 
2516 static bool read_mailbox_3(void)
2517 {
2519  return false;
2520 }
2521 
2522 static bool read_mailbox_4(void)
2523 {
2524  u8 header;
2525  bool do_complete = true;
2526 
2527  header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2528  switch (header) {
2529  case MB4H_MEM_ST:
2530  case MB4H_HOTDOG:
2531  case MB4H_HOTMON:
2532  case MB4H_HOT_PERIOD:
2533  case MB4H_A9WDOG_CONF:
2534  case MB4H_A9WDOG_EN:
2535  case MB4H_A9WDOG_DIS:
2536  case MB4H_A9WDOG_LOAD:
2537  case MB4H_A9WDOG_KICK:
2538  break;
2539  default:
2540  print_unknown_header_warning(4, header);
2541  do_complete = false;
2542  break;
2543  }
2544 
2546 
2547  if (do_complete)
2548  complete(&mb4_transfer.work);
2549 
2550  return false;
2551 }
2552 
2553 static bool read_mailbox_5(void)
2554 {
2555  mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2556  mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2558  complete(&mb5_transfer.work);
2559  return false;
2560 }
2561 
2562 static bool read_mailbox_6(void)
2563 {
2565  return false;
2566 }
2567 
2568 static bool read_mailbox_7(void)
2569 {
2571  return false;
2572 }
2573 
2574 static bool (* const read_mailbox[NUM_MB])(void) = {
2575  read_mailbox_0,
2576  read_mailbox_1,
2577  read_mailbox_2,
2578  read_mailbox_3,
2579  read_mailbox_4,
2580  read_mailbox_5,
2581  read_mailbox_6,
2582  read_mailbox_7
2583 };
2584 
2585 static irqreturn_t prcmu_irq_handler(int irq, void *data)
2586 {
2587  u32 bits;
2588  u8 n;
2589  irqreturn_t r;
2590 
2591  bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2592  if (unlikely(!bits))
2593  return IRQ_NONE;
2594 
2595  r = IRQ_HANDLED;
2596  for (n = 0; bits; n++) {
2597  if (bits & MBOX_BIT(n)) {
2598  bits -= MBOX_BIT(n);
2599  if (read_mailbox[n]())
2600  r = IRQ_WAKE_THREAD;
2601  }
2602  }
2603  return r;
2604 }
2605 
2606 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2607 {
2608  ack_dbb_wakeup();
2609  return IRQ_HANDLED;
2610 }
2611 
2612 static void prcmu_mask_work(struct work_struct *work)
2613 {
2614  unsigned long flags;
2615 
2616  spin_lock_irqsave(&mb0_transfer.lock, flags);
2617 
2618  config_wakeups();
2619 
2620  spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2621 }
2622 
2623 static void prcmu_irq_mask(struct irq_data *d)
2624 {
2625  unsigned long flags;
2626 
2627  spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2628 
2629  mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2630 
2631  spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2632 
2633  if (d->irq != IRQ_PRCMU_CA_SLEEP)
2634  schedule_work(&mb0_transfer.mask_work);
2635 }
2636 
2637 static void prcmu_irq_unmask(struct irq_data *d)
2638 {
2639  unsigned long flags;
2640 
2641  spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2642 
2643  mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2644 
2645  spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2646 
2647  if (d->irq != IRQ_PRCMU_CA_SLEEP)
2648  schedule_work(&mb0_transfer.mask_work);
2649 }
2650 
2651 static void noop(struct irq_data *d)
2652 {
2653 }
2654 
2655 static struct irq_chip prcmu_irq_chip = {
2656  .name = "prcmu",
2657  .irq_disable = prcmu_irq_mask,
2658  .irq_ack = noop,
2659  .irq_mask = prcmu_irq_mask,
2660  .irq_unmask = prcmu_irq_unmask,
2661 };
2662 
2663 static char *fw_project_name(u8 project)
2664 {
2665  switch (project) {
2667  return "U8500";
2669  return "U8500 C2";
2671  return "U9500";
2673  return "U9500 C2";
2675  return "U8520";
2677  return "U8420";
2678  default:
2679  return "Unknown";
2680  }
2681 }
2682 
2683 static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2684  irq_hw_number_t hwirq)
2685 {
2686  irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2688  set_irq_flags(virq, IRQF_VALID);
2689 
2690  return 0;
2691 }
2692 
2693 static struct irq_domain_ops db8500_irq_ops = {
2694  .map = db8500_irq_map,
2695  .xlate = irq_domain_xlate_twocell,
2696 };
2697 
2698 static int db8500_irq_init(struct device_node *np)
2699 {
2700  db8500_irq_domain = irq_domain_add_legacy(
2701  np, NUM_PRCMU_WAKEUPS, IRQ_PRCMU_BASE,
2702  0, &db8500_irq_ops, NULL);
2703 
2704  if (!db8500_irq_domain) {
2705  pr_err("Failed to create irqdomain\n");
2706  return -ENOSYS;
2707  }
2708 
2709  return 0;
2710 }
2711 
2713 {
2714  if (cpu_is_u8500v2()) {
2715  void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
2716 
2717  if (tcpm_base != NULL) {
2718  u32 version;
2719  version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
2720  fw_info.version.project = version & 0xFF;
2721  fw_info.version.api_version = (version >> 8) & 0xFF;
2722  fw_info.version.func_version = (version >> 16) & 0xFF;
2723  fw_info.version.errata = (version >> 24) & 0xFF;
2724  fw_info.valid = true;
2725  pr_info("PRCMU firmware: %s, version %d.%d.%d\n",
2726  fw_project_name(fw_info.version.project),
2727  (version >> 8) & 0xFF, (version >> 16) & 0xFF,
2728  (version >> 24) & 0xFF);
2729  iounmap(tcpm_base);
2730  }
2731 
2732  tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
2733  } else {
2734  pr_err("prcmu: Unsupported chip version\n");
2735  BUG();
2736  }
2737 
2738  spin_lock_init(&mb0_transfer.lock);
2739  spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740  mutex_init(&mb0_transfer.ac_wake_lock);
2741  init_completion(&mb0_transfer.ac_wake_work);
2742  mutex_init(&mb1_transfer.lock);
2743  init_completion(&mb1_transfer.work);
2744  mb1_transfer.ape_opp = APE_NO_CHANGE;
2745  mutex_init(&mb2_transfer.lock);
2746  init_completion(&mb2_transfer.work);
2747  spin_lock_init(&mb2_transfer.auto_pm_lock);
2748  spin_lock_init(&mb3_transfer.lock);
2749  mutex_init(&mb3_transfer.sysclk_lock);
2750  init_completion(&mb3_transfer.sysclk_work);
2751  mutex_init(&mb4_transfer.lock);
2752  init_completion(&mb4_transfer.work);
2753  mutex_init(&mb5_transfer.lock);
2754  init_completion(&mb5_transfer.work);
2755 
2756  INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2757 
2758  compute_armss_rate();
2759 }
2760 
2761 static void __init init_prcm_registers(void)
2762 {
2763  u32 val;
2764 
2768  writel(val, (PRCM_A9PL_FORCE_CLKEN));
2769 }
2770 
2771 /*
2772  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2773  */
2774 static struct regulator_consumer_supply db8500_vape_consumers[] = {
2775  REGULATOR_SUPPLY("v-ape", NULL),
2776  REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2777  REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2778  REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2779  REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2780  REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2781  /* "v-mmc" changed to "vcore" in the mainline kernel */
2782  REGULATOR_SUPPLY("vcore", "sdi0"),
2783  REGULATOR_SUPPLY("vcore", "sdi1"),
2784  REGULATOR_SUPPLY("vcore", "sdi2"),
2785  REGULATOR_SUPPLY("vcore", "sdi3"),
2786  REGULATOR_SUPPLY("vcore", "sdi4"),
2787  REGULATOR_SUPPLY("v-dma", "dma40.0"),
2788  REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2789  /* "v-uart" changed to "vcore" in the mainline kernel */
2790  REGULATOR_SUPPLY("vcore", "uart0"),
2791  REGULATOR_SUPPLY("vcore", "uart1"),
2792  REGULATOR_SUPPLY("vcore", "uart2"),
2793  REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2794  REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2795  REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2796 };
2797 
2798 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2799  REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2800  /* AV8100 regulator */
2801  REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2802 };
2803 
2804 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2805  REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2806  REGULATOR_SUPPLY("vsupply", "mcde"),
2807 };
2808 
2809 /* SVA MMDSP regulator switch */
2810 static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2811  REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2812 };
2813 
2814 /* SVA pipe regulator switch */
2815 static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2816  REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2817 };
2818 
2819 /* SIA MMDSP regulator switch */
2820 static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2821  REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2822 };
2823 
2824 /* SIA pipe regulator switch */
2825 static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2826  REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2827 };
2828 
2829 static struct regulator_consumer_supply db8500_sga_consumers[] = {
2830  REGULATOR_SUPPLY("v-mali", NULL),
2831 };
2832 
2833 /* ESRAM1 and 2 regulator switch */
2834 static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2835  REGULATOR_SUPPLY("esram12", "cm_control"),
2836 };
2837 
2838 /* ESRAM3 and 4 regulator switch */
2839 static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2840  REGULATOR_SUPPLY("v-esram34", "mcde"),
2841  REGULATOR_SUPPLY("esram34", "cm_control"),
2842  REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2843 };
2844 
2845 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2846  [DB8500_REGULATOR_VAPE] = {
2847  .constraints = {
2848  .name = "db8500-vape",
2849  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2850  .always_on = true,
2851  },
2852  .consumer_supplies = db8500_vape_consumers,
2853  .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2854  },
2855  [DB8500_REGULATOR_VARM] = {
2856  .constraints = {
2857  .name = "db8500-varm",
2858  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2859  },
2860  },
2862  .constraints = {
2863  .name = "db8500-vmodem",
2864  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2865  },
2866  },
2867  [DB8500_REGULATOR_VPLL] = {
2868  .constraints = {
2869  .name = "db8500-vpll",
2870  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2871  },
2872  },
2874  .constraints = {
2875  .name = "db8500-vsmps1",
2876  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2877  },
2878  },
2880  .constraints = {
2881  .name = "db8500-vsmps2",
2882  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2883  },
2884  .consumer_supplies = db8500_vsmps2_consumers,
2885  .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2886  },
2888  .constraints = {
2889  .name = "db8500-vsmps3",
2890  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2891  },
2892  },
2893  [DB8500_REGULATOR_VRF1] = {
2894  .constraints = {
2895  .name = "db8500-vrf1",
2896  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2897  },
2898  },
2900  /* dependency to u8500-vape is handled outside regulator framework */
2901  .constraints = {
2902  .name = "db8500-sva-mmdsp",
2903  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2904  },
2905  .consumer_supplies = db8500_svammdsp_consumers,
2906  .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2907  },
2909  .constraints = {
2910  /* "ret" means "retention" */
2911  .name = "db8500-sva-mmdsp-ret",
2912  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2913  },
2914  },
2916  /* dependency to u8500-vape is handled outside regulator framework */
2917  .constraints = {
2918  .name = "db8500-sva-pipe",
2919  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2920  },
2921  .consumer_supplies = db8500_svapipe_consumers,
2922  .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2923  },
2925  /* dependency to u8500-vape is handled outside regulator framework */
2926  .constraints = {
2927  .name = "db8500-sia-mmdsp",
2928  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2929  },
2930  .consumer_supplies = db8500_siammdsp_consumers,
2931  .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2932  },
2934  .constraints = {
2935  .name = "db8500-sia-mmdsp-ret",
2936  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2937  },
2938  },
2940  /* dependency to u8500-vape is handled outside regulator framework */
2941  .constraints = {
2942  .name = "db8500-sia-pipe",
2943  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2944  },
2945  .consumer_supplies = db8500_siapipe_consumers,
2946  .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2947  },
2949  .supply_regulator = "db8500-vape",
2950  .constraints = {
2951  .name = "db8500-sga",
2952  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2953  },
2954  .consumer_supplies = db8500_sga_consumers,
2955  .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2956 
2957  },
2959  .supply_regulator = "db8500-vape",
2960  .constraints = {
2961  .name = "db8500-b2r2-mcde",
2962  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2963  },
2964  .consumer_supplies = db8500_b2r2_mcde_consumers,
2965  .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2966  },
2968  /*
2969  * esram12 is set in retention and supplied by Vsafe when Vape is off,
2970  * no need to hold Vape
2971  */
2972  .constraints = {
2973  .name = "db8500-esram12",
2974  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2975  },
2976  .consumer_supplies = db8500_esram12_consumers,
2977  .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2978  },
2980  .constraints = {
2981  .name = "db8500-esram12-ret",
2982  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2983  },
2984  },
2986  /*
2987  * esram34 is set in retention and supplied by Vsafe when Vape is off,
2988  * no need to hold Vape
2989  */
2990  .constraints = {
2991  .name = "db8500-esram34",
2992  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2993  },
2994  .consumer_supplies = db8500_esram34_consumers,
2995  .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2996  },
2998  .constraints = {
2999  .name = "db8500-esram34-ret",
3000  .valid_ops_mask = REGULATOR_CHANGE_STATUS,
3001  },
3002  },
3003 };
3004 
3005 static struct resource ab8500_resources[] = {
3006  [0] = {
3007  .start = IRQ_DB8500_AB8500,
3008  .end = IRQ_DB8500_AB8500,
3009  .flags = IORESOURCE_IRQ
3010  }
3011 };
3012 
3013 static struct mfd_cell db8500_prcmu_devs[] = {
3014  {
3015  .name = "db8500-prcmu-regulators",
3016  .of_compatible = "stericsson,db8500-prcmu-regulator",
3017  .platform_data = &db8500_regulators,
3018  .pdata_size = sizeof(db8500_regulators),
3019  },
3020  {
3021  .name = "cpufreq-u8500",
3022  .of_compatible = "stericsson,cpufreq-u8500",
3023  },
3024  {
3025  .name = "ab8500-core",
3026  .of_compatible = "stericsson,ab8500",
3027  .num_resources = ARRAY_SIZE(ab8500_resources),
3028  .resources = ab8500_resources,
3029  .id = AB8500_VERSION_AB8500,
3030  },
3031 };
3032 
3037 static int __devinit db8500_prcmu_probe(struct platform_device *pdev)
3038 {
3039  struct ab8500_platform_data *ab8500_platdata = pdev->dev.platform_data;
3040  struct device_node *np = pdev->dev.of_node;
3041  int irq = 0, err = 0, i;
3042 
3043  if (ux500_is_svp())
3044  return -ENODEV;
3045 
3046  init_prcm_registers();
3047 
3048  /* Clean up the mailbox interrupts after pre-kernel code. */
3050 
3051  if (np)
3052  irq = platform_get_irq(pdev, 0);
3053 
3054  if (!np || irq <= 0)
3055  irq = IRQ_DB8500_PRCMU1;
3056 
3057  err = request_threaded_irq(irq, prcmu_irq_handler,
3058  prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3059  if (err < 0) {
3060  pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3061  err = -EBUSY;
3062  goto no_irq_return;
3063  }
3064 
3065  db8500_irq_init(np);
3066 
3067  for (i = 0; i < ARRAY_SIZE(db8500_prcmu_devs); i++) {
3068  if (!strcmp(db8500_prcmu_devs[i].name, "ab8500-core")) {
3069  db8500_prcmu_devs[i].platform_data = ab8500_platdata;
3070  db8500_prcmu_devs[i].pdata_size = sizeof(struct ab8500_platform_data);
3071  }
3072  }
3073 
3074  if (cpu_is_u8500v20_or_later())
3075  prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3076 
3077  err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3078  ARRAY_SIZE(db8500_prcmu_devs), NULL, 0, NULL);
3079  if (err) {
3080  pr_err("prcmu: Failed to add subdevices\n");
3081  return err;
3082  }
3083 
3084  pr_info("DB8500 PRCMU initialized\n");
3085 
3086 no_irq_return:
3087  return err;
3088 }
3089 static const struct of_device_id db8500_prcmu_match[] = {
3090  { .compatible = "stericsson,db8500-prcmu"},
3091  { },
3092 };
3093 
3094 static struct platform_driver db8500_prcmu_driver = {
3095  .driver = {
3096  .name = "db8500-prcmu",
3097  .owner = THIS_MODULE,
3098  .of_match_table = db8500_prcmu_match,
3099  },
3100  .probe = db8500_prcmu_probe,
3101 };
3102 
3103 static int __init db8500_prcmu_init(void)
3104 {
3105  return platform_driver_register(&db8500_prcmu_driver);
3106 }
3107 
3108 core_initcall(db8500_prcmu_init);
3109 
3110 MODULE_AUTHOR("Mattias Nilsson <[email protected]>");
3111 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3112 MODULE_LICENSE("GPL v2");