Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xhci.c
Go to the documentation of this file.
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 
31 #include "xhci.h"
32 
33 #define DRIVER_AUTHOR "Sarah Sharp"
34 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
35 
36 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
37 static int link_quirk;
38 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
39 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
40 
41 /* TODO: copied from ehci-hcd.c - can this be refactored? */
42 /*
43  * handshake - spin reading hc until handshake completes or fails
44  * @ptr: address of hc register to be read
45  * @mask: bits to look at in result of read
46  * @done: value of those bits when handshake succeeds
47  * @usec: timeout in microseconds
48  *
49  * Returns negative errno, or zero on success
50  *
51  * Success happens when the "mask" bits have the specified value (hardware
52  * handshake done). There are two failure modes: "usec" have passed (major
53  * hardware flakeout), or the register reads as all-ones (hardware removed).
54  */
55 int handshake(struct xhci_hcd *xhci, void __iomem *ptr,
56  u32 mask, u32 done, int usec)
57 {
58  u32 result;
59 
60  do {
61  result = xhci_readl(xhci, ptr);
62  if (result == ~(u32)0) /* card removed */
63  return -ENODEV;
64  result &= mask;
65  if (result == done)
66  return 0;
67  udelay(1);
68  usec--;
69  } while (usec > 0);
70  return -ETIMEDOUT;
71 }
72 
73 /*
74  * Disable interrupts and begin the xHCI halting process.
75  */
76 void xhci_quiesce(struct xhci_hcd *xhci)
77 {
78  u32 halted;
79  u32 cmd;
80  u32 mask;
81 
82  mask = ~(XHCI_IRQS);
83  halted = xhci_readl(xhci, &xhci->op_regs->status) & STS_HALT;
84  if (!halted)
85  mask &= ~CMD_RUN;
86 
87  cmd = xhci_readl(xhci, &xhci->op_regs->command);
88  cmd &= mask;
89  xhci_writel(xhci, cmd, &xhci->op_regs->command);
90 }
91 
92 /*
93  * Force HC into halt state.
94  *
95  * Disable any IRQs and clear the run/stop bit.
96  * HC will complete any current and actively pipelined transactions, and
97  * should halt within 16 ms of the run/stop bit being cleared.
98  * Read HC Halted bit in the status register to see when the HC is finished.
99  */
100 int xhci_halt(struct xhci_hcd *xhci)
101 {
102  int ret;
103  xhci_dbg(xhci, "// Halt the HC\n");
104  xhci_quiesce(xhci);
105 
106  ret = handshake(xhci, &xhci->op_regs->status,
108  if (!ret) {
109  xhci->xhc_state |= XHCI_STATE_HALTED;
111  } else
112  xhci_warn(xhci, "Host not halted after %u microseconds.\n",
114  return ret;
115 }
116 
117 /*
118  * Set the run bit and wait for the host to be running.
119  */
120 static int xhci_start(struct xhci_hcd *xhci)
121 {
122  u32 temp;
123  int ret;
124 
125  temp = xhci_readl(xhci, &xhci->op_regs->command);
126  temp |= (CMD_RUN);
127  xhci_dbg(xhci, "// Turn on HC, cmd = 0x%x.\n",
128  temp);
129  xhci_writel(xhci, temp, &xhci->op_regs->command);
130 
131  /*
132  * Wait for the HCHalted Status bit to be 0 to indicate the host is
133  * running.
134  */
135  ret = handshake(xhci, &xhci->op_regs->status,
137  if (ret == -ETIMEDOUT)
138  xhci_err(xhci, "Host took too long to start, "
139  "waited %u microseconds.\n",
141  if (!ret)
142  xhci->xhc_state &= ~XHCI_STATE_HALTED;
143  return ret;
144 }
145 
146 /*
147  * Reset a halted HC.
148  *
149  * This resets pipelines, timers, counters, state machines, etc.
150  * Transactions will be terminated immediately, and operational registers
151  * will be set to their defaults.
152  */
153 int xhci_reset(struct xhci_hcd *xhci)
154 {
155  u32 command;
156  u32 state;
157  int ret, i;
158 
159  state = xhci_readl(xhci, &xhci->op_regs->status);
160  if ((state & STS_HALT) == 0) {
161  xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
162  return 0;
163  }
164 
165  xhci_dbg(xhci, "// Reset the HC\n");
166  command = xhci_readl(xhci, &xhci->op_regs->command);
167  command |= CMD_RESET;
168  xhci_writel(xhci, command, &xhci->op_regs->command);
169 
170  ret = handshake(xhci, &xhci->op_regs->command,
171  CMD_RESET, 0, 10 * 1000 * 1000);
172  if (ret)
173  return ret;
174 
175  xhci_dbg(xhci, "Wait for controller to be ready for doorbell rings\n");
176  /*
177  * xHCI cannot write to any doorbells or operational registers other
178  * than status until the "Controller Not Ready" flag is cleared.
179  */
180  ret = handshake(xhci, &xhci->op_regs->status,
181  STS_CNR, 0, 10 * 1000 * 1000);
182 
183  for (i = 0; i < 2; ++i) {
184  xhci->bus_state[i].port_c_suspend = 0;
185  xhci->bus_state[i].suspended_ports = 0;
186  xhci->bus_state[i].resuming_ports = 0;
187  }
188 
189  return ret;
190 }
191 
192 #ifdef CONFIG_PCI
193 static int xhci_free_msi(struct xhci_hcd *xhci)
194 {
195  int i;
196 
197  if (!xhci->msix_entries)
198  return -EINVAL;
199 
200  for (i = 0; i < xhci->msix_count; i++)
201  if (xhci->msix_entries[i].vector)
202  free_irq(xhci->msix_entries[i].vector,
203  xhci_to_hcd(xhci));
204  return 0;
205 }
206 
207 /*
208  * Set up MSI
209  */
210 static int xhci_setup_msi(struct xhci_hcd *xhci)
211 {
212  int ret;
213  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
214 
215  ret = pci_enable_msi(pdev);
216  if (ret) {
217  xhci_dbg(xhci, "failed to allocate MSI entry\n");
218  return ret;
219  }
220 
222  0, "xhci_hcd", xhci_to_hcd(xhci));
223  if (ret) {
224  xhci_dbg(xhci, "disable MSI interrupt\n");
225  pci_disable_msi(pdev);
226  }
227 
228  return ret;
229 }
230 
231 /*
232  * Free IRQs
233  * free all IRQs request
234  */
235 static void xhci_free_irq(struct xhci_hcd *xhci)
236 {
237  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
238  int ret;
239 
240  /* return if using legacy interrupt */
241  if (xhci_to_hcd(xhci)->irq > 0)
242  return;
243 
244  ret = xhci_free_msi(xhci);
245  if (!ret)
246  return;
247  if (pdev->irq > 0)
248  free_irq(pdev->irq, xhci_to_hcd(xhci));
249 
250  return;
251 }
252 
253 /*
254  * Set up MSI-X
255  */
256 static int xhci_setup_msix(struct xhci_hcd *xhci)
257 {
258  int i, ret = 0;
259  struct usb_hcd *hcd = xhci_to_hcd(xhci);
260  struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
261 
262  /*
263  * calculate number of msi-x vectors supported.
264  * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
265  * with max number of interrupters based on the xhci HCSPARAMS1.
266  * - num_online_cpus: maximum msi-x vectors per CPUs core.
267  * Add additional 1 vector to ensure always available interrupt.
268  */
269  xhci->msix_count = min(num_online_cpus() + 1,
270  HCS_MAX_INTRS(xhci->hcs_params1));
271 
272  xhci->msix_entries =
273  kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
274  GFP_KERNEL);
275  if (!xhci->msix_entries) {
276  xhci_err(xhci, "Failed to allocate MSI-X entries\n");
277  return -ENOMEM;
278  }
279 
280  for (i = 0; i < xhci->msix_count; i++) {
281  xhci->msix_entries[i].entry = i;
282  xhci->msix_entries[i].vector = 0;
283  }
284 
285  ret = pci_enable_msix(pdev, xhci->msix_entries, xhci->msix_count);
286  if (ret) {
287  xhci_dbg(xhci, "Failed to enable MSI-X\n");
288  goto free_entries;
289  }
290 
291  for (i = 0; i < xhci->msix_count; i++) {
292  ret = request_irq(xhci->msix_entries[i].vector,
293  (irq_handler_t)xhci_msi_irq,
294  0, "xhci_hcd", xhci_to_hcd(xhci));
295  if (ret)
296  goto disable_msix;
297  }
298 
299  hcd->msix_enabled = 1;
300  return ret;
301 
302 disable_msix:
303  xhci_dbg(xhci, "disable MSI-X interrupt\n");
304  xhci_free_irq(xhci);
305  pci_disable_msix(pdev);
306 free_entries:
307  kfree(xhci->msix_entries);
308  xhci->msix_entries = NULL;
309  return ret;
310 }
311 
312 /* Free any IRQs and disable MSI-X */
313 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
314 {
315  struct usb_hcd *hcd = xhci_to_hcd(xhci);
316  struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
317 
318  xhci_free_irq(xhci);
319 
320  if (xhci->msix_entries) {
321  pci_disable_msix(pdev);
322  kfree(xhci->msix_entries);
323  xhci->msix_entries = NULL;
324  } else {
325  pci_disable_msi(pdev);
326  }
327 
328  hcd->msix_enabled = 0;
329  return;
330 }
331 
332 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
333 {
334  int i;
335 
336  if (xhci->msix_entries) {
337  for (i = 0; i < xhci->msix_count; i++)
338  synchronize_irq(xhci->msix_entries[i].vector);
339  }
340 }
341 
342 static int xhci_try_enable_msi(struct usb_hcd *hcd)
343 {
344  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
345  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
346  int ret;
347 
348  /*
349  * Some Fresco Logic host controllers advertise MSI, but fail to
350  * generate interrupts. Don't even try to enable MSI.
351  */
352  if (xhci->quirks & XHCI_BROKEN_MSI)
353  return 0;
354 
355  /* unregister the legacy interrupt */
356  if (hcd->irq)
357  free_irq(hcd->irq, hcd);
358  hcd->irq = 0;
359 
360  ret = xhci_setup_msix(xhci);
361  if (ret)
362  /* fall back to msi*/
363  ret = xhci_setup_msi(xhci);
364 
365  if (!ret)
366  /* hcd->irq is 0, we have MSI */
367  return 0;
368 
369  if (!pdev->irq) {
370  xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
371  return -EINVAL;
372  }
373 
374  /* fall back to legacy interrupt*/
375  ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
376  hcd->irq_descr, hcd);
377  if (ret) {
378  xhci_err(xhci, "request interrupt %d failed\n",
379  pdev->irq);
380  return ret;
381  }
382  hcd->irq = pdev->irq;
383  return 0;
384 }
385 
386 #else
387 
388 static int xhci_try_enable_msi(struct usb_hcd *hcd)
389 {
390  return 0;
391 }
392 
393 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
394 {
395 }
396 
397 static void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
398 {
399 }
400 
401 #endif
402 
403 static void compliance_mode_recovery(unsigned long arg)
404 {
405  struct xhci_hcd *xhci;
406  struct usb_hcd *hcd;
407  u32 temp;
408  int i;
409 
410  xhci = (struct xhci_hcd *)arg;
411 
412  for (i = 0; i < xhci->num_usb3_ports; i++) {
413  temp = xhci_readl(xhci, xhci->usb3_ports[i]);
414  if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
415  /*
416  * Compliance Mode Detected. Letting USB Core
417  * handle the Warm Reset
418  */
419  xhci_dbg(xhci, "Compliance Mode Detected->Port %d!\n",
420  i + 1);
421  xhci_dbg(xhci, "Attempting Recovery routine!\n");
422  hcd = xhci->shared_hcd;
423 
424  if (hcd->state == HC_STATE_SUSPENDED)
425  usb_hcd_resume_root_hub(hcd);
426 
428  }
429  }
430 
431  if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
434 }
435 
436 /*
437  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
438  * that causes ports behind that hardware to enter compliance mode sometimes.
439  * The quirk creates a timer that polls every 2 seconds the link state of
440  * each host controller's port and recovers it by issuing a Warm reset
441  * if Compliance mode is detected, otherwise the port will become "dead" (no
442  * device connections or disconnections will be detected anymore). Becasue no
443  * status event is generated when entering compliance mode (per xhci spec),
444  * this quirk is needed on systems that have the failing hardware installed.
445  */
446 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
447 {
448  xhci->port_status_u0 = 0;
450 
451  xhci->comp_mode_recovery_timer.data = (unsigned long) xhci;
452  xhci->comp_mode_recovery_timer.function = compliance_mode_recovery;
453  xhci->comp_mode_recovery_timer.expires = jiffies +
455 
459  xhci_dbg(xhci, "Compliance Mode Recovery Timer Initialized.\n");
460 }
461 
462 /*
463  * This function identifies the systems that have installed the SN65LVPE502CP
464  * USB3.0 re-driver and that need the Compliance Mode Quirk.
465  * Systems:
466  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
467  */
468 static bool compliance_mode_recovery_timer_quirk_check(void)
469 {
470  const char *dmi_product_name, *dmi_sys_vendor;
471 
472  dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
473  dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
474  if (!dmi_product_name || !dmi_sys_vendor)
475  return false;
476 
477  if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
478  return false;
479 
480  if (strstr(dmi_product_name, "Z420") ||
481  strstr(dmi_product_name, "Z620") ||
482  strstr(dmi_product_name, "Z820") ||
483  strstr(dmi_product_name, "Z1"))
484  return true;
485 
486  return false;
487 }
488 
489 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
490 {
491  return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
492 }
493 
494 
495 /*
496  * Initialize memory for HCD and xHC (one-time init).
497  *
498  * Program the PAGESIZE register, initialize the device context array, create
499  * device contexts (?), set up a command ring segment (or two?), create event
500  * ring (one for now).
501  */
502 int xhci_init(struct usb_hcd *hcd)
503 {
504  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
505  int retval = 0;
506 
507  xhci_dbg(xhci, "xhci_init\n");
508  spin_lock_init(&xhci->lock);
509  if (xhci->hci_version == 0x95 && link_quirk) {
510  xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits.\n");
511  xhci->quirks |= XHCI_LINK_TRB_QUIRK;
512  } else {
513  xhci_dbg(xhci, "xHCI doesn't need link TRB QUIRK\n");
514  }
515  retval = xhci_mem_init(xhci, GFP_KERNEL);
516  xhci_dbg(xhci, "Finished xhci_init\n");
517 
518  /* Initializing Compliance Mode Recovery Data If Needed */
519  if (compliance_mode_recovery_timer_quirk_check()) {
520  xhci->quirks |= XHCI_COMP_MODE_QUIRK;
521  compliance_mode_recovery_timer_init(xhci);
522  }
523 
524  return retval;
525 }
526 
527 /*-------------------------------------------------------------------------*/
528 
529 
530 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
531 static void xhci_event_ring_work(unsigned long arg)
532 {
533  unsigned long flags;
534  int temp;
535  u64 temp_64;
536  struct xhci_hcd *xhci = (struct xhci_hcd *) arg;
537  int i, j;
538 
539  xhci_dbg(xhci, "Poll event ring: %lu\n", jiffies);
540 
541  spin_lock_irqsave(&xhci->lock, flags);
542  temp = xhci_readl(xhci, &xhci->op_regs->status);
543  xhci_dbg(xhci, "op reg status = 0x%x\n", temp);
544  if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
545  (xhci->xhc_state & XHCI_STATE_HALTED)) {
546  xhci_dbg(xhci, "HW died, polling stopped.\n");
547  spin_unlock_irqrestore(&xhci->lock, flags);
548  return;
549  }
550 
551  temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
552  xhci_dbg(xhci, "ir_set 0 pending = 0x%x\n", temp);
553  xhci_dbg(xhci, "HC error bitmask = 0x%x\n", xhci->error_bitmask);
554  xhci->error_bitmask = 0;
555  xhci_dbg(xhci, "Event ring:\n");
556  xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
557  xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
558  temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
559  temp_64 &= ~ERST_PTR_MASK;
560  xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
561  xhci_dbg(xhci, "Command ring:\n");
562  xhci_debug_segment(xhci, xhci->cmd_ring->deq_seg);
563  xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
564  xhci_dbg_cmd_ptrs(xhci);
565  for (i = 0; i < MAX_HC_SLOTS; ++i) {
566  if (!xhci->devs[i])
567  continue;
568  for (j = 0; j < 31; ++j) {
569  xhci_dbg_ep_rings(xhci, i, j, &xhci->devs[i]->eps[j]);
570  }
571  }
572  spin_unlock_irqrestore(&xhci->lock, flags);
573 
574  if (!xhci->zombie)
575  mod_timer(&xhci->event_ring_timer, jiffies + POLL_TIMEOUT * HZ);
576  else
577  xhci_dbg(xhci, "Quit polling the event ring.\n");
578 }
579 #endif
580 
581 static int xhci_run_finished(struct xhci_hcd *xhci)
582 {
583  if (xhci_start(xhci)) {
584  xhci_halt(xhci);
585  return -ENODEV;
586  }
587  xhci->shared_hcd->state = HC_STATE_RUNNING;
589 
590  if (xhci->quirks & XHCI_NEC_HOST)
591  xhci_ring_cmd_db(xhci);
592 
593  xhci_dbg(xhci, "Finished xhci_run for USB3 roothub\n");
594  return 0;
595 }
596 
597 /*
598  * Start the HC after it was halted.
599  *
600  * This function is called by the USB core when the HC driver is added.
601  * Its opposite is xhci_stop().
602  *
603  * xhci_init() must be called once before this function can be called.
604  * Reset the HC, enable device slot contexts, program DCBAAP, and
605  * set command ring pointer and event ring pointer.
606  *
607  * Setup MSI-X vectors and enable interrupts.
608  */
609 int xhci_run(struct usb_hcd *hcd)
610 {
611  u32 temp;
612  u64 temp_64;
613  int ret;
614  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
615 
616  /* Start the xHCI host controller running only after the USB 2.0 roothub
617  * is setup.
618  */
619 
620  hcd->uses_new_polling = 1;
621  if (!usb_hcd_is_primary_hcd(hcd))
622  return xhci_run_finished(xhci);
623 
624  xhci_dbg(xhci, "xhci_run\n");
625 
626  ret = xhci_try_enable_msi(hcd);
627  if (ret)
628  return ret;
629 
630 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
631  init_timer(&xhci->event_ring_timer);
632  xhci->event_ring_timer.data = (unsigned long) xhci;
633  xhci->event_ring_timer.function = xhci_event_ring_work;
634  /* Poll the event ring */
635  xhci->event_ring_timer.expires = jiffies + POLL_TIMEOUT * HZ;
636  xhci->zombie = 0;
637  xhci_dbg(xhci, "Setting event ring polling timer\n");
638  add_timer(&xhci->event_ring_timer);
639 #endif
640 
641  xhci_dbg(xhci, "Command ring memory map follows:\n");
642  xhci_debug_ring(xhci, xhci->cmd_ring);
643  xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
644  xhci_dbg_cmd_ptrs(xhci);
645 
646  xhci_dbg(xhci, "ERST memory map follows:\n");
647  xhci_dbg_erst(xhci, &xhci->erst);
648  xhci_dbg(xhci, "Event ring:\n");
649  xhci_debug_ring(xhci, xhci->event_ring);
650  xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
651  temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
652  temp_64 &= ~ERST_PTR_MASK;
653  xhci_dbg(xhci, "ERST deq = 64'h%0lx\n", (long unsigned int) temp_64);
654 
655  xhci_dbg(xhci, "// Set the interrupt modulation register\n");
656  temp = xhci_readl(xhci, &xhci->ir_set->irq_control);
657  temp &= ~ER_IRQ_INTERVAL_MASK;
658  temp |= (u32) 160;
659  xhci_writel(xhci, temp, &xhci->ir_set->irq_control);
660 
661  /* Set the HCD state before we enable the irqs */
662  temp = xhci_readl(xhci, &xhci->op_regs->command);
663  temp |= (CMD_EIE);
664  xhci_dbg(xhci, "// Enable interrupts, cmd = 0x%x.\n",
665  temp);
666  xhci_writel(xhci, temp, &xhci->op_regs->command);
667 
668  temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
669  xhci_dbg(xhci, "// Enabling event ring interrupter %p by writing 0x%x to irq_pending\n",
670  xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
671  xhci_writel(xhci, ER_IRQ_ENABLE(temp),
672  &xhci->ir_set->irq_pending);
673  xhci_print_ir_set(xhci, 0);
674 
675  if (xhci->quirks & XHCI_NEC_HOST)
676  xhci_queue_vendor_command(xhci, 0, 0, 0,
678 
679  xhci_dbg(xhci, "Finished xhci_run for USB2 roothub\n");
680  return 0;
681 }
682 
683 static void xhci_only_stop_hcd(struct usb_hcd *hcd)
684 {
685  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686 
687  spin_lock_irq(&xhci->lock);
688  xhci_halt(xhci);
689 
690  /* The shared_hcd is going to be deallocated shortly (the USB core only
691  * calls this function when allocation fails in usb_add_hcd(), or
692  * usb_remove_hcd() is called). So we need to unset xHCI's pointer.
693  */
694  xhci->shared_hcd = NULL;
695  spin_unlock_irq(&xhci->lock);
696 }
697 
698 /*
699  * Stop xHCI driver.
700  *
701  * This function is called by the USB core when the HC driver is removed.
702  * Its opposite is xhci_run().
703  *
704  * Disable device contexts, disable IRQs, and quiesce the HC.
705  * Reset the HC, finish any completed transactions, and cleanup memory.
706  */
707 void xhci_stop(struct usb_hcd *hcd)
708 {
709  u32 temp;
710  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
711 
712  if (!usb_hcd_is_primary_hcd(hcd)) {
713  xhci_only_stop_hcd(xhci->shared_hcd);
714  return;
715  }
716 
717  spin_lock_irq(&xhci->lock);
718  /* Make sure the xHC is halted for a USB3 roothub
719  * (xhci_stop() could be called as part of failed init).
720  */
721  xhci_halt(xhci);
722  xhci_reset(xhci);
723  spin_unlock_irq(&xhci->lock);
724 
725  xhci_cleanup_msix(xhci);
726 
727 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
728  /* Tell the event ring poll function not to reschedule */
729  xhci->zombie = 1;
730  del_timer_sync(&xhci->event_ring_timer);
731 #endif
732 
733  /* Deleting Compliance Mode Recovery Timer */
734  if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
735  (!(xhci_all_ports_seen_u0(xhci))))
737 
738  if (xhci->quirks & XHCI_AMD_PLL_FIX)
739  usb_amd_dev_put();
740 
741  xhci_dbg(xhci, "// Disabling event ring interrupts\n");
742  temp = xhci_readl(xhci, &xhci->op_regs->status);
743  xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
744  temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
745  xhci_writel(xhci, ER_IRQ_DISABLE(temp),
746  &xhci->ir_set->irq_pending);
747  xhci_print_ir_set(xhci, 0);
748 
749  xhci_dbg(xhci, "cleaning up memory\n");
750  xhci_mem_cleanup(xhci);
751  xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
752  xhci_readl(xhci, &xhci->op_regs->status));
753 }
754 
755 /*
756  * Shutdown HC (not bus-specific)
757  *
758  * This is called when the machine is rebooting or halting. We assume that the
759  * machine will be powered off, and the HC's internal state will be reset.
760  * Don't bother to free memory.
761  *
762  * This will only ever be called with the main usb_hcd (the USB3 roothub).
763  */
764 void xhci_shutdown(struct usb_hcd *hcd)
765 {
766  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
767 
768  if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
769  usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
770 
771  spin_lock_irq(&xhci->lock);
772  xhci_halt(xhci);
773  spin_unlock_irq(&xhci->lock);
774 
775  xhci_cleanup_msix(xhci);
776 
777  xhci_dbg(xhci, "xhci_shutdown completed - status = %x\n",
778  xhci_readl(xhci, &xhci->op_regs->status));
779 }
780 
781 #ifdef CONFIG_PM
782 static void xhci_save_registers(struct xhci_hcd *xhci)
783 {
784  xhci->s3.command = xhci_readl(xhci, &xhci->op_regs->command);
785  xhci->s3.dev_nt = xhci_readl(xhci, &xhci->op_regs->dev_notification);
786  xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
787  xhci->s3.config_reg = xhci_readl(xhci, &xhci->op_regs->config_reg);
788  xhci->s3.erst_size = xhci_readl(xhci, &xhci->ir_set->erst_size);
789  xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
790  xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
791  xhci->s3.irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
792  xhci->s3.irq_control = xhci_readl(xhci, &xhci->ir_set->irq_control);
793 }
794 
795 static void xhci_restore_registers(struct xhci_hcd *xhci)
796 {
797  xhci_writel(xhci, xhci->s3.command, &xhci->op_regs->command);
798  xhci_writel(xhci, xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
799  xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
800  xhci_writel(xhci, xhci->s3.config_reg, &xhci->op_regs->config_reg);
801  xhci_writel(xhci, xhci->s3.erst_size, &xhci->ir_set->erst_size);
802  xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
803  xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
804  xhci_writel(xhci, xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
805  xhci_writel(xhci, xhci->s3.irq_control, &xhci->ir_set->irq_control);
806 }
807 
808 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
809 {
810  u64 val_64;
811 
812  /* step 2: initialize command ring buffer */
813  val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
814  val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
815  (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
816  xhci->cmd_ring->dequeue) &
817  (u64) ~CMD_RING_RSVD_BITS) |
818  xhci->cmd_ring->cycle_state;
819  xhci_dbg(xhci, "// Setting command ring address to 0x%llx\n",
820  (long unsigned long) val_64);
821  xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
822 }
823 
824 /*
825  * The whole command ring must be cleared to zero when we suspend the host.
826  *
827  * The host doesn't save the command ring pointer in the suspend well, so we
828  * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
829  * aligned, because of the reserved bits in the command ring dequeue pointer
830  * register. Therefore, we can't just set the dequeue pointer back in the
831  * middle of the ring (TRBs are 16-byte aligned).
832  */
833 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
834 {
835  struct xhci_ring *ring;
836  struct xhci_segment *seg;
837 
838  ring = xhci->cmd_ring;
839  seg = ring->deq_seg;
840  do {
841  memset(seg->trbs, 0,
842  sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
843  seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
845  seg = seg->next;
846  } while (seg != ring->deq_seg);
847 
848  /* Reset the software enqueue and dequeue pointers */
849  ring->deq_seg = ring->first_seg;
850  ring->dequeue = ring->first_seg->trbs;
851  ring->enq_seg = ring->deq_seg;
852  ring->enqueue = ring->dequeue;
853 
854  ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
855  /*
856  * Ring is now zeroed, so the HW should look for change of ownership
857  * when the cycle bit is set to 1.
858  */
859  ring->cycle_state = 1;
860 
861  /*
862  * Reset the hardware dequeue pointer.
863  * Yes, this will need to be re-written after resume, but we're paranoid
864  * and want to make sure the hardware doesn't access bogus memory
865  * because, say, the BIOS or an SMI started the host without changing
866  * the command ring pointers.
867  */
868  xhci_set_cmd_ring_deq(xhci);
869 }
870 
871 /*
872  * Stop HC (not bus-specific)
873  *
874  * This is called when the machine transition into S3/S4 mode.
875  *
876  */
877 int xhci_suspend(struct xhci_hcd *xhci)
878 {
879  int rc = 0;
880  struct usb_hcd *hcd = xhci_to_hcd(xhci);
881  u32 command;
882 
883  spin_lock_irq(&xhci->lock);
884  clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
885  clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
886  /* step 1: stop endpoint */
887  /* skipped assuming that port suspend has done */
888 
889  /* step 2: clear Run/Stop bit */
890  command = xhci_readl(xhci, &xhci->op_regs->command);
891  command &= ~CMD_RUN;
892  xhci_writel(xhci, command, &xhci->op_regs->command);
893  if (handshake(xhci, &xhci->op_regs->status,
895  xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
896  spin_unlock_irq(&xhci->lock);
897  return -ETIMEDOUT;
898  }
899  xhci_clear_command_ring(xhci);
900 
901  /* step 3: save registers */
902  xhci_save_registers(xhci);
903 
904  /* step 4: set CSS flag */
905  command = xhci_readl(xhci, &xhci->op_regs->command);
906  command |= CMD_CSS;
907  xhci_writel(xhci, command, &xhci->op_regs->command);
908  if (handshake(xhci, &xhci->op_regs->status, STS_SAVE, 0, 10 * 1000)) {
909  xhci_warn(xhci, "WARN: xHC save state timeout\n");
910  spin_unlock_irq(&xhci->lock);
911  return -ETIMEDOUT;
912  }
913  spin_unlock_irq(&xhci->lock);
914 
915  /*
916  * Deleting Compliance Mode Recovery Timer because the xHCI Host
917  * is about to be suspended.
918  */
919  if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
920  (!(xhci_all_ports_seen_u0(xhci)))) {
922  xhci_dbg(xhci, "Compliance Mode Recovery Timer Deleted!\n");
923  }
924 
925  /* step 5: remove core well power */
926  /* synchronize irq when using MSI-X */
927  xhci_msix_sync_irqs(xhci);
928 
929  return rc;
930 }
931 
932 /*
933  * start xHC (not bus-specific)
934  *
935  * This is called when the machine transition from S3/S4 mode.
936  *
937  */
938 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
939 {
940  u32 command, temp = 0;
941  struct usb_hcd *hcd = xhci_to_hcd(xhci);
942  struct usb_hcd *secondary_hcd;
943  int retval = 0;
944 
945  /* Wait a bit if either of the roothubs need to settle from the
946  * transition into bus suspend.
947  */
948  if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
949  time_before(jiffies,
950  xhci->bus_state[1].next_statechange))
951  msleep(100);
952 
953  set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
954  set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
955 
956  spin_lock_irq(&xhci->lock);
957  if (xhci->quirks & XHCI_RESET_ON_RESUME)
958  hibernated = true;
959 
960  if (!hibernated) {
961  /* step 1: restore register */
962  xhci_restore_registers(xhci);
963  /* step 2: initialize command ring buffer */
964  xhci_set_cmd_ring_deq(xhci);
965  /* step 3: restore state and start state*/
966  /* step 3: set CRS flag */
967  command = xhci_readl(xhci, &xhci->op_regs->command);
968  command |= CMD_CRS;
969  xhci_writel(xhci, command, &xhci->op_regs->command);
970  if (handshake(xhci, &xhci->op_regs->status,
971  STS_RESTORE, 0, 10 * 1000)) {
972  xhci_warn(xhci, "WARN: xHC restore state timeout\n");
973  spin_unlock_irq(&xhci->lock);
974  return -ETIMEDOUT;
975  }
976  temp = xhci_readl(xhci, &xhci->op_regs->status);
977  }
978 
979  /* If restore operation fails, re-initialize the HC during resume */
980  if ((temp & STS_SRE) || hibernated) {
981  /* Let the USB core know _both_ roothubs lost power. */
982  usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
983  usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
984 
985  xhci_dbg(xhci, "Stop HCD\n");
986  xhci_halt(xhci);
987  xhci_reset(xhci);
988  spin_unlock_irq(&xhci->lock);
989  xhci_cleanup_msix(xhci);
990 
991 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
992  /* Tell the event ring poll function not to reschedule */
993  xhci->zombie = 1;
994  del_timer_sync(&xhci->event_ring_timer);
995 #endif
996 
997  xhci_dbg(xhci, "// Disabling event ring interrupts\n");
998  temp = xhci_readl(xhci, &xhci->op_regs->status);
999  xhci_writel(xhci, temp & ~STS_EINT, &xhci->op_regs->status);
1000  temp = xhci_readl(xhci, &xhci->ir_set->irq_pending);
1001  xhci_writel(xhci, ER_IRQ_DISABLE(temp),
1002  &xhci->ir_set->irq_pending);
1003  xhci_print_ir_set(xhci, 0);
1004 
1005  xhci_dbg(xhci, "cleaning up memory\n");
1006  xhci_mem_cleanup(xhci);
1007  xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1008  xhci_readl(xhci, &xhci->op_regs->status));
1009 
1010  /* USB core calls the PCI reinit and start functions twice:
1011  * first with the primary HCD, and then with the secondary HCD.
1012  * If we don't do the same, the host will never be started.
1013  */
1014  if (!usb_hcd_is_primary_hcd(hcd))
1015  secondary_hcd = hcd;
1016  else
1017  secondary_hcd = xhci->shared_hcd;
1018 
1019  xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1020  retval = xhci_init(hcd->primary_hcd);
1021  if (retval)
1022  return retval;
1023  xhci_dbg(xhci, "Start the primary HCD\n");
1024  retval = xhci_run(hcd->primary_hcd);
1025  if (!retval) {
1026  xhci_dbg(xhci, "Start the secondary HCD\n");
1027  retval = xhci_run(secondary_hcd);
1028  }
1029  hcd->state = HC_STATE_SUSPENDED;
1030  xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1031  goto done;
1032  }
1033 
1034  /* step 4: set Run/Stop bit */
1035  command = xhci_readl(xhci, &xhci->op_regs->command);
1036  command |= CMD_RUN;
1037  xhci_writel(xhci, command, &xhci->op_regs->command);
1038  handshake(xhci, &xhci->op_regs->status, STS_HALT,
1039  0, 250 * 1000);
1040 
1041  /* step 5: walk topology and initialize portsc,
1042  * portpmsc and portli
1043  */
1044  /* this is done in bus_resume */
1045 
1046  /* step 6: restart each of the previously
1047  * Running endpoints by ringing their doorbells
1048  */
1049 
1050  spin_unlock_irq(&xhci->lock);
1051 
1052  done:
1053  if (retval == 0) {
1054  usb_hcd_resume_root_hub(hcd);
1055  usb_hcd_resume_root_hub(xhci->shared_hcd);
1056  }
1057 
1058  /*
1059  * If system is subject to the Quirk, Compliance Mode Timer needs to
1060  * be re-initialized Always after a system resume. Ports are subject
1061  * to suffer the Compliance Mode issue again. It doesn't matter if
1062  * ports have entered previously to U0 before system's suspension.
1063  */
1064  if (xhci->quirks & XHCI_COMP_MODE_QUIRK)
1065  compliance_mode_recovery_timer_init(xhci);
1066 
1067  return retval;
1068 }
1069 #endif /* CONFIG_PM */
1070 
1071 /*-------------------------------------------------------------------------*/
1072 
1084 {
1085  unsigned int index;
1086  if (usb_endpoint_xfer_control(desc))
1087  index = (unsigned int) (usb_endpoint_num(desc)*2);
1088  else
1089  index = (unsigned int) (usb_endpoint_num(desc)*2) +
1090  (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1091  return index;
1092 }
1093 
1094 /* Find the flag for this endpoint (for use in the control context). Use the
1095  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1096  * bit 1, etc.
1097  */
1099 {
1100  return 1 << (xhci_get_endpoint_index(desc) + 1);
1101 }
1102 
1103 /* Find the flag for this endpoint (for use in the control context). Use the
1104  * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1105  * bit 1, etc.
1106  */
1108 {
1109  return 1 << (ep_index + 1);
1110 }
1111 
1112 /* Compute the last valid endpoint context index. Basically, this is the
1113  * endpoint index plus one. For slot contexts with more than valid endpoint,
1114  * we find the most significant bit set in the added contexts flags.
1115  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1116  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1117  */
1118 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1119 {
1120  return fls(added_ctxs) - 1;
1121 }
1122 
1123 /* Returns 1 if the arguments are OK;
1124  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1125  */
1126 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1127  struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1128  const char *func) {
1129  struct xhci_hcd *xhci;
1130  struct xhci_virt_device *virt_dev;
1131 
1132  if (!hcd || (check_ep && !ep) || !udev) {
1133  printk(KERN_DEBUG "xHCI %s called with invalid args\n",
1134  func);
1135  return -EINVAL;
1136  }
1137  if (!udev->parent) {
1138  printk(KERN_DEBUG "xHCI %s called for root hub\n",
1139  func);
1140  return 0;
1141  }
1142 
1143  xhci = hcd_to_xhci(hcd);
1144  if (xhci->xhc_state & XHCI_STATE_HALTED)
1145  return -ENODEV;
1146 
1147  if (check_virt_dev) {
1148  if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1149  printk(KERN_DEBUG "xHCI %s called with unaddressed "
1150  "device\n", func);
1151  return -EINVAL;
1152  }
1153 
1154  virt_dev = xhci->devs[udev->slot_id];
1155  if (virt_dev->udev != udev) {
1156  printk(KERN_DEBUG "xHCI %s called with udev and "
1157  "virt_dev does not match\n", func);
1158  return -EINVAL;
1159  }
1160  }
1161 
1162  return 1;
1163 }
1164 
1165 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1166  struct usb_device *udev, struct xhci_command *command,
1167  bool ctx_change, bool must_succeed);
1168 
1169 /*
1170  * Full speed devices may have a max packet size greater than 8 bytes, but the
1171  * USB core doesn't know that until it reads the first 8 bytes of the
1172  * descriptor. If the usb_device's max packet size changes after that point,
1173  * we need to issue an evaluate context command and wait on it.
1174  */
1175 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1176  unsigned int ep_index, struct urb *urb)
1177 {
1178  struct xhci_container_ctx *in_ctx;
1179  struct xhci_container_ctx *out_ctx;
1181  struct xhci_ep_ctx *ep_ctx;
1182  int max_packet_size;
1183  int hw_max_packet_size;
1184  int ret = 0;
1185 
1186  out_ctx = xhci->devs[slot_id]->out_ctx;
1187  ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1188  hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1189  max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1190  if (hw_max_packet_size != max_packet_size) {
1191  xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
1192  xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
1193  max_packet_size);
1194  xhci_dbg(xhci, "Max packet size in xHCI HW = %d\n",
1195  hw_max_packet_size);
1196  xhci_dbg(xhci, "Issuing evaluate context command.\n");
1197 
1198  /* Set up the modified control endpoint 0 */
1199  xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1200  xhci->devs[slot_id]->out_ctx, ep_index);
1201  in_ctx = xhci->devs[slot_id]->in_ctx;
1202  ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1203  ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1204  ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1205 
1206  /* Set up the input context flags for the command */
1207  /* FIXME: This won't work if a non-default control endpoint
1208  * changes max packet sizes.
1209  */
1210  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1211  ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1212  ctrl_ctx->drop_flags = 0;
1213 
1214  xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1215  xhci_dbg_ctx(xhci, in_ctx, ep_index);
1216  xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1217  xhci_dbg_ctx(xhci, out_ctx, ep_index);
1218 
1219  ret = xhci_configure_endpoint(xhci, urb->dev, NULL,
1220  true, false);
1221 
1222  /* Clean up the input context for later use by bandwidth
1223  * functions.
1224  */
1225  ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1226  }
1227  return ret;
1228 }
1229 
1230 /*
1231  * non-error returns are a promise to giveback() the urb later
1232  * we drop ownership so next owner (or urb unlink) can get it
1233  */
1234 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1235 {
1236  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1237  struct xhci_td *buffer;
1238  unsigned long flags;
1239  int ret = 0;
1240  unsigned int slot_id, ep_index;
1241  struct urb_priv *urb_priv;
1242  int size, i;
1243 
1244  if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1245  true, true, __func__) <= 0)
1246  return -EINVAL;
1247 
1248  slot_id = urb->dev->slot_id;
1249  ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1250 
1251  if (!HCD_HW_ACCESSIBLE(hcd)) {
1252  if (!in_interrupt())
1253  xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1254  ret = -ESHUTDOWN;
1255  goto exit;
1256  }
1257 
1258  if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1259  size = urb->number_of_packets;
1260  else
1261  size = 1;
1262 
1263  urb_priv = kzalloc(sizeof(struct urb_priv) +
1264  size * sizeof(struct xhci_td *), mem_flags);
1265  if (!urb_priv)
1266  return -ENOMEM;
1267 
1268  buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1269  if (!buffer) {
1270  kfree(urb_priv);
1271  return -ENOMEM;
1272  }
1273 
1274  for (i = 0; i < size; i++) {
1275  urb_priv->td[i] = buffer;
1276  buffer++;
1277  }
1278 
1279  urb_priv->length = size;
1280  urb_priv->td_cnt = 0;
1281  urb->hcpriv = urb_priv;
1282 
1283  if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1284  /* Check to see if the max packet size for the default control
1285  * endpoint changed during FS device enumeration
1286  */
1287  if (urb->dev->speed == USB_SPEED_FULL) {
1288  ret = xhci_check_maxpacket(xhci, slot_id,
1289  ep_index, urb);
1290  if (ret < 0) {
1291  xhci_urb_free_priv(xhci, urb_priv);
1292  urb->hcpriv = NULL;
1293  return ret;
1294  }
1295  }
1296 
1297  /* We have a spinlock and interrupts disabled, so we must pass
1298  * atomic context to this function, which may allocate memory.
1299  */
1300  spin_lock_irqsave(&xhci->lock, flags);
1301  if (xhci->xhc_state & XHCI_STATE_DYING)
1302  goto dying;
1303  ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1304  slot_id, ep_index);
1305  if (ret)
1306  goto free_priv;
1307  spin_unlock_irqrestore(&xhci->lock, flags);
1308  } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1309  spin_lock_irqsave(&xhci->lock, flags);
1310  if (xhci->xhc_state & XHCI_STATE_DYING)
1311  goto dying;
1312  if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1314  xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1315  "is transitioning to using streams.\n");
1316  ret = -EINVAL;
1317  } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1319  xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1320  "is transitioning to "
1321  "not having streams.\n");
1322  ret = -EINVAL;
1323  } else {
1324  ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1325  slot_id, ep_index);
1326  }
1327  if (ret)
1328  goto free_priv;
1329  spin_unlock_irqrestore(&xhci->lock, flags);
1330  } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1331  spin_lock_irqsave(&xhci->lock, flags);
1332  if (xhci->xhc_state & XHCI_STATE_DYING)
1333  goto dying;
1334  ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1335  slot_id, ep_index);
1336  if (ret)
1337  goto free_priv;
1338  spin_unlock_irqrestore(&xhci->lock, flags);
1339  } else {
1340  spin_lock_irqsave(&xhci->lock, flags);
1341  if (xhci->xhc_state & XHCI_STATE_DYING)
1342  goto dying;
1343  ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1344  slot_id, ep_index);
1345  if (ret)
1346  goto free_priv;
1347  spin_unlock_irqrestore(&xhci->lock, flags);
1348  }
1349 exit:
1350  return ret;
1351 dying:
1352  xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1353  "non-responsive xHCI host.\n",
1354  urb->ep->desc.bEndpointAddress, urb);
1355  ret = -ESHUTDOWN;
1356 free_priv:
1357  xhci_urb_free_priv(xhci, urb_priv);
1358  urb->hcpriv = NULL;
1359  spin_unlock_irqrestore(&xhci->lock, flags);
1360  return ret;
1361 }
1362 
1363 /* Get the right ring for the given URB.
1364  * If the endpoint supports streams, boundary check the URB's stream ID.
1365  * If the endpoint doesn't support streams, return the singular endpoint ring.
1366  */
1367 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1368  struct urb *urb)
1369 {
1370  unsigned int slot_id;
1371  unsigned int ep_index;
1372  unsigned int stream_id;
1373  struct xhci_virt_ep *ep;
1374 
1375  slot_id = urb->dev->slot_id;
1376  ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1377  stream_id = urb->stream_id;
1378  ep = &xhci->devs[slot_id]->eps[ep_index];
1379  /* Common case: no streams */
1380  if (!(ep->ep_state & EP_HAS_STREAMS))
1381  return ep->ring;
1382 
1383  if (stream_id == 0) {
1384  xhci_warn(xhci,
1385  "WARN: Slot ID %u, ep index %u has streams, "
1386  "but URB has no stream ID.\n",
1387  slot_id, ep_index);
1388  return NULL;
1389  }
1390 
1391  if (stream_id < ep->stream_info->num_streams)
1392  return ep->stream_info->stream_rings[stream_id];
1393 
1394  xhci_warn(xhci,
1395  "WARN: Slot ID %u, ep index %u has "
1396  "stream IDs 1 to %u allocated, "
1397  "but stream ID %u is requested.\n",
1398  slot_id, ep_index,
1399  ep->stream_info->num_streams - 1,
1400  stream_id);
1401  return NULL;
1402 }
1403 
1404 /*
1405  * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1406  * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1407  * should pick up where it left off in the TD, unless a Set Transfer Ring
1408  * Dequeue Pointer is issued.
1409  *
1410  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1411  * the ring. Since the ring is a contiguous structure, they can't be physically
1412  * removed. Instead, there are two options:
1413  *
1414  * 1) If the HC is in the middle of processing the URB to be canceled, we
1415  * simply move the ring's dequeue pointer past those TRBs using the Set
1416  * Transfer Ring Dequeue Pointer command. This will be the common case,
1417  * when drivers timeout on the last submitted URB and attempt to cancel.
1418  *
1419  * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1420  * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1421  * HC will need to invalidate the any TRBs it has cached after the stop
1422  * endpoint command, as noted in the xHCI 0.95 errata.
1423  *
1424  * 3) The TD may have completed by the time the Stop Endpoint Command
1425  * completes, so software needs to handle that case too.
1426  *
1427  * This function should protect against the TD enqueueing code ringing the
1428  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1429  * It also needs to account for multiple cancellations on happening at the same
1430  * time for the same endpoint.
1431  *
1432  * Note that this function can be called in any context, or so says
1433  * usb_hcd_unlink_urb()
1434  */
1435 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1436 {
1437  unsigned long flags;
1438  int ret, i;
1439  u32 temp;
1440  struct xhci_hcd *xhci;
1441  struct urb_priv *urb_priv;
1442  struct xhci_td *td;
1443  unsigned int ep_index;
1444  struct xhci_ring *ep_ring;
1445  struct xhci_virt_ep *ep;
1446 
1447  xhci = hcd_to_xhci(hcd);
1448  spin_lock_irqsave(&xhci->lock, flags);
1449  /* Make sure the URB hasn't completed or been unlinked already */
1450  ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1451  if (ret || !urb->hcpriv)
1452  goto done;
1453  temp = xhci_readl(xhci, &xhci->op_regs->status);
1454  if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1455  xhci_dbg(xhci, "HW died, freeing TD.\n");
1456  urb_priv = urb->hcpriv;
1457  for (i = urb_priv->td_cnt; i < urb_priv->length; i++) {
1458  td = urb_priv->td[i];
1459  if (!list_empty(&td->td_list))
1460  list_del_init(&td->td_list);
1461  if (!list_empty(&td->cancelled_td_list))
1462  list_del_init(&td->cancelled_td_list);
1463  }
1464 
1465  usb_hcd_unlink_urb_from_ep(hcd, urb);
1466  spin_unlock_irqrestore(&xhci->lock, flags);
1467  usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1468  xhci_urb_free_priv(xhci, urb_priv);
1469  return ret;
1470  }
1471  if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1472  (xhci->xhc_state & XHCI_STATE_HALTED)) {
1473  xhci_dbg(xhci, "Ep 0x%x: URB %p to be canceled on "
1474  "non-responsive xHCI host.\n",
1475  urb->ep->desc.bEndpointAddress, urb);
1476  /* Let the stop endpoint command watchdog timer (which set this
1477  * state) finish cleaning up the endpoint TD lists. We must
1478  * have caught it in the middle of dropping a lock and giving
1479  * back an URB.
1480  */
1481  goto done;
1482  }
1483 
1484  ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1485  ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1486  ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1487  if (!ep_ring) {
1488  ret = -EINVAL;
1489  goto done;
1490  }
1491 
1492  urb_priv = urb->hcpriv;
1493  i = urb_priv->td_cnt;
1494  if (i < urb_priv->length)
1495  xhci_dbg(xhci, "Cancel URB %p, dev %s, ep 0x%x, "
1496  "starting at offset 0x%llx\n",
1497  urb, urb->dev->devpath,
1498  urb->ep->desc.bEndpointAddress,
1499  (unsigned long long) xhci_trb_virt_to_dma(
1500  urb_priv->td[i]->start_seg,
1501  urb_priv->td[i]->first_trb));
1502 
1503  for (; i < urb_priv->length; i++) {
1504  td = urb_priv->td[i];
1506  }
1507 
1508  /* Queue a stop endpoint command, but only if this is
1509  * the first cancellation to be handled.
1510  */
1511  if (!(ep->ep_state & EP_HALT_PENDING)) {
1512  ep->ep_state |= EP_HALT_PENDING;
1513  ep->stop_cmds_pending++;
1514  ep->stop_cmd_timer.expires = jiffies +
1516  add_timer(&ep->stop_cmd_timer);
1517  xhci_queue_stop_endpoint(xhci, urb->dev->slot_id, ep_index, 0);
1518  xhci_ring_cmd_db(xhci);
1519  }
1520 done:
1521  spin_unlock_irqrestore(&xhci->lock, flags);
1522  return ret;
1523 }
1524 
1525 /* Drop an endpoint from a new bandwidth configuration for this device.
1526  * Only one call to this function is allowed per endpoint before
1527  * check_bandwidth() or reset_bandwidth() must be called.
1528  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1529  * add the endpoint to the schedule with possibly new parameters denoted by a
1530  * different endpoint descriptor in usb_host_endpoint.
1531  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1532  * not allowed.
1533  *
1534  * The USB core will not allow URBs to be queued to an endpoint that is being
1535  * disabled, so there's no need for mutual exclusion to protect
1536  * the xhci->devs[slot_id] structure.
1537  */
1538 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1539  struct usb_host_endpoint *ep)
1540 {
1541  struct xhci_hcd *xhci;
1542  struct xhci_container_ctx *in_ctx, *out_ctx;
1543  struct xhci_input_control_ctx *ctrl_ctx;
1544  struct xhci_slot_ctx *slot_ctx;
1545  unsigned int last_ctx;
1546  unsigned int ep_index;
1547  struct xhci_ep_ctx *ep_ctx;
1548  u32 drop_flag;
1549  u32 new_add_flags, new_drop_flags, new_slot_info;
1550  int ret;
1551 
1552  ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1553  if (ret <= 0)
1554  return ret;
1555  xhci = hcd_to_xhci(hcd);
1556  if (xhci->xhc_state & XHCI_STATE_DYING)
1557  return -ENODEV;
1558 
1559  xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1560  drop_flag = xhci_get_endpoint_flag(&ep->desc);
1561  if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1562  xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1563  __func__, drop_flag);
1564  return 0;
1565  }
1566 
1567  in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1568  out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1569  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1570  ep_index = xhci_get_endpoint_index(&ep->desc);
1571  ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1572  /* If the HC already knows the endpoint is disabled,
1573  * or the HCD has noted it is disabled, ignore this request
1574  */
1575  if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1577  le32_to_cpu(ctrl_ctx->drop_flags) &
1578  xhci_get_endpoint_flag(&ep->desc)) {
1579  xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1580  __func__, ep);
1581  return 0;
1582  }
1583 
1584  ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1585  new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1586 
1587  ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1588  new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1589 
1590  last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
1591  slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1592  /* Update the last valid endpoint context, if we deleted the last one */
1593  if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
1594  LAST_CTX(last_ctx)) {
1595  slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1596  slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1597  }
1598  new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1599 
1600  xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1601 
1602  xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1603  (unsigned int) ep->desc.bEndpointAddress,
1604  udev->slot_id,
1605  (unsigned int) new_drop_flags,
1606  (unsigned int) new_add_flags,
1607  (unsigned int) new_slot_info);
1608  return 0;
1609 }
1610 
1611 /* Add an endpoint to a new possible bandwidth configuration for this device.
1612  * Only one call to this function is allowed per endpoint before
1613  * check_bandwidth() or reset_bandwidth() must be called.
1614  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1615  * add the endpoint to the schedule with possibly new parameters denoted by a
1616  * different endpoint descriptor in usb_host_endpoint.
1617  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1618  * not allowed.
1619  *
1620  * The USB core will not allow URBs to be queued to an endpoint until the
1621  * configuration or alt setting is installed in the device, so there's no need
1622  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1623  */
1624 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1625  struct usb_host_endpoint *ep)
1626 {
1627  struct xhci_hcd *xhci;
1628  struct xhci_container_ctx *in_ctx, *out_ctx;
1629  unsigned int ep_index;
1630  struct xhci_slot_ctx *slot_ctx;
1631  struct xhci_input_control_ctx *ctrl_ctx;
1632  u32 added_ctxs;
1633  unsigned int last_ctx;
1634  u32 new_add_flags, new_drop_flags, new_slot_info;
1635  struct xhci_virt_device *virt_dev;
1636  int ret = 0;
1637 
1638  ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1639  if (ret <= 0) {
1640  /* So we won't queue a reset ep command for a root hub */
1641  ep->hcpriv = NULL;
1642  return ret;
1643  }
1644  xhci = hcd_to_xhci(hcd);
1645  if (xhci->xhc_state & XHCI_STATE_DYING)
1646  return -ENODEV;
1647 
1648  added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1649  last_ctx = xhci_last_valid_endpoint(added_ctxs);
1650  if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1651  /* FIXME when we have to issue an evaluate endpoint command to
1652  * deal with ep0 max packet size changing once we get the
1653  * descriptors
1654  */
1655  xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1656  __func__, added_ctxs);
1657  return 0;
1658  }
1659 
1660  virt_dev = xhci->devs[udev->slot_id];
1661  in_ctx = virt_dev->in_ctx;
1662  out_ctx = virt_dev->out_ctx;
1663  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1664  ep_index = xhci_get_endpoint_index(&ep->desc);
1665 
1666  /* If this endpoint is already in use, and the upper layers are trying
1667  * to add it again without dropping it, reject the addition.
1668  */
1669  if (virt_dev->eps[ep_index].ring &&
1670  !(le32_to_cpu(ctrl_ctx->drop_flags) &
1671  xhci_get_endpoint_flag(&ep->desc))) {
1672  xhci_warn(xhci, "Trying to add endpoint 0x%x "
1673  "without dropping it.\n",
1674  (unsigned int) ep->desc.bEndpointAddress);
1675  return -EINVAL;
1676  }
1677 
1678  /* If the HCD has already noted the endpoint is enabled,
1679  * ignore this request.
1680  */
1681  if (le32_to_cpu(ctrl_ctx->add_flags) &
1682  xhci_get_endpoint_flag(&ep->desc)) {
1683  xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1684  __func__, ep);
1685  return 0;
1686  }
1687 
1688  /*
1689  * Configuration and alternate setting changes must be done in
1690  * process context, not interrupt context (or so documenation
1691  * for usb_set_interface() and usb_set_configuration() claim).
1692  */
1693  if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1694  dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1695  __func__, ep->desc.bEndpointAddress);
1696  return -ENOMEM;
1697  }
1698 
1699  ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1700  new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1701 
1702  /* If xhci_endpoint_disable() was called for this endpoint, but the
1703  * xHC hasn't been notified yet through the check_bandwidth() call,
1704  * this re-adds a new state for the endpoint from the new endpoint
1705  * descriptors. We must drop and re-add this endpoint, so we leave the
1706  * drop flags alone.
1707  */
1708  new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1709 
1710  slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1711  /* Update the last valid endpoint context, if we just added one past */
1712  if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
1713  LAST_CTX(last_ctx)) {
1714  slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1715  slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
1716  }
1717  new_slot_info = le32_to_cpu(slot_ctx->dev_info);
1718 
1719  /* Store the usb_device pointer for later use */
1720  ep->hcpriv = udev;
1721 
1722  xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x, new slot info = %#x\n",
1723  (unsigned int) ep->desc.bEndpointAddress,
1724  udev->slot_id,
1725  (unsigned int) new_drop_flags,
1726  (unsigned int) new_add_flags,
1727  (unsigned int) new_slot_info);
1728  return 0;
1729 }
1730 
1731 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1732 {
1733  struct xhci_input_control_ctx *ctrl_ctx;
1734  struct xhci_ep_ctx *ep_ctx;
1735  struct xhci_slot_ctx *slot_ctx;
1736  int i;
1737 
1738  /* When a device's add flag and drop flag are zero, any subsequent
1739  * configure endpoint command will leave that endpoint's state
1740  * untouched. Make sure we don't leave any old state in the input
1741  * endpoint contexts.
1742  */
1743  ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
1744  ctrl_ctx->drop_flags = 0;
1745  ctrl_ctx->add_flags = 0;
1746  slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1747  slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1748  /* Endpoint 0 is always valid */
1749  slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1750  for (i = 1; i < 31; ++i) {
1751  ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1752  ep_ctx->ep_info = 0;
1753  ep_ctx->ep_info2 = 0;
1754  ep_ctx->deq = 0;
1755  ep_ctx->tx_info = 0;
1756  }
1757 }
1758 
1759 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1760  struct usb_device *udev, u32 *cmd_status)
1761 {
1762  int ret;
1763 
1764  switch (*cmd_status) {
1765  case COMP_ENOMEM:
1766  dev_warn(&udev->dev, "Not enough host controller resources "
1767  "for new device state.\n");
1768  ret = -ENOMEM;
1769  /* FIXME: can we allocate more resources for the HC? */
1770  break;
1771  case COMP_BW_ERR:
1772  case COMP_2ND_BW_ERR:
1773  dev_warn(&udev->dev, "Not enough bandwidth "
1774  "for new device state.\n");
1775  ret = -ENOSPC;
1776  /* FIXME: can we go back to the old state? */
1777  break;
1778  case COMP_TRB_ERR:
1779  /* the HCD set up something wrong */
1780  dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1781  "add flag = 1, "
1782  "and endpoint is not disabled.\n");
1783  ret = -EINVAL;
1784  break;
1785  case COMP_DEV_ERR:
1786  dev_warn(&udev->dev, "ERROR: Incompatible device for endpoint "
1787  "configure command.\n");
1788  ret = -ENODEV;
1789  break;
1790  case COMP_SUCCESS:
1791  dev_dbg(&udev->dev, "Successful Endpoint Configure command\n");
1792  ret = 0;
1793  break;
1794  default:
1795  xhci_err(xhci, "ERROR: unexpected command completion "
1796  "code 0x%x.\n", *cmd_status);
1797  ret = -EINVAL;
1798  break;
1799  }
1800  return ret;
1801 }
1802 
1803 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1804  struct usb_device *udev, u32 *cmd_status)
1805 {
1806  int ret;
1807  struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1808 
1809  switch (*cmd_status) {
1810  case COMP_EINVAL:
1811  dev_warn(&udev->dev, "WARN: xHCI driver setup invalid evaluate "
1812  "context command.\n");
1813  ret = -EINVAL;
1814  break;
1815  case COMP_EBADSLT:
1816  dev_warn(&udev->dev, "WARN: slot not enabled for"
1817  "evaluate context command.\n");
1818  ret = -EINVAL;
1819  break;
1820  case COMP_CTX_STATE:
1821  dev_warn(&udev->dev, "WARN: invalid context state for "
1822  "evaluate context command.\n");
1823  xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1824  ret = -EINVAL;
1825  break;
1826  case COMP_DEV_ERR:
1827  dev_warn(&udev->dev, "ERROR: Incompatible device for evaluate "
1828  "context command.\n");
1829  ret = -ENODEV;
1830  break;
1831  case COMP_MEL_ERR:
1832  /* Max Exit Latency too large error */
1833  dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1834  ret = -EINVAL;
1835  break;
1836  case COMP_SUCCESS:
1837  dev_dbg(&udev->dev, "Successful evaluate context command\n");
1838  ret = 0;
1839  break;
1840  default:
1841  xhci_err(xhci, "ERROR: unexpected command completion "
1842  "code 0x%x.\n", *cmd_status);
1843  ret = -EINVAL;
1844  break;
1845  }
1846  return ret;
1847 }
1848 
1849 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1850  struct xhci_container_ctx *in_ctx)
1851 {
1852  struct xhci_input_control_ctx *ctrl_ctx;
1853  u32 valid_add_flags;
1854  u32 valid_drop_flags;
1855 
1856  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1857  /* Ignore the slot flag (bit 0), and the default control endpoint flag
1858  * (bit 1). The default control endpoint is added during the Address
1859  * Device command and is never removed until the slot is disabled.
1860  */
1861  valid_add_flags = ctrl_ctx->add_flags >> 2;
1862  valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1863 
1864  /* Use hweight32 to count the number of ones in the add flags, or
1865  * number of endpoints added. Don't count endpoints that are changed
1866  * (both added and dropped).
1867  */
1868  return hweight32(valid_add_flags) -
1869  hweight32(valid_add_flags & valid_drop_flags);
1870 }
1871 
1872 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1873  struct xhci_container_ctx *in_ctx)
1874 {
1875  struct xhci_input_control_ctx *ctrl_ctx;
1876  u32 valid_add_flags;
1877  u32 valid_drop_flags;
1878 
1879  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
1880  valid_add_flags = ctrl_ctx->add_flags >> 2;
1881  valid_drop_flags = ctrl_ctx->drop_flags >> 2;
1882 
1883  return hweight32(valid_drop_flags) -
1884  hweight32(valid_add_flags & valid_drop_flags);
1885 }
1886 
1887 /*
1888  * We need to reserve the new number of endpoints before the configure endpoint
1889  * command completes. We can't subtract the dropped endpoints from the number
1890  * of active endpoints until the command completes because we can oversubscribe
1891  * the host in this case:
1892  *
1893  * - the first configure endpoint command drops more endpoints than it adds
1894  * - a second configure endpoint command that adds more endpoints is queued
1895  * - the first configure endpoint command fails, so the config is unchanged
1896  * - the second command may succeed, even though there isn't enough resources
1897  *
1898  * Must be called with xhci->lock held.
1899  */
1900 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
1901  struct xhci_container_ctx *in_ctx)
1902 {
1903  u32 added_eps;
1904 
1905  added_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1906  if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
1907  xhci_dbg(xhci, "Not enough ep ctxs: "
1908  "%u active, need to add %u, limit is %u.\n",
1909  xhci->num_active_eps, added_eps,
1910  xhci->limit_active_eps);
1911  return -ENOMEM;
1912  }
1913  xhci->num_active_eps += added_eps;
1914  xhci_dbg(xhci, "Adding %u ep ctxs, %u now active.\n", added_eps,
1915  xhci->num_active_eps);
1916  return 0;
1917 }
1918 
1919 /*
1920  * The configure endpoint was failed by the xHC for some other reason, so we
1921  * need to revert the resources that failed configuration would have used.
1922  *
1923  * Must be called with xhci->lock held.
1924  */
1925 static void xhci_free_host_resources(struct xhci_hcd *xhci,
1926  struct xhci_container_ctx *in_ctx)
1927 {
1928  u32 num_failed_eps;
1929 
1930  num_failed_eps = xhci_count_num_new_endpoints(xhci, in_ctx);
1931  xhci->num_active_eps -= num_failed_eps;
1932  xhci_dbg(xhci, "Removing %u failed ep ctxs, %u now active.\n",
1933  num_failed_eps,
1934  xhci->num_active_eps);
1935 }
1936 
1937 /*
1938  * Now that the command has completed, clean up the active endpoint count by
1939  * subtracting out the endpoints that were dropped (but not changed).
1940  *
1941  * Must be called with xhci->lock held.
1942  */
1943 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
1944  struct xhci_container_ctx *in_ctx)
1945 {
1946  u32 num_dropped_eps;
1947 
1948  num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, in_ctx);
1949  xhci->num_active_eps -= num_dropped_eps;
1950  if (num_dropped_eps)
1951  xhci_dbg(xhci, "Removing %u dropped ep ctxs, %u now active.\n",
1952  num_dropped_eps,
1953  xhci->num_active_eps);
1954 }
1955 
1956 static unsigned int xhci_get_block_size(struct usb_device *udev)
1957 {
1958  switch (udev->speed) {
1959  case USB_SPEED_LOW:
1960  case USB_SPEED_FULL:
1961  return FS_BLOCK;
1962  case USB_SPEED_HIGH:
1963  return HS_BLOCK;
1964  case USB_SPEED_SUPER:
1965  return SS_BLOCK;
1966  case USB_SPEED_UNKNOWN:
1967  case USB_SPEED_WIRELESS:
1968  default:
1969  /* Should never happen */
1970  return 1;
1971  }
1972 }
1973 
1974 static unsigned int
1975 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
1976 {
1977  if (interval_bw->overhead[LS_OVERHEAD_TYPE])
1978  return LS_OVERHEAD;
1979  if (interval_bw->overhead[FS_OVERHEAD_TYPE])
1980  return FS_OVERHEAD;
1981  return HS_OVERHEAD;
1982 }
1983 
1984 /* If we are changing a LS/FS device under a HS hub,
1985  * make sure (if we are activating a new TT) that the HS bus has enough
1986  * bandwidth for this new TT.
1987  */
1988 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
1989  struct xhci_virt_device *virt_dev,
1990  int old_active_eps)
1991 {
1992  struct xhci_interval_bw_table *bw_table;
1993  struct xhci_tt_bw_info *tt_info;
1994 
1995  /* Find the bandwidth table for the root port this TT is attached to. */
1996  bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
1997  tt_info = virt_dev->tt_info;
1998  /* If this TT already had active endpoints, the bandwidth for this TT
1999  * has already been added. Removing all periodic endpoints (and thus
2000  * making the TT enactive) will only decrease the bandwidth used.
2001  */
2002  if (old_active_eps)
2003  return 0;
2004  if (old_active_eps == 0 && tt_info->active_eps != 0) {
2005  if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2006  return -ENOMEM;
2007  return 0;
2008  }
2009  /* Not sure why we would have no new active endpoints...
2010  *
2011  * Maybe because of an Evaluate Context change for a hub update or a
2012  * control endpoint 0 max packet size change?
2013  * FIXME: skip the bandwidth calculation in that case.
2014  */
2015  return 0;
2016 }
2017 
2018 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2019  struct xhci_virt_device *virt_dev)
2020 {
2021  unsigned int bw_reserved;
2022 
2023  bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2024  if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2025  return -ENOMEM;
2026 
2027  bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2028  if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2029  return -ENOMEM;
2030 
2031  return 0;
2032 }
2033 
2034 /*
2035  * This algorithm is a very conservative estimate of the worst-case scheduling
2036  * scenario for any one interval. The hardware dynamically schedules the
2037  * packets, so we can't tell which microframe could be the limiting factor in
2038  * the bandwidth scheduling. This only takes into account periodic endpoints.
2039  *
2040  * Obviously, we can't solve an NP complete problem to find the minimum worst
2041  * case scenario. Instead, we come up with an estimate that is no less than
2042  * the worst case bandwidth used for any one microframe, but may be an
2043  * over-estimate.
2044  *
2045  * We walk the requirements for each endpoint by interval, starting with the
2046  * smallest interval, and place packets in the schedule where there is only one
2047  * possible way to schedule packets for that interval. In order to simplify
2048  * this algorithm, we record the largest max packet size for each interval, and
2049  * assume all packets will be that size.
2050  *
2051  * For interval 0, we obviously must schedule all packets for each interval.
2052  * The bandwidth for interval 0 is just the amount of data to be transmitted
2053  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2054  * the number of packets).
2055  *
2056  * For interval 1, we have two possible microframes to schedule those packets
2057  * in. For this algorithm, if we can schedule the same number of packets for
2058  * each possible scheduling opportunity (each microframe), we will do so. The
2059  * remaining number of packets will be saved to be transmitted in the gaps in
2060  * the next interval's scheduling sequence.
2061  *
2062  * As we move those remaining packets to be scheduled with interval 2 packets,
2063  * we have to double the number of remaining packets to transmit. This is
2064  * because the intervals are actually powers of 2, and we would be transmitting
2065  * the previous interval's packets twice in this interval. We also have to be
2066  * sure that when we look at the largest max packet size for this interval, we
2067  * also look at the largest max packet size for the remaining packets and take
2068  * the greater of the two.
2069  *
2070  * The algorithm continues to evenly distribute packets in each scheduling
2071  * opportunity, and push the remaining packets out, until we get to the last
2072  * interval. Then those packets and their associated overhead are just added
2073  * to the bandwidth used.
2074  */
2075 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2076  struct xhci_virt_device *virt_dev,
2077  int old_active_eps)
2078 {
2079  unsigned int bw_reserved;
2080  unsigned int max_bandwidth;
2081  unsigned int bw_used;
2082  unsigned int block_size;
2083  struct xhci_interval_bw_table *bw_table;
2084  unsigned int packet_size = 0;
2085  unsigned int overhead = 0;
2086  unsigned int packets_transmitted = 0;
2087  unsigned int packets_remaining = 0;
2088  unsigned int i;
2089 
2090  if (virt_dev->udev->speed == USB_SPEED_SUPER)
2091  return xhci_check_ss_bw(xhci, virt_dev);
2092 
2093  if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2094  max_bandwidth = HS_BW_LIMIT;
2095  /* Convert percent of bus BW reserved to blocks reserved */
2096  bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2097  } else {
2098  max_bandwidth = FS_BW_LIMIT;
2099  bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2100  }
2101 
2102  bw_table = virt_dev->bw_table;
2103  /* We need to translate the max packet size and max ESIT payloads into
2104  * the units the hardware uses.
2105  */
2106  block_size = xhci_get_block_size(virt_dev->udev);
2107 
2108  /* If we are manipulating a LS/FS device under a HS hub, double check
2109  * that the HS bus has enough bandwidth if we are activing a new TT.
2110  */
2111  if (virt_dev->tt_info) {
2112  xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2113  virt_dev->real_port);
2114  if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2115  xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2116  "newly activated TT.\n");
2117  return -ENOMEM;
2118  }
2119  xhci_dbg(xhci, "Recalculating BW for TT slot %u port %u\n",
2120  virt_dev->tt_info->slot_id,
2121  virt_dev->tt_info->ttport);
2122  } else {
2123  xhci_dbg(xhci, "Recalculating BW for rootport %u\n",
2124  virt_dev->real_port);
2125  }
2126 
2127  /* Add in how much bandwidth will be used for interval zero, or the
2128  * rounded max ESIT payload + number of packets * largest overhead.
2129  */
2130  bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2131  bw_table->interval_bw[0].num_packets *
2132  xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2133 
2134  for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2135  unsigned int bw_added;
2136  unsigned int largest_mps;
2137  unsigned int interval_overhead;
2138 
2139  /*
2140  * How many packets could we transmit in this interval?
2141  * If packets didn't fit in the previous interval, we will need
2142  * to transmit that many packets twice within this interval.
2143  */
2144  packets_remaining = 2 * packets_remaining +
2145  bw_table->interval_bw[i].num_packets;
2146 
2147  /* Find the largest max packet size of this or the previous
2148  * interval.
2149  */
2150  if (list_empty(&bw_table->interval_bw[i].endpoints))
2151  largest_mps = 0;
2152  else {
2153  struct xhci_virt_ep *virt_ep;
2154  struct list_head *ep_entry;
2155 
2156  ep_entry = bw_table->interval_bw[i].endpoints.next;
2157  virt_ep = list_entry(ep_entry,
2158  struct xhci_virt_ep, bw_endpoint_list);
2159  /* Convert to blocks, rounding up */
2160  largest_mps = DIV_ROUND_UP(
2161  virt_ep->bw_info.max_packet_size,
2162  block_size);
2163  }
2164  if (largest_mps > packet_size)
2165  packet_size = largest_mps;
2166 
2167  /* Use the larger overhead of this or the previous interval. */
2168  interval_overhead = xhci_get_largest_overhead(
2169  &bw_table->interval_bw[i]);
2170  if (interval_overhead > overhead)
2171  overhead = interval_overhead;
2172 
2173  /* How many packets can we evenly distribute across
2174  * (1 << (i + 1)) possible scheduling opportunities?
2175  */
2176  packets_transmitted = packets_remaining >> (i + 1);
2177 
2178  /* Add in the bandwidth used for those scheduled packets */
2179  bw_added = packets_transmitted * (overhead + packet_size);
2180 
2181  /* How many packets do we have remaining to transmit? */
2182  packets_remaining = packets_remaining % (1 << (i + 1));
2183 
2184  /* What largest max packet size should those packets have? */
2185  /* If we've transmitted all packets, don't carry over the
2186  * largest packet size.
2187  */
2188  if (packets_remaining == 0) {
2189  packet_size = 0;
2190  overhead = 0;
2191  } else if (packets_transmitted > 0) {
2192  /* Otherwise if we do have remaining packets, and we've
2193  * scheduled some packets in this interval, take the
2194  * largest max packet size from endpoints with this
2195  * interval.
2196  */
2197  packet_size = largest_mps;
2198  overhead = interval_overhead;
2199  }
2200  /* Otherwise carry over packet_size and overhead from the last
2201  * time we had a remainder.
2202  */
2203  bw_used += bw_added;
2204  if (bw_used > max_bandwidth) {
2205  xhci_warn(xhci, "Not enough bandwidth. "
2206  "Proposed: %u, Max: %u\n",
2207  bw_used, max_bandwidth);
2208  return -ENOMEM;
2209  }
2210  }
2211  /*
2212  * Ok, we know we have some packets left over after even-handedly
2213  * scheduling interval 15. We don't know which microframes they will
2214  * fit into, so we over-schedule and say they will be scheduled every
2215  * microframe.
2216  */
2217  if (packets_remaining > 0)
2218  bw_used += overhead + packet_size;
2219 
2220  if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2221  unsigned int port_index = virt_dev->real_port - 1;
2222 
2223  /* OK, we're manipulating a HS device attached to a
2224  * root port bandwidth domain. Include the number of active TTs
2225  * in the bandwidth used.
2226  */
2227  bw_used += TT_HS_OVERHEAD *
2228  xhci->rh_bw[port_index].num_active_tts;
2229  }
2230 
2231  xhci_dbg(xhci, "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2232  "Available: %u " "percent\n",
2233  bw_used, max_bandwidth, bw_reserved,
2234  (max_bandwidth - bw_used - bw_reserved) * 100 /
2235  max_bandwidth);
2236 
2237  bw_used += bw_reserved;
2238  if (bw_used > max_bandwidth) {
2239  xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2240  bw_used, max_bandwidth);
2241  return -ENOMEM;
2242  }
2243 
2244  bw_table->bw_used = bw_used;
2245  return 0;
2246 }
2247 
2248 static bool xhci_is_async_ep(unsigned int ep_type)
2249 {
2250  return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2251  ep_type != ISOC_IN_EP &&
2252  ep_type != INT_IN_EP);
2253 }
2254 
2255 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2256 {
2257  return (ep_type == ISOC_IN_EP || ep_type != INT_IN_EP);
2258 }
2259 
2260 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2261 {
2262  unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2263 
2264  if (ep_bw->ep_interval == 0)
2265  return SS_OVERHEAD_BURST +
2266  (ep_bw->mult * ep_bw->num_packets *
2267  (SS_OVERHEAD + mps));
2268  return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2269  (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2270  1 << ep_bw->ep_interval);
2271 
2272 }
2273 
2275  struct xhci_bw_info *ep_bw,
2276  struct xhci_interval_bw_table *bw_table,
2277  struct usb_device *udev,
2278  struct xhci_virt_ep *virt_ep,
2279  struct xhci_tt_bw_info *tt_info)
2280 {
2281  struct xhci_interval_bw *interval_bw;
2282  int normalized_interval;
2283 
2284  if (xhci_is_async_ep(ep_bw->type))
2285  return;
2286 
2287  if (udev->speed == USB_SPEED_SUPER) {
2288  if (xhci_is_sync_in_ep(ep_bw->type))
2289  xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2290  xhci_get_ss_bw_consumed(ep_bw);
2291  else
2292  xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2293  xhci_get_ss_bw_consumed(ep_bw);
2294  return;
2295  }
2296 
2297  /* SuperSpeed endpoints never get added to intervals in the table, so
2298  * this check is only valid for HS/FS/LS devices.
2299  */
2300  if (list_empty(&virt_ep->bw_endpoint_list))
2301  return;
2302  /* For LS/FS devices, we need to translate the interval expressed in
2303  * microframes to frames.
2304  */
2305  if (udev->speed == USB_SPEED_HIGH)
2306  normalized_interval = ep_bw->ep_interval;
2307  else
2308  normalized_interval = ep_bw->ep_interval - 3;
2309 
2310  if (normalized_interval == 0)
2311  bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2312  interval_bw = &bw_table->interval_bw[normalized_interval];
2313  interval_bw->num_packets -= ep_bw->num_packets;
2314  switch (udev->speed) {
2315  case USB_SPEED_LOW:
2316  interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2317  break;
2318  case USB_SPEED_FULL:
2319  interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2320  break;
2321  case USB_SPEED_HIGH:
2322  interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2323  break;
2324  case USB_SPEED_SUPER:
2325  case USB_SPEED_UNKNOWN:
2326  case USB_SPEED_WIRELESS:
2327  /* Should never happen because only LS/FS/HS endpoints will get
2328  * added to the endpoint list.
2329  */
2330  return;
2331  }
2332  if (tt_info)
2333  tt_info->active_eps -= 1;
2334  list_del_init(&virt_ep->bw_endpoint_list);
2335 }
2336 
2337 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2338  struct xhci_bw_info *ep_bw,
2339  struct xhci_interval_bw_table *bw_table,
2340  struct usb_device *udev,
2341  struct xhci_virt_ep *virt_ep,
2342  struct xhci_tt_bw_info *tt_info)
2343 {
2344  struct xhci_interval_bw *interval_bw;
2345  struct xhci_virt_ep *smaller_ep;
2346  int normalized_interval;
2347 
2348  if (xhci_is_async_ep(ep_bw->type))
2349  return;
2350 
2351  if (udev->speed == USB_SPEED_SUPER) {
2352  if (xhci_is_sync_in_ep(ep_bw->type))
2353  xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2354  xhci_get_ss_bw_consumed(ep_bw);
2355  else
2356  xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2357  xhci_get_ss_bw_consumed(ep_bw);
2358  return;
2359  }
2360 
2361  /* For LS/FS devices, we need to translate the interval expressed in
2362  * microframes to frames.
2363  */
2364  if (udev->speed == USB_SPEED_HIGH)
2365  normalized_interval = ep_bw->ep_interval;
2366  else
2367  normalized_interval = ep_bw->ep_interval - 3;
2368 
2369  if (normalized_interval == 0)
2370  bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2371  interval_bw = &bw_table->interval_bw[normalized_interval];
2372  interval_bw->num_packets += ep_bw->num_packets;
2373  switch (udev->speed) {
2374  case USB_SPEED_LOW:
2375  interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2376  break;
2377  case USB_SPEED_FULL:
2378  interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2379  break;
2380  case USB_SPEED_HIGH:
2381  interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2382  break;
2383  case USB_SPEED_SUPER:
2384  case USB_SPEED_UNKNOWN:
2385  case USB_SPEED_WIRELESS:
2386  /* Should never happen because only LS/FS/HS endpoints will get
2387  * added to the endpoint list.
2388  */
2389  return;
2390  }
2391 
2392  if (tt_info)
2393  tt_info->active_eps += 1;
2394  /* Insert the endpoint into the list, largest max packet size first. */
2395  list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2396  bw_endpoint_list) {
2397  if (ep_bw->max_packet_size >=
2398  smaller_ep->bw_info.max_packet_size) {
2399  /* Add the new ep before the smaller endpoint */
2400  list_add_tail(&virt_ep->bw_endpoint_list,
2401  &smaller_ep->bw_endpoint_list);
2402  return;
2403  }
2404  }
2405  /* Add the new endpoint at the end of the list. */
2406  list_add_tail(&virt_ep->bw_endpoint_list,
2407  &interval_bw->endpoints);
2408 }
2409 
2411  struct xhci_virt_device *virt_dev,
2412  int old_active_eps)
2413 {
2414  struct xhci_root_port_bw_info *rh_bw_info;
2415  if (!virt_dev->tt_info)
2416  return;
2417 
2418  rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2419  if (old_active_eps == 0 &&
2420  virt_dev->tt_info->active_eps != 0) {
2421  rh_bw_info->num_active_tts += 1;
2422  rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2423  } else if (old_active_eps != 0 &&
2424  virt_dev->tt_info->active_eps == 0) {
2425  rh_bw_info->num_active_tts -= 1;
2426  rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2427  }
2428 }
2429 
2430 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2431  struct xhci_virt_device *virt_dev,
2432  struct xhci_container_ctx *in_ctx)
2433 {
2434  struct xhci_bw_info ep_bw_info[31];
2435  int i;
2436  struct xhci_input_control_ctx *ctrl_ctx;
2437  int old_active_eps = 0;
2438 
2439  if (virt_dev->tt_info)
2440  old_active_eps = virt_dev->tt_info->active_eps;
2441 
2442  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2443 
2444  for (i = 0; i < 31; i++) {
2445  if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2446  continue;
2447 
2448  /* Make a copy of the BW info in case we need to revert this */
2449  memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2450  sizeof(ep_bw_info[i]));
2451  /* Drop the endpoint from the interval table if the endpoint is
2452  * being dropped or changed.
2453  */
2454  if (EP_IS_DROPPED(ctrl_ctx, i))
2456  &virt_dev->eps[i].bw_info,
2457  virt_dev->bw_table,
2458  virt_dev->udev,
2459  &virt_dev->eps[i],
2460  virt_dev->tt_info);
2461  }
2462  /* Overwrite the information stored in the endpoints' bw_info */
2463  xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2464  for (i = 0; i < 31; i++) {
2465  /* Add any changed or added endpoints to the interval table */
2466  if (EP_IS_ADDED(ctrl_ctx, i))
2467  xhci_add_ep_to_interval_table(xhci,
2468  &virt_dev->eps[i].bw_info,
2469  virt_dev->bw_table,
2470  virt_dev->udev,
2471  &virt_dev->eps[i],
2472  virt_dev->tt_info);
2473  }
2474 
2475  if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2476  /* Ok, this fits in the bandwidth we have.
2477  * Update the number of active TTs.
2478  */
2479  xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2480  return 0;
2481  }
2482 
2483  /* We don't have enough bandwidth for this, revert the stored info. */
2484  for (i = 0; i < 31; i++) {
2485  if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2486  continue;
2487 
2488  /* Drop the new copies of any added or changed endpoints from
2489  * the interval table.
2490  */
2491  if (EP_IS_ADDED(ctrl_ctx, i)) {
2493  &virt_dev->eps[i].bw_info,
2494  virt_dev->bw_table,
2495  virt_dev->udev,
2496  &virt_dev->eps[i],
2497  virt_dev->tt_info);
2498  }
2499  /* Revert the endpoint back to its old information */
2500  memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2501  sizeof(ep_bw_info[i]));
2502  /* Add any changed or dropped endpoints back into the table */
2503  if (EP_IS_DROPPED(ctrl_ctx, i))
2504  xhci_add_ep_to_interval_table(xhci,
2505  &virt_dev->eps[i].bw_info,
2506  virt_dev->bw_table,
2507  virt_dev->udev,
2508  &virt_dev->eps[i],
2509  virt_dev->tt_info);
2510  }
2511  return -ENOMEM;
2512 }
2513 
2514 
2515 /* Issue a configure endpoint command or evaluate context command
2516  * and wait for it to finish.
2517  */
2518 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2519  struct usb_device *udev,
2520  struct xhci_command *command,
2521  bool ctx_change, bool must_succeed)
2522 {
2523  int ret;
2524  int timeleft;
2525  unsigned long flags;
2526  struct xhci_container_ctx *in_ctx;
2527  struct completion *cmd_completion;
2528  u32 *cmd_status;
2529  struct xhci_virt_device *virt_dev;
2530  union xhci_trb *cmd_trb;
2531 
2532  spin_lock_irqsave(&xhci->lock, flags);
2533  virt_dev = xhci->devs[udev->slot_id];
2534 
2535  if (command)
2536  in_ctx = command->in_ctx;
2537  else
2538  in_ctx = virt_dev->in_ctx;
2539 
2540  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2541  xhci_reserve_host_resources(xhci, in_ctx)) {
2542  spin_unlock_irqrestore(&xhci->lock, flags);
2543  xhci_warn(xhci, "Not enough host resources, "
2544  "active endpoint contexts = %u\n",
2545  xhci->num_active_eps);
2546  return -ENOMEM;
2547  }
2548  if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2549  xhci_reserve_bandwidth(xhci, virt_dev, in_ctx)) {
2550  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2551  xhci_free_host_resources(xhci, in_ctx);
2552  spin_unlock_irqrestore(&xhci->lock, flags);
2553  xhci_warn(xhci, "Not enough bandwidth\n");
2554  return -ENOMEM;
2555  }
2556 
2557  if (command) {
2558  cmd_completion = command->completion;
2559  cmd_status = &command->status;
2560  command->command_trb = xhci->cmd_ring->enqueue;
2561 
2562  /* Enqueue pointer can be left pointing to the link TRB,
2563  * we must handle that
2564  */
2565  if (TRB_TYPE_LINK_LE32(command->command_trb->link.control))
2566  command->command_trb =
2567  xhci->cmd_ring->enq_seg->next->trbs;
2568 
2569  list_add_tail(&command->cmd_list, &virt_dev->cmd_list);
2570  } else {
2571  cmd_completion = &virt_dev->cmd_completion;
2572  cmd_status = &virt_dev->cmd_status;
2573  }
2574  init_completion(cmd_completion);
2575 
2576  cmd_trb = xhci->cmd_ring->dequeue;
2577  if (!ctx_change)
2578  ret = xhci_queue_configure_endpoint(xhci, in_ctx->dma,
2579  udev->slot_id, must_succeed);
2580  else
2581  ret = xhci_queue_evaluate_context(xhci, in_ctx->dma,
2582  udev->slot_id, must_succeed);
2583  if (ret < 0) {
2584  if (command)
2585  list_del(&command->cmd_list);
2586  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2587  xhci_free_host_resources(xhci, in_ctx);
2588  spin_unlock_irqrestore(&xhci->lock, flags);
2589  xhci_dbg(xhci, "FIXME allocate a new ring segment\n");
2590  return -ENOMEM;
2591  }
2592  xhci_ring_cmd_db(xhci);
2593  spin_unlock_irqrestore(&xhci->lock, flags);
2594 
2595  /* Wait for the configure endpoint command to complete */
2597  cmd_completion,
2599  if (timeleft <= 0) {
2600  xhci_warn(xhci, "%s while waiting for %s command\n",
2601  timeleft == 0 ? "Timeout" : "Signal",
2602  ctx_change == 0 ?
2603  "configure endpoint" :
2604  "evaluate context");
2605  /* cancel the configure endpoint command */
2606  ret = xhci_cancel_cmd(xhci, command, cmd_trb);
2607  if (ret < 0)
2608  return ret;
2609  return -ETIME;
2610  }
2611 
2612  if (!ctx_change)
2613  ret = xhci_configure_endpoint_result(xhci, udev, cmd_status);
2614  else
2615  ret = xhci_evaluate_context_result(xhci, udev, cmd_status);
2616 
2617  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2618  spin_lock_irqsave(&xhci->lock, flags);
2619  /* If the command failed, remove the reserved resources.
2620  * Otherwise, clean up the estimate to include dropped eps.
2621  */
2622  if (ret)
2623  xhci_free_host_resources(xhci, in_ctx);
2624  else
2625  xhci_finish_resource_reservation(xhci, in_ctx);
2626  spin_unlock_irqrestore(&xhci->lock, flags);
2627  }
2628  return ret;
2629 }
2630 
2631 /* Called after one or more calls to xhci_add_endpoint() or
2632  * xhci_drop_endpoint(). If this call fails, the USB core is expected
2633  * to call xhci_reset_bandwidth().
2634  *
2635  * Since we are in the middle of changing either configuration or
2636  * installing a new alt setting, the USB core won't allow URBs to be
2637  * enqueued for any endpoint on the old config or interface. Nothing
2638  * else should be touching the xhci->devs[slot_id] structure, so we
2639  * don't need to take the xhci->lock for manipulating that.
2640  */
2641 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2642 {
2643  int i;
2644  int ret = 0;
2645  struct xhci_hcd *xhci;
2646  struct xhci_virt_device *virt_dev;
2647  struct xhci_input_control_ctx *ctrl_ctx;
2648  struct xhci_slot_ctx *slot_ctx;
2649 
2650  ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2651  if (ret <= 0)
2652  return ret;
2653  xhci = hcd_to_xhci(hcd);
2654  if (xhci->xhc_state & XHCI_STATE_DYING)
2655  return -ENODEV;
2656 
2657  xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2658  virt_dev = xhci->devs[udev->slot_id];
2659 
2660  /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2661  ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
2662  ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2663  ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2664  ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2665 
2666  /* Don't issue the command if there's no endpoints to update. */
2667  if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2668  ctrl_ctx->drop_flags == 0)
2669  return 0;
2670 
2671  xhci_dbg(xhci, "New Input Control Context:\n");
2672  slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2673  xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2675 
2676  ret = xhci_configure_endpoint(xhci, udev, NULL,
2677  false, false);
2678  if (ret) {
2679  /* Callee should call reset_bandwidth() */
2680  return ret;
2681  }
2682 
2683  xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2684  xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2686 
2687  /* Free any rings that were dropped, but not changed. */
2688  for (i = 1; i < 31; ++i) {
2689  if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2690  !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1))))
2691  xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2692  }
2693  xhci_zero_in_ctx(xhci, virt_dev);
2694  /*
2695  * Install any rings for completely new endpoints or changed endpoints,
2696  * and free or cache any old rings from changed endpoints.
2697  */
2698  for (i = 1; i < 31; ++i) {
2699  if (!virt_dev->eps[i].new_ring)
2700  continue;
2701  /* Only cache or free the old ring if it exists.
2702  * It may not if this is the first add of an endpoint.
2703  */
2704  if (virt_dev->eps[i].ring) {
2705  xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2706  }
2707  virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2708  virt_dev->eps[i].new_ring = NULL;
2709  }
2710 
2711  return ret;
2712 }
2713 
2714 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2715 {
2716  struct xhci_hcd *xhci;
2717  struct xhci_virt_device *virt_dev;
2718  int i, ret;
2719 
2720  ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2721  if (ret <= 0)
2722  return;
2723  xhci = hcd_to_xhci(hcd);
2724 
2725  xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2726  virt_dev = xhci->devs[udev->slot_id];
2727  /* Free any rings allocated for added endpoints */
2728  for (i = 0; i < 31; ++i) {
2729  if (virt_dev->eps[i].new_ring) {
2730  xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2731  virt_dev->eps[i].new_ring = NULL;
2732  }
2733  }
2734  xhci_zero_in_ctx(xhci, virt_dev);
2735 }
2736 
2737 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2738  struct xhci_container_ctx *in_ctx,
2739  struct xhci_container_ctx *out_ctx,
2740  u32 add_flags, u32 drop_flags)
2741 {
2742  struct xhci_input_control_ctx *ctrl_ctx;
2743  ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
2744  ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2745  ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2746  xhci_slot_copy(xhci, in_ctx, out_ctx);
2747  ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2748 
2749  xhci_dbg(xhci, "Input Context:\n");
2750  xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2751 }
2752 
2753 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2754  unsigned int slot_id, unsigned int ep_index,
2755  struct xhci_dequeue_state *deq_state)
2756 {
2757  struct xhci_container_ctx *in_ctx;
2758  struct xhci_ep_ctx *ep_ctx;
2759  u32 added_ctxs;
2760  dma_addr_t addr;
2761 
2762  xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2763  xhci->devs[slot_id]->out_ctx, ep_index);
2764  in_ctx = xhci->devs[slot_id]->in_ctx;
2765  ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2766  addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2767  deq_state->new_deq_ptr);
2768  if (addr == 0) {
2769  xhci_warn(xhci, "WARN Cannot submit config ep after "
2770  "reset ep command\n");
2771  xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2772  deq_state->new_deq_seg,
2773  deq_state->new_deq_ptr);
2774  return;
2775  }
2776  ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2777 
2778  added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2779  xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2780  xhci->devs[slot_id]->out_ctx, added_ctxs, added_ctxs);
2781 }
2782 
2784  struct usb_device *udev, unsigned int ep_index)
2785 {
2786  struct xhci_dequeue_state deq_state;
2787  struct xhci_virt_ep *ep;
2788 
2789  xhci_dbg(xhci, "Cleaning up stalled endpoint ring\n");
2790  ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2791  /* We need to move the HW's dequeue pointer past this TD,
2792  * or it will attempt to resend it on the next doorbell ring.
2793  */
2795  ep_index, ep->stopped_stream, ep->stopped_td,
2796  &deq_state);
2797 
2798  /* HW with the reset endpoint quirk will use the saved dequeue state to
2799  * issue a configure endpoint command later.
2800  */
2801  if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2802  xhci_dbg(xhci, "Queueing new dequeue state\n");
2804  ep_index, ep->stopped_stream, &deq_state);
2805  } else {
2806  /* Better hope no one uses the input context between now and the
2807  * reset endpoint completion!
2808  * XXX: No idea how this hardware will react when stream rings
2809  * are enabled.
2810  */
2811  xhci_dbg(xhci, "Setting up input context for "
2812  "configure endpoint command\n");
2813  xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2814  ep_index, &deq_state);
2815  }
2816 }
2817 
2818 /* Deal with stalled endpoints. The core should have sent the control message
2819  * to clear the halt condition. However, we need to make the xHCI hardware
2820  * reset its sequence number, since a device will expect a sequence number of
2821  * zero after the halt condition is cleared.
2822  * Context: in_interrupt
2823  */
2824 void xhci_endpoint_reset(struct usb_hcd *hcd,
2825  struct usb_host_endpoint *ep)
2826 {
2827  struct xhci_hcd *xhci;
2828  struct usb_device *udev;
2829  unsigned int ep_index;
2830  unsigned long flags;
2831  int ret;
2832  struct xhci_virt_ep *virt_ep;
2833 
2834  xhci = hcd_to_xhci(hcd);
2835  udev = (struct usb_device *) ep->hcpriv;
2836  /* Called with a root hub endpoint (or an endpoint that wasn't added
2837  * with xhci_add_endpoint()
2838  */
2839  if (!ep->hcpriv)
2840  return;
2841  ep_index = xhci_get_endpoint_index(&ep->desc);
2842  virt_ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2843  if (!virt_ep->stopped_td) {
2844  xhci_dbg(xhci, "Endpoint 0x%x not halted, refusing to reset.\n",
2845  ep->desc.bEndpointAddress);
2846  return;
2847  }
2848  if (usb_endpoint_xfer_control(&ep->desc)) {
2849  xhci_dbg(xhci, "Control endpoint stall already handled.\n");
2850  return;
2851  }
2852 
2853  xhci_dbg(xhci, "Queueing reset endpoint command\n");
2854  spin_lock_irqsave(&xhci->lock, flags);
2855  ret = xhci_queue_reset_ep(xhci, udev->slot_id, ep_index);
2856  /*
2857  * Can't change the ring dequeue pointer until it's transitioned to the
2858  * stopped state, which is only upon a successful reset endpoint
2859  * command. Better hope that last command worked!
2860  */
2861  if (!ret) {
2862  xhci_cleanup_stalled_ring(xhci, udev, ep_index);
2863  kfree(virt_ep->stopped_td);
2864  xhci_ring_cmd_db(xhci);
2865  }
2866  virt_ep->stopped_td = NULL;
2867  virt_ep->stopped_trb = NULL;
2868  virt_ep->stopped_stream = 0;
2869  spin_unlock_irqrestore(&xhci->lock, flags);
2870 
2871  if (ret)
2872  xhci_warn(xhci, "FIXME allocate a new ring segment\n");
2873 }
2874 
2875 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
2876  struct usb_device *udev, struct usb_host_endpoint *ep,
2877  unsigned int slot_id)
2878 {
2879  int ret;
2880  unsigned int ep_index;
2881  unsigned int ep_state;
2882 
2883  if (!ep)
2884  return -EINVAL;
2885  ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
2886  if (ret <= 0)
2887  return -EINVAL;
2888  if (ep->ss_ep_comp.bmAttributes == 0) {
2889  xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
2890  " descriptor for ep 0x%x does not support streams\n",
2891  ep->desc.bEndpointAddress);
2892  return -EINVAL;
2893  }
2894 
2895  ep_index = xhci_get_endpoint_index(&ep->desc);
2896  ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2897  if (ep_state & EP_HAS_STREAMS ||
2898  ep_state & EP_GETTING_STREAMS) {
2899  xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
2900  "already has streams set up.\n",
2901  ep->desc.bEndpointAddress);
2902  xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
2903  "dynamic stream context array reallocation.\n");
2904  return -EINVAL;
2905  }
2906  if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
2907  xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
2908  "endpoint 0x%x; URBs are pending.\n",
2909  ep->desc.bEndpointAddress);
2910  return -EINVAL;
2911  }
2912  return 0;
2913 }
2914 
2915 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
2916  unsigned int *num_streams, unsigned int *num_stream_ctxs)
2917 {
2918  unsigned int max_streams;
2919 
2920  /* The stream context array size must be a power of two */
2921  *num_stream_ctxs = roundup_pow_of_two(*num_streams);
2922  /*
2923  * Find out how many primary stream array entries the host controller
2924  * supports. Later we may use secondary stream arrays (similar to 2nd
2925  * level page entries), but that's an optional feature for xHCI host
2926  * controllers. xHCs must support at least 4 stream IDs.
2927  */
2928  max_streams = HCC_MAX_PSA(xhci->hcc_params);
2929  if (*num_stream_ctxs > max_streams) {
2930  xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
2931  max_streams);
2932  *num_stream_ctxs = max_streams;
2933  *num_streams = max_streams;
2934  }
2935 }
2936 
2937 /* Returns an error code if one of the endpoint already has streams.
2938  * This does not change any data structures, it only checks and gathers
2939  * information.
2940  */
2941 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
2942  struct usb_device *udev,
2943  struct usb_host_endpoint **eps, unsigned int num_eps,
2944  unsigned int *num_streams, u32 *changed_ep_bitmask)
2945 {
2946  unsigned int max_streams;
2947  unsigned int endpoint_flag;
2948  int i;
2949  int ret;
2950 
2951  for (i = 0; i < num_eps; i++) {
2952  ret = xhci_check_streams_endpoint(xhci, udev,
2953  eps[i], udev->slot_id);
2954  if (ret < 0)
2955  return ret;
2956 
2957  max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
2958  if (max_streams < (*num_streams - 1)) {
2959  xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
2960  eps[i]->desc.bEndpointAddress,
2961  max_streams);
2962  *num_streams = max_streams+1;
2963  }
2964 
2965  endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
2966  if (*changed_ep_bitmask & endpoint_flag)
2967  return -EINVAL;
2968  *changed_ep_bitmask |= endpoint_flag;
2969  }
2970  return 0;
2971 }
2972 
2973 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
2974  struct usb_device *udev,
2975  struct usb_host_endpoint **eps, unsigned int num_eps)
2976 {
2977  u32 changed_ep_bitmask = 0;
2978  unsigned int slot_id;
2979  unsigned int ep_index;
2980  unsigned int ep_state;
2981  int i;
2982 
2983  slot_id = udev->slot_id;
2984  if (!xhci->devs[slot_id])
2985  return 0;
2986 
2987  for (i = 0; i < num_eps; i++) {
2988  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
2989  ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
2990  /* Are streams already being freed for the endpoint? */
2991  if (ep_state & EP_GETTING_NO_STREAMS) {
2992  xhci_warn(xhci, "WARN Can't disable streams for "
2993  "endpoint 0x%x\n, "
2994  "streams are being disabled already.",
2995  eps[i]->desc.bEndpointAddress);
2996  return 0;
2997  }
2998  /* Are there actually any streams to free? */
2999  if (!(ep_state & EP_HAS_STREAMS) &&
3000  !(ep_state & EP_GETTING_STREAMS)) {
3001  xhci_warn(xhci, "WARN Can't disable streams for "
3002  "endpoint 0x%x\n, "
3003  "streams are already disabled!",
3004  eps[i]->desc.bEndpointAddress);
3005  xhci_warn(xhci, "WARN xhci_free_streams() called "
3006  "with non-streams endpoint\n");
3007  return 0;
3008  }
3009  changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3010  }
3011  return changed_ep_bitmask;
3012 }
3013 
3014 /*
3015  * The USB device drivers use this function (though the HCD interface in USB
3016  * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3017  * coordinate mass storage command queueing across multiple endpoints (basically
3018  * a stream ID == a task ID).
3019  *
3020  * Setting up streams involves allocating the same size stream context array
3021  * for each endpoint and issuing a configure endpoint command for all endpoints.
3022  *
3023  * Don't allow the call to succeed if one endpoint only supports one stream
3024  * (which means it doesn't support streams at all).
3025  *
3026  * Drivers may get less stream IDs than they asked for, if the host controller
3027  * hardware or endpoints claim they can't support the number of requested
3028  * stream IDs.
3029  */
3030 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3031  struct usb_host_endpoint **eps, unsigned int num_eps,
3032  unsigned int num_streams, gfp_t mem_flags)
3033 {
3034  int i, ret;
3035  struct xhci_hcd *xhci;
3036  struct xhci_virt_device *vdev;
3037  struct xhci_command *config_cmd;
3038  unsigned int ep_index;
3039  unsigned int num_stream_ctxs;
3040  unsigned long flags;
3041  u32 changed_ep_bitmask = 0;
3042 
3043  if (!eps)
3044  return -EINVAL;
3045 
3046  /* Add one to the number of streams requested to account for
3047  * stream 0 that is reserved for xHCI usage.
3048  */
3049  num_streams += 1;
3050  xhci = hcd_to_xhci(hcd);
3051  xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3052  num_streams);
3053 
3054  config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3055  if (!config_cmd) {
3056  xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3057  return -ENOMEM;
3058  }
3059 
3060  /* Check to make sure all endpoints are not already configured for
3061  * streams. While we're at it, find the maximum number of streams that
3062  * all the endpoints will support and check for duplicate endpoints.
3063  */
3064  spin_lock_irqsave(&xhci->lock, flags);
3065  ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3066  num_eps, &num_streams, &changed_ep_bitmask);
3067  if (ret < 0) {
3068  xhci_free_command(xhci, config_cmd);
3069  spin_unlock_irqrestore(&xhci->lock, flags);
3070  return ret;
3071  }
3072  if (num_streams <= 1) {
3073  xhci_warn(xhci, "WARN: endpoints can't handle "
3074  "more than one stream.\n");
3075  xhci_free_command(xhci, config_cmd);
3076  spin_unlock_irqrestore(&xhci->lock, flags);
3077  return -EINVAL;
3078  }
3079  vdev = xhci->devs[udev->slot_id];
3080  /* Mark each endpoint as being in transition, so
3081  * xhci_urb_enqueue() will reject all URBs.
3082  */
3083  for (i = 0; i < num_eps; i++) {
3084  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3085  vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3086  }
3087  spin_unlock_irqrestore(&xhci->lock, flags);
3088 
3089  /* Setup internal data structures and allocate HW data structures for
3090  * streams (but don't install the HW structures in the input context
3091  * until we're sure all memory allocation succeeded).
3092  */
3093  xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3094  xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3095  num_stream_ctxs, num_streams);
3096 
3097  for (i = 0; i < num_eps; i++) {
3098  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3099  vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3100  num_stream_ctxs,
3101  num_streams, mem_flags);
3102  if (!vdev->eps[ep_index].stream_info)
3103  goto cleanup;
3104  /* Set maxPstreams in endpoint context and update deq ptr to
3105  * point to stream context array. FIXME
3106  */
3107  }
3108 
3109  /* Set up the input context for a configure endpoint command. */
3110  for (i = 0; i < num_eps; i++) {
3111  struct xhci_ep_ctx *ep_ctx;
3112 
3113  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3114  ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3115 
3116  xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3117  vdev->out_ctx, ep_index);
3118  xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3119  vdev->eps[ep_index].stream_info);
3120  }
3121  /* Tell the HW to drop its old copy of the endpoint context info
3122  * and add the updated copy from the input context.
3123  */
3124  xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3125  vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3126 
3127  /* Issue and wait for the configure endpoint command */
3128  ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3129  false, false);
3130 
3131  /* xHC rejected the configure endpoint command for some reason, so we
3132  * leave the old ring intact and free our internal streams data
3133  * structure.
3134  */
3135  if (ret < 0)
3136  goto cleanup;
3137 
3138  spin_lock_irqsave(&xhci->lock, flags);
3139  for (i = 0; i < num_eps; i++) {
3140  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3141  vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3142  xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3143  udev->slot_id, ep_index);
3144  vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3145  }
3146  xhci_free_command(xhci, config_cmd);
3147  spin_unlock_irqrestore(&xhci->lock, flags);
3148 
3149  /* Subtract 1 for stream 0, which drivers can't use */
3150  return num_streams - 1;
3151 
3152 cleanup:
3153  /* If it didn't work, free the streams! */
3154  for (i = 0; i < num_eps; i++) {
3155  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3156  xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3157  vdev->eps[ep_index].stream_info = NULL;
3158  /* FIXME Unset maxPstreams in endpoint context and
3159  * update deq ptr to point to normal string ring.
3160  */
3161  vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3162  vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3163  xhci_endpoint_zero(xhci, vdev, eps[i]);
3164  }
3165  xhci_free_command(xhci, config_cmd);
3166  return -ENOMEM;
3167 }
3168 
3169 /* Transition the endpoint from using streams to being a "normal" endpoint
3170  * without streams.
3171  *
3172  * Modify the endpoint context state, submit a configure endpoint command,
3173  * and free all endpoint rings for streams if that completes successfully.
3174  */
3175 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3176  struct usb_host_endpoint **eps, unsigned int num_eps,
3177  gfp_t mem_flags)
3178 {
3179  int i, ret;
3180  struct xhci_hcd *xhci;
3181  struct xhci_virt_device *vdev;
3182  struct xhci_command *command;
3183  unsigned int ep_index;
3184  unsigned long flags;
3185  u32 changed_ep_bitmask;
3186 
3187  xhci = hcd_to_xhci(hcd);
3188  vdev = xhci->devs[udev->slot_id];
3189 
3190  /* Set up a configure endpoint command to remove the streams rings */
3191  spin_lock_irqsave(&xhci->lock, flags);
3192  changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3193  udev, eps, num_eps);
3194  if (changed_ep_bitmask == 0) {
3195  spin_unlock_irqrestore(&xhci->lock, flags);
3196  return -EINVAL;
3197  }
3198 
3199  /* Use the xhci_command structure from the first endpoint. We may have
3200  * allocated too many, but the driver may call xhci_free_streams() for
3201  * each endpoint it grouped into one call to xhci_alloc_streams().
3202  */
3203  ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3204  command = vdev->eps[ep_index].stream_info->free_streams_command;
3205  for (i = 0; i < num_eps; i++) {
3206  struct xhci_ep_ctx *ep_ctx;
3207 
3208  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3209  ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3210  xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3212 
3213  xhci_endpoint_copy(xhci, command->in_ctx,
3214  vdev->out_ctx, ep_index);
3216  &vdev->eps[ep_index]);
3217  }
3218  xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3219  vdev->out_ctx, changed_ep_bitmask, changed_ep_bitmask);
3220  spin_unlock_irqrestore(&xhci->lock, flags);
3221 
3222  /* Issue and wait for the configure endpoint command,
3223  * which must succeed.
3224  */
3225  ret = xhci_configure_endpoint(xhci, udev, command,
3226  false, true);
3227 
3228  /* xHC rejected the configure endpoint command for some reason, so we
3229  * leave the streams rings intact.
3230  */
3231  if (ret < 0)
3232  return ret;
3233 
3234  spin_lock_irqsave(&xhci->lock, flags);
3235  for (i = 0; i < num_eps; i++) {
3236  ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237  xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3238  vdev->eps[ep_index].stream_info = NULL;
3239  /* FIXME Unset maxPstreams in endpoint context and
3240  * update deq ptr to point to normal string ring.
3241  */
3242  vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3243  vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3244  }
3245  spin_unlock_irqrestore(&xhci->lock, flags);
3246 
3247  return 0;
3248 }
3249 
3250 /*
3251  * Deletes endpoint resources for endpoints that were active before a Reset
3252  * Device command, or a Disable Slot command. The Reset Device command leaves
3253  * the control endpoint intact, whereas the Disable Slot command deletes it.
3254  *
3255  * Must be called with xhci->lock held.
3256  */
3258  struct xhci_virt_device *virt_dev, bool drop_control_ep)
3259 {
3260  int i;
3261  unsigned int num_dropped_eps = 0;
3262  unsigned int drop_flags = 0;
3263 
3264  for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3265  if (virt_dev->eps[i].ring) {
3266  drop_flags |= 1 << i;
3267  num_dropped_eps++;
3268  }
3269  }
3270  xhci->num_active_eps -= num_dropped_eps;
3271  if (num_dropped_eps)
3272  xhci_dbg(xhci, "Dropped %u ep ctxs, flags = 0x%x, "
3273  "%u now active.\n",
3274  num_dropped_eps, drop_flags,
3275  xhci->num_active_eps);
3276 }
3277 
3278 /*
3279  * This submits a Reset Device Command, which will set the device state to 0,
3280  * set the device address to 0, and disable all the endpoints except the default
3281  * control endpoint. The USB core should come back and call
3282  * xhci_address_device(), and then re-set up the configuration. If this is
3283  * called because of a usb_reset_and_verify_device(), then the old alternate
3284  * settings will be re-installed through the normal bandwidth allocation
3285  * functions.
3286  *
3287  * Wait for the Reset Device command to finish. Remove all structures
3288  * associated with the endpoints that were disabled. Clear the input device
3289  * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3290  *
3291  * If the virt_dev to be reset does not exist or does not match the udev,
3292  * it means the device is lost, possibly due to the xHC restore error and
3293  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3294  * re-allocate the device.
3295  */
3296 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3297 {
3298  int ret, i;
3299  unsigned long flags;
3300  struct xhci_hcd *xhci;
3301  unsigned int slot_id;
3302  struct xhci_virt_device *virt_dev;
3303  struct xhci_command *reset_device_cmd;
3304  int timeleft;
3305  int last_freed_endpoint;
3306  struct xhci_slot_ctx *slot_ctx;
3307  int old_active_eps = 0;
3308 
3309  ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3310  if (ret <= 0)
3311  return ret;
3312  xhci = hcd_to_xhci(hcd);
3313  slot_id = udev->slot_id;
3314  virt_dev = xhci->devs[slot_id];
3315  if (!virt_dev) {
3316  xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3317  "not exist. Re-allocate the device\n", slot_id);
3318  ret = xhci_alloc_dev(hcd, udev);
3319  if (ret == 1)
3320  return 0;
3321  else
3322  return -EINVAL;
3323  }
3324 
3325  if (virt_dev->udev != udev) {
3326  /* If the virt_dev and the udev does not match, this virt_dev
3327  * may belong to another udev.
3328  * Re-allocate the device.
3329  */
3330  xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3331  "not match the udev. Re-allocate the device\n",
3332  slot_id);
3333  ret = xhci_alloc_dev(hcd, udev);
3334  if (ret == 1)
3335  return 0;
3336  else
3337  return -EINVAL;
3338  }
3339 
3340  /* If device is not setup, there is no point in resetting it */
3341  slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3342  if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3344  return 0;
3345 
3346  xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3347  /* Allocate the command structure that holds the struct completion.
3348  * Assume we're in process context, since the normal device reset
3349  * process has to wait for the device anyway. Storage devices are
3350  * reset as part of error handling, so use GFP_NOIO instead of
3351  * GFP_KERNEL.
3352  */
3353  reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3354  if (!reset_device_cmd) {
3355  xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3356  return -ENOMEM;
3357  }
3358 
3359  /* Attempt to submit the Reset Device command to the command ring */
3360  spin_lock_irqsave(&xhci->lock, flags);
3361  reset_device_cmd->command_trb = xhci->cmd_ring->enqueue;
3362 
3363  /* Enqueue pointer can be left pointing to the link TRB,
3364  * we must handle that
3365  */
3366  if (TRB_TYPE_LINK_LE32(reset_device_cmd->command_trb->link.control))
3367  reset_device_cmd->command_trb =
3368  xhci->cmd_ring->enq_seg->next->trbs;
3369 
3370  list_add_tail(&reset_device_cmd->cmd_list, &virt_dev->cmd_list);
3371  ret = xhci_queue_reset_device(xhci, slot_id);
3372  if (ret) {
3373  xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3374  list_del(&reset_device_cmd->cmd_list);
3375  spin_unlock_irqrestore(&xhci->lock, flags);
3376  goto command_cleanup;
3377  }
3378  xhci_ring_cmd_db(xhci);
3379  spin_unlock_irqrestore(&xhci->lock, flags);
3380 
3381  /* Wait for the Reset Device command to finish */
3383  reset_device_cmd->completion,
3384  USB_CTRL_SET_TIMEOUT);
3385  if (timeleft <= 0) {
3386  xhci_warn(xhci, "%s while waiting for reset device command\n",
3387  timeleft == 0 ? "Timeout" : "Signal");
3388  spin_lock_irqsave(&xhci->lock, flags);
3389  /* The timeout might have raced with the event ring handler, so
3390  * only delete from the list if the item isn't poisoned.
3391  */
3392  if (reset_device_cmd->cmd_list.next != LIST_POISON1)
3393  list_del(&reset_device_cmd->cmd_list);
3394  spin_unlock_irqrestore(&xhci->lock, flags);
3395  ret = -ETIME;
3396  goto command_cleanup;
3397  }
3398 
3399  /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3400  * unless we tried to reset a slot ID that wasn't enabled,
3401  * or the device wasn't in the addressed or configured state.
3402  */
3403  ret = reset_device_cmd->status;
3404  switch (ret) {
3405  case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3406  case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3407  xhci_info(xhci, "Can't reset device (slot ID %u) in %s state\n",
3408  slot_id,
3409  xhci_get_slot_state(xhci, virt_dev->out_ctx));
3410  xhci_info(xhci, "Not freeing device rings.\n");
3411  /* Don't treat this as an error. May change my mind later. */
3412  ret = 0;
3413  goto command_cleanup;
3414  case COMP_SUCCESS:
3415  xhci_dbg(xhci, "Successful reset device command.\n");
3416  break;
3417  default:
3418  if (xhci_is_vendor_info_code(xhci, ret))
3419  break;
3420  xhci_warn(xhci, "Unknown completion code %u for "
3421  "reset device command.\n", ret);
3422  ret = -EINVAL;
3423  goto command_cleanup;
3424  }
3425 
3426  /* Free up host controller endpoint resources */
3427  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3428  spin_lock_irqsave(&xhci->lock, flags);
3429  /* Don't delete the default control endpoint resources */
3430  xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3431  spin_unlock_irqrestore(&xhci->lock, flags);
3432  }
3433 
3434  /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3435  last_freed_endpoint = 1;
3436  for (i = 1; i < 31; ++i) {
3437  struct xhci_virt_ep *ep = &virt_dev->eps[i];
3438 
3439  if (ep->ep_state & EP_HAS_STREAMS) {
3441  ep->stream_info = NULL;
3442  ep->ep_state &= ~EP_HAS_STREAMS;
3443  }
3444 
3445  if (ep->ring) {
3446  xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3447  last_freed_endpoint = i;
3448  }
3449  if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3451  &virt_dev->eps[i].bw_info,
3452  virt_dev->bw_table,
3453  udev,
3454  &virt_dev->eps[i],
3455  virt_dev->tt_info);
3456  xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3457  }
3458  /* If necessary, update the number of active TTs on this root port */
3459  xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3460 
3461  xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3462  xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3463  ret = 0;
3464 
3465 command_cleanup:
3466  xhci_free_command(xhci, reset_device_cmd);
3467  return ret;
3468 }
3469 
3470 /*
3471  * At this point, the struct usb_device is about to go away, the device has
3472  * disconnected, and all traffic has been stopped and the endpoints have been
3473  * disabled. Free any HC data structures associated with that device.
3474  */
3475 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3476 {
3477  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3478  struct xhci_virt_device *virt_dev;
3479  unsigned long flags;
3480  u32 state;
3481  int i, ret;
3482 
3483  ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3484  /* If the host is halted due to driver unload, we still need to free the
3485  * device.
3486  */
3487  if (ret <= 0 && ret != -ENODEV)
3488  return;
3489 
3490  virt_dev = xhci->devs[udev->slot_id];
3491 
3492  /* Stop any wayward timer functions (which may grab the lock) */
3493  for (i = 0; i < 31; ++i) {
3494  virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3495  del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3496  }
3497 
3498  if (udev->usb2_hw_lpm_enabled) {
3499  xhci_set_usb2_hardware_lpm(hcd, udev, 0);
3500  udev->usb2_hw_lpm_enabled = 0;
3501  }
3502 
3503  spin_lock_irqsave(&xhci->lock, flags);
3504  /* Don't disable the slot if the host controller is dead. */
3505  state = xhci_readl(xhci, &xhci->op_regs->status);
3506  if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3507  (xhci->xhc_state & XHCI_STATE_HALTED)) {
3508  xhci_free_virt_device(xhci, udev->slot_id);
3509  spin_unlock_irqrestore(&xhci->lock, flags);
3510  return;
3511  }
3512 
3513  if (xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id)) {
3514  spin_unlock_irqrestore(&xhci->lock, flags);
3515  xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3516  return;
3517  }
3518  xhci_ring_cmd_db(xhci);
3519  spin_unlock_irqrestore(&xhci->lock, flags);
3520  /*
3521  * Event command completion handler will free any data structures
3522  * associated with the slot. XXX Can free sleep?
3523  */
3524 }
3525 
3526 /*
3527  * Checks if we have enough host controller resources for the default control
3528  * endpoint.
3529  *
3530  * Must be called with xhci->lock held.
3531  */
3532 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3533 {
3534  if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3535  xhci_dbg(xhci, "Not enough ep ctxs: "
3536  "%u active, need to add 1, limit is %u.\n",
3537  xhci->num_active_eps, xhci->limit_active_eps);
3538  return -ENOMEM;
3539  }
3540  xhci->num_active_eps += 1;
3541  xhci_dbg(xhci, "Adding 1 ep ctx, %u now active.\n",
3542  xhci->num_active_eps);
3543  return 0;
3544 }
3545 
3546 
3547 /*
3548  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3549  * timed out, or allocating memory failed. Returns 1 on success.
3550  */
3551 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3552 {
3553  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3554  unsigned long flags;
3555  int timeleft;
3556  int ret;
3557  union xhci_trb *cmd_trb;
3558 
3559  spin_lock_irqsave(&xhci->lock, flags);
3560  cmd_trb = xhci->cmd_ring->dequeue;
3561  ret = xhci_queue_slot_control(xhci, TRB_ENABLE_SLOT, 0);
3562  if (ret) {
3563  spin_unlock_irqrestore(&xhci->lock, flags);
3564  xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3565  return 0;
3566  }
3567  xhci_ring_cmd_db(xhci);
3568  spin_unlock_irqrestore(&xhci->lock, flags);
3569 
3570  /* XXX: how much time for xHC slot assignment? */
3573  if (timeleft <= 0) {
3574  xhci_warn(xhci, "%s while waiting for a slot\n",
3575  timeleft == 0 ? "Timeout" : "Signal");
3576  /* cancel the enable slot request */
3577  return xhci_cancel_cmd(xhci, NULL, cmd_trb);
3578  }
3579 
3580  if (!xhci->slot_id) {
3581  xhci_err(xhci, "Error while assigning device slot ID\n");
3582  return 0;
3583  }
3584 
3585  if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3586  spin_lock_irqsave(&xhci->lock, flags);
3587  ret = xhci_reserve_host_control_ep_resources(xhci);
3588  if (ret) {
3589  spin_unlock_irqrestore(&xhci->lock, flags);
3590  xhci_warn(xhci, "Not enough host resources, "
3591  "active endpoint contexts = %u\n",
3592  xhci->num_active_eps);
3593  goto disable_slot;
3594  }
3595  spin_unlock_irqrestore(&xhci->lock, flags);
3596  }
3597  /* Use GFP_NOIO, since this function can be called from
3598  * xhci_discover_or_reset_device(), which may be called as part of
3599  * mass storage driver error handling.
3600  */
3601  if (!xhci_alloc_virt_device(xhci, xhci->slot_id, udev, GFP_NOIO)) {
3602  xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3603  goto disable_slot;
3604  }
3605  udev->slot_id = xhci->slot_id;
3606  /* Is this a LS or FS device under a HS hub? */
3607  /* Hub or peripherial? */
3608  return 1;
3609 
3610 disable_slot:
3611  /* Disable slot, if we can do it without mem alloc */
3612  spin_lock_irqsave(&xhci->lock, flags);
3613  if (!xhci_queue_slot_control(xhci, TRB_DISABLE_SLOT, udev->slot_id))
3614  xhci_ring_cmd_db(xhci);
3615  spin_unlock_irqrestore(&xhci->lock, flags);
3616  return 0;
3617 }
3618 
3619 /*
3620  * Issue an Address Device command (which will issue a SetAddress request to
3621  * the device).
3622  * We should be protected by the usb_address0_mutex in khubd's hub_port_init, so
3623  * we should only issue and wait on one address command at the same time.
3624  *
3625  * We add one to the device address issued by the hardware because the USB core
3626  * uses address 1 for the root hubs (even though they're not really devices).
3627  */
3628 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3629 {
3630  unsigned long flags;
3631  int timeleft;
3632  struct xhci_virt_device *virt_dev;
3633  int ret = 0;
3634  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3635  struct xhci_slot_ctx *slot_ctx;
3636  struct xhci_input_control_ctx *ctrl_ctx;
3637  u64 temp_64;
3638  union xhci_trb *cmd_trb;
3639 
3640  if (!udev->slot_id) {
3641  xhci_dbg(xhci, "Bad Slot ID %d\n", udev->slot_id);
3642  return -EINVAL;
3643  }
3644 
3645  virt_dev = xhci->devs[udev->slot_id];
3646 
3647  if (WARN_ON(!virt_dev)) {
3648  /*
3649  * In plug/unplug torture test with an NEC controller,
3650  * a zero-dereference was observed once due to virt_dev = 0.
3651  * Print useful debug rather than crash if it is observed again!
3652  */
3653  xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3654  udev->slot_id);
3655  return -EINVAL;
3656  }
3657 
3658  slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3659  /*
3660  * If this is the first Set Address since device plug-in or
3661  * virt_device realloaction after a resume with an xHCI power loss,
3662  * then set up the slot context.
3663  */
3664  if (!slot_ctx->dev_info)
3665  xhci_setup_addressable_virt_dev(xhci, udev);
3666  /* Otherwise, update the control endpoint ring enqueue pointer. */
3667  else
3669  ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
3670  ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3671  ctrl_ctx->drop_flags = 0;
3672 
3673  xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3674  xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3675 
3676  spin_lock_irqsave(&xhci->lock, flags);
3677  cmd_trb = xhci->cmd_ring->dequeue;
3678  ret = xhci_queue_address_device(xhci, virt_dev->in_ctx->dma,
3679  udev->slot_id);
3680  if (ret) {
3681  spin_unlock_irqrestore(&xhci->lock, flags);
3682  xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3683  return ret;
3684  }
3685  xhci_ring_cmd_db(xhci);
3686  spin_unlock_irqrestore(&xhci->lock, flags);
3687 
3688  /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3691  /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3692  * the SetAddress() "recovery interval" required by USB and aborting the
3693  * command on a timeout.
3694  */
3695  if (timeleft <= 0) {
3696  xhci_warn(xhci, "%s while waiting for address device command\n",
3697  timeleft == 0 ? "Timeout" : "Signal");
3698  /* cancel the address device command */
3699  ret = xhci_cancel_cmd(xhci, NULL, cmd_trb);
3700  if (ret < 0)
3701  return ret;
3702  return -ETIME;
3703  }
3704 
3705  switch (virt_dev->cmd_status) {
3706  case COMP_CTX_STATE:
3707  case COMP_EBADSLT:
3708  xhci_err(xhci, "Setup ERROR: address device command for slot %d.\n",
3709  udev->slot_id);
3710  ret = -EINVAL;
3711  break;
3712  case COMP_TX_ERR:
3713  dev_warn(&udev->dev, "Device not responding to set address.\n");
3714  ret = -EPROTO;
3715  break;
3716  case COMP_DEV_ERR:
3717  dev_warn(&udev->dev, "ERROR: Incompatible device for address "
3718  "device command.\n");
3719  ret = -ENODEV;
3720  break;
3721  case COMP_SUCCESS:
3722  xhci_dbg(xhci, "Successful Address Device command\n");
3723  break;
3724  default:
3725  xhci_err(xhci, "ERROR: unexpected command completion "
3726  "code 0x%x.\n", virt_dev->cmd_status);
3727  xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3728  xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3729  ret = -EINVAL;
3730  break;
3731  }
3732  if (ret) {
3733  return ret;
3734  }
3735  temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3736  xhci_dbg(xhci, "Op regs DCBAA ptr = %#016llx\n", temp_64);
3737  xhci_dbg(xhci, "Slot ID %d dcbaa entry @%p = %#016llx\n",
3738  udev->slot_id,
3739  &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3740  (unsigned long long)
3741  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3742  xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
3743  (unsigned long long)virt_dev->out_ctx->dma);
3744  xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3745  xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3746  xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3747  xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3748  /*
3749  * USB core uses address 1 for the roothubs, so we add one to the
3750  * address given back to us by the HC.
3751  */
3752  slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3753  /* Use kernel assigned address for devices; store xHC assigned
3754  * address locally. */
3755  virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
3756  + 1;
3757  /* Zero the input context control for later use */
3758  ctrl_ctx->add_flags = 0;
3759  ctrl_ctx->drop_flags = 0;
3760 
3761  xhci_dbg(xhci, "Internal device address = %d\n", virt_dev->address);
3762 
3763  return 0;
3764 }
3765 
3766 #ifdef CONFIG_USB_SUSPEND
3767 
3768 /* BESL to HIRD Encoding array for USB2 LPM */
3769 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
3770  3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
3771 
3772 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
3773 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
3774  struct usb_device *udev)
3775 {
3776  int u2del, besl, besl_host;
3777  int besl_device = 0;
3778  u32 field;
3779 
3780  u2del = HCS_U2_LATENCY(xhci->hcs_params3);
3781  field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
3782 
3783  if (field & USB_BESL_SUPPORT) {
3784  for (besl_host = 0; besl_host < 16; besl_host++) {
3785  if (xhci_besl_encoding[besl_host] >= u2del)
3786  break;
3787  }
3788  /* Use baseline BESL value as default */
3789  if (field & USB_BESL_BASELINE_VALID)
3790  besl_device = USB_GET_BESL_BASELINE(field);
3791  else if (field & USB_BESL_DEEP_VALID)
3792  besl_device = USB_GET_BESL_DEEP(field);
3793  } else {
3794  if (u2del <= 50)
3795  besl_host = 0;
3796  else
3797  besl_host = (u2del - 51) / 75 + 1;
3798  }
3799 
3800  besl = besl_host + besl_device;
3801  if (besl > 15)
3802  besl = 15;
3803 
3804  return besl;
3805 }
3806 
3807 static int xhci_usb2_software_lpm_test(struct usb_hcd *hcd,
3808  struct usb_device *udev)
3809 {
3810  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3811  struct dev_info *dev_info;
3812  __le32 __iomem **port_array;
3813  __le32 __iomem *addr, *pm_addr;
3814  u32 temp, dev_id;
3815  unsigned int port_num;
3816  unsigned long flags;
3817  int hird;
3818  int ret;
3819 
3820  if (hcd->speed == HCD_USB3 || !xhci->sw_lpm_support ||
3821  !udev->lpm_capable)
3822  return -EINVAL;
3823 
3824  /* we only support lpm for non-hub device connected to root hub yet */
3825  if (!udev->parent || udev->parent->parent ||
3826  udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3827  return -EINVAL;
3828 
3829  spin_lock_irqsave(&xhci->lock, flags);
3830 
3831  /* Look for devices in lpm_failed_devs list */
3832  dev_id = le16_to_cpu(udev->descriptor.idVendor) << 16 |
3833  le16_to_cpu(udev->descriptor.idProduct);
3834  list_for_each_entry(dev_info, &xhci->lpm_failed_devs, list) {
3835  if (dev_info->dev_id == dev_id) {
3836  ret = -EINVAL;
3837  goto finish;
3838  }
3839  }
3840 
3841  port_array = xhci->usb2_ports;
3842  port_num = udev->portnum - 1;
3843 
3844  if (port_num > HCS_MAX_PORTS(xhci->hcs_params1)) {
3845  xhci_dbg(xhci, "invalid port number %d\n", udev->portnum);
3846  ret = -EINVAL;
3847  goto finish;
3848  }
3849 
3850  /*
3851  * Test USB 2.0 software LPM.
3852  * FIXME: some xHCI 1.0 hosts may implement a new register to set up
3853  * hardware-controlled USB 2.0 LPM. See section 5.4.11 and 4.23.5.1.1.1
3854  * in the June 2011 errata release.
3855  */
3856  xhci_dbg(xhci, "test port %d software LPM\n", port_num);
3857  /*
3858  * Set L1 Device Slot and HIRD/BESL.
3859  * Check device's USB 2.0 extension descriptor to determine whether
3860  * HIRD or BESL shoule be used. See USB2.0 LPM errata.
3861  */
3862  pm_addr = port_array[port_num] + 1;
3863  hird = xhci_calculate_hird_besl(xhci, udev);
3864  temp = PORT_L1DS(udev->slot_id) | PORT_HIRD(hird);
3865  xhci_writel(xhci, temp, pm_addr);
3866 
3867  /* Set port link state to U2(L1) */
3868  addr = port_array[port_num];
3869  xhci_set_link_state(xhci, port_array, port_num, XDEV_U2);
3870 
3871  /* wait for ACK */
3872  spin_unlock_irqrestore(&xhci->lock, flags);
3873  msleep(10);
3874  spin_lock_irqsave(&xhci->lock, flags);
3875 
3876  /* Check L1 Status */
3877  ret = handshake(xhci, pm_addr, PORT_L1S_MASK, PORT_L1S_SUCCESS, 125);
3878  if (ret != -ETIMEDOUT) {
3879  /* enter L1 successfully */
3880  temp = xhci_readl(xhci, addr);
3881  xhci_dbg(xhci, "port %d entered L1 state, port status 0x%x\n",
3882  port_num, temp);
3883  ret = 0;
3884  } else {
3885  temp = xhci_readl(xhci, pm_addr);
3886  xhci_dbg(xhci, "port %d software lpm failed, L1 status %d\n",
3887  port_num, temp & PORT_L1S_MASK);
3888  ret = -EINVAL;
3889  }
3890 
3891  /* Resume the port */
3892  xhci_set_link_state(xhci, port_array, port_num, XDEV_U0);
3893 
3894  spin_unlock_irqrestore(&xhci->lock, flags);
3895  msleep(10);
3896  spin_lock_irqsave(&xhci->lock, flags);
3897 
3898  /* Clear PLC */
3899  xhci_test_and_clear_bit(xhci, port_array, port_num, PORT_PLC);
3900 
3901  /* Check PORTSC to make sure the device is in the right state */
3902  if (!ret) {
3903  temp = xhci_readl(xhci, addr);
3904  xhci_dbg(xhci, "resumed port %d status 0x%x\n", port_num, temp);
3905  if (!(temp & PORT_CONNECT) || !(temp & PORT_PE) ||
3906  (temp & PORT_PLS_MASK) != XDEV_U0) {
3907  xhci_dbg(xhci, "port L1 resume fail\n");
3908  ret = -EINVAL;
3909  }
3910  }
3911 
3912  if (ret) {
3913  /* Insert dev to lpm_failed_devs list */
3914  xhci_warn(xhci, "device LPM test failed, may disconnect and "
3915  "re-enumerate\n");
3916  dev_info = kzalloc(sizeof(struct dev_info), GFP_ATOMIC);
3917  if (!dev_info) {
3918  ret = -ENOMEM;
3919  goto finish;
3920  }
3921  dev_info->dev_id = dev_id;
3922  INIT_LIST_HEAD(&dev_info->list);
3923  list_add(&dev_info->list, &xhci->lpm_failed_devs);
3924  } else {
3925  xhci_ring_device(xhci, udev->slot_id);
3926  }
3927 
3928 finish:
3929  spin_unlock_irqrestore(&xhci->lock, flags);
3930  return ret;
3931 }
3932 
3933 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
3934  struct usb_device *udev, int enable)
3935 {
3936  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3938  __le32 __iomem *pm_addr;
3939  u32 temp;
3940  unsigned int port_num;
3941  unsigned long flags;
3942  int hird;
3943 
3944  if (hcd->speed == HCD_USB3 || !xhci->hw_lpm_support ||
3945  !udev->lpm_capable)
3946  return -EPERM;
3947 
3948  if (!udev->parent || udev->parent->parent ||
3949  udev->descriptor.bDeviceClass == USB_CLASS_HUB)
3950  return -EPERM;
3951 
3952  if (udev->usb2_hw_lpm_capable != 1)
3953  return -EPERM;
3954 
3955  spin_lock_irqsave(&xhci->lock, flags);
3956 
3957  port_array = xhci->usb2_ports;
3958  port_num = udev->portnum - 1;
3959  pm_addr = port_array[port_num] + 1;
3960  temp = xhci_readl(xhci, pm_addr);
3961 
3962  xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
3963  enable ? "enable" : "disable", port_num);
3964 
3965  hird = xhci_calculate_hird_besl(xhci, udev);
3966 
3967  if (enable) {
3968  temp &= ~PORT_HIRD_MASK;
3969  temp |= PORT_HIRD(hird) | PORT_RWE;
3970  xhci_writel(xhci, temp, pm_addr);
3971  temp = xhci_readl(xhci, pm_addr);
3972  temp |= PORT_HLE;
3973  xhci_writel(xhci, temp, pm_addr);
3974  } else {
3975  temp &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK);
3976  xhci_writel(xhci, temp, pm_addr);
3977  }
3978 
3979  spin_unlock_irqrestore(&xhci->lock, flags);
3980  return 0;
3981 }
3982 
3983 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
3984 {
3985  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3986  int ret;
3987 
3988  ret = xhci_usb2_software_lpm_test(hcd, udev);
3989  if (!ret) {
3990  xhci_dbg(xhci, "software LPM test succeed\n");
3991  if (xhci->hw_lpm_support == 1) {
3992  udev->usb2_hw_lpm_capable = 1;
3993  ret = xhci_set_usb2_hardware_lpm(hcd, udev, 1);
3994  if (!ret)
3995  udev->usb2_hw_lpm_enabled = 1;
3996  }
3997  }
3998 
3999  return 0;
4000 }
4001 
4002 #else
4003 
4004 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4005  struct usb_device *udev, int enable)
4006 {
4007  return 0;
4008 }
4009 
4010 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4011 {
4012  return 0;
4013 }
4014 
4015 #endif /* CONFIG_USB_SUSPEND */
4016 
4017 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4018 
4019 #ifdef CONFIG_PM
4020 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4021 static unsigned long long xhci_service_interval_to_ns(
4022  struct usb_endpoint_descriptor *desc)
4023 {
4024  return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4025 }
4026 
4027 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4028  enum usb3_link_state state)
4029 {
4030  unsigned long long sel;
4031  unsigned long long pel;
4032  unsigned int max_sel_pel;
4033  char *state_name;
4034 
4035  switch (state) {
4036  case USB3_LPM_U1:
4037  /* Convert SEL and PEL stored in nanoseconds to microseconds */
4038  sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4039  pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4040  max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4041  state_name = "U1";
4042  break;
4043  case USB3_LPM_U2:
4044  sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4045  pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4046  max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4047  state_name = "U2";
4048  break;
4049  default:
4050  dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4051  __func__);
4052  return USB3_LPM_DISABLED;
4053  }
4054 
4055  if (sel <= max_sel_pel && pel <= max_sel_pel)
4057 
4058  if (sel > max_sel_pel)
4059  dev_dbg(&udev->dev, "Device-initiated %s disabled "
4060  "due to long SEL %llu ms\n",
4061  state_name, sel);
4062  else
4063  dev_dbg(&udev->dev, "Device-initiated %s disabled "
4064  "due to long PEL %llu\n ms",
4065  state_name, pel);
4066  return USB3_LPM_DISABLED;
4067 }
4068 
4069 /* Returns the hub-encoded U1 timeout value.
4070  * The U1 timeout should be the maximum of the following values:
4071  * - For control endpoints, U1 system exit latency (SEL) * 3
4072  * - For bulk endpoints, U1 SEL * 5
4073  * - For interrupt endpoints:
4074  * - Notification EPs, U1 SEL * 3
4075  * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4076  * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4077  */
4078 static u16 xhci_calculate_intel_u1_timeout(struct usb_device *udev,
4079  struct usb_endpoint_descriptor *desc)
4080 {
4081  unsigned long long timeout_ns;
4082  int ep_type;
4083  int intr_type;
4084 
4085  ep_type = usb_endpoint_type(desc);
4086  switch (ep_type) {
4088  timeout_ns = udev->u1_params.sel * 3;
4089  break;
4091  timeout_ns = udev->u1_params.sel * 5;
4092  break;
4093  case USB_ENDPOINT_XFER_INT:
4094  intr_type = usb_endpoint_interrupt_type(desc);
4095  if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4096  timeout_ns = udev->u1_params.sel * 3;
4097  break;
4098  }
4099  /* Otherwise the calculation is the same as isoc eps */
4101  timeout_ns = xhci_service_interval_to_ns(desc);
4102  timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4103  if (timeout_ns < udev->u1_params.sel * 2)
4104  timeout_ns = udev->u1_params.sel * 2;
4105  break;
4106  default:
4107  return 0;
4108  }
4109 
4110  /* The U1 timeout is encoded in 1us intervals. */
4111  timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4112  /* Don't return a timeout of zero, because that's USB3_LPM_DISABLED. */
4113  if (timeout_ns == USB3_LPM_DISABLED)
4114  timeout_ns++;
4115 
4116  /* If the necessary timeout value is bigger than what we can set in the
4117  * USB 3.0 hub, we have to disable hub-initiated U1.
4118  */
4119  if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4120  return timeout_ns;
4121  dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4122  "due to long timeout %llu ms\n", timeout_ns);
4123  return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4124 }
4125 
4126 /* Returns the hub-encoded U2 timeout value.
4127  * The U2 timeout should be the maximum of:
4128  * - 10 ms (to avoid the bandwidth impact on the scheduler)
4129  * - largest bInterval of any active periodic endpoint (to avoid going
4130  * into lower power link states between intervals).
4131  * - the U2 Exit Latency of the device
4132  */
4133 static u16 xhci_calculate_intel_u2_timeout(struct usb_device *udev,
4134  struct usb_endpoint_descriptor *desc)
4135 {
4136  unsigned long long timeout_ns;
4137  unsigned long long u2_del_ns;
4138 
4139  timeout_ns = 10 * 1000 * 1000;
4140 
4141  if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4142  (xhci_service_interval_to_ns(desc) > timeout_ns))
4143  timeout_ns = xhci_service_interval_to_ns(desc);
4144 
4145  u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4146  if (u2_del_ns > timeout_ns)
4147  timeout_ns = u2_del_ns;
4148 
4149  /* The U2 timeout is encoded in 256us intervals */
4150  timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4151  /* If the necessary timeout value is bigger than what we can set in the
4152  * USB 3.0 hub, we have to disable hub-initiated U2.
4153  */
4154  if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4155  return timeout_ns;
4156  dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4157  "due to long timeout %llu ms\n", timeout_ns);
4158  return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4159 }
4160 
4161 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4162  struct usb_device *udev,
4163  struct usb_endpoint_descriptor *desc,
4164  enum usb3_link_state state,
4165  u16 *timeout)
4166 {
4167  if (state == USB3_LPM_U1) {
4168  if (xhci->quirks & XHCI_INTEL_HOST)
4169  return xhci_calculate_intel_u1_timeout(udev, desc);
4170  } else {
4171  if (xhci->quirks & XHCI_INTEL_HOST)
4172  return xhci_calculate_intel_u2_timeout(udev, desc);
4173  }
4174 
4175  return USB3_LPM_DISABLED;
4176 }
4177 
4178 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4179  struct usb_device *udev,
4180  struct usb_endpoint_descriptor *desc,
4181  enum usb3_link_state state,
4182  u16 *timeout)
4183 {
4184  u16 alt_timeout;
4185 
4186  alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4187  desc, state, timeout);
4188 
4189  /* If we found we can't enable hub-initiated LPM, or
4190  * the U1 or U2 exit latency was too high to allow
4191  * device-initiated LPM as well, just stop searching.
4192  */
4193  if (alt_timeout == USB3_LPM_DISABLED ||
4194  alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4195  *timeout = alt_timeout;
4196  return -E2BIG;
4197  }
4198  if (alt_timeout > *timeout)
4199  *timeout = alt_timeout;
4200  return 0;
4201 }
4202 
4203 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4204  struct usb_device *udev,
4205  struct usb_host_interface *alt,
4206  enum usb3_link_state state,
4207  u16 *timeout)
4208 {
4209  int j;
4210 
4211  for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4212  if (xhci_update_timeout_for_endpoint(xhci, udev,
4213  &alt->endpoint[j].desc, state, timeout))
4214  return -E2BIG;
4215  continue;
4216  }
4217  return 0;
4218 }
4219 
4220 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4221  enum usb3_link_state state)
4222 {
4223  struct usb_device *parent;
4224  unsigned int num_hubs;
4225 
4226  if (state == USB3_LPM_U2)
4227  return 0;
4228 
4229  /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4230  for (parent = udev->parent, num_hubs = 0; parent->parent;
4231  parent = parent->parent)
4232  num_hubs++;
4233 
4234  if (num_hubs < 2)
4235  return 0;
4236 
4237  dev_dbg(&udev->dev, "Disabling U1 link state for device"
4238  " below second-tier hub.\n");
4239  dev_dbg(&udev->dev, "Plug device into first-tier hub "
4240  "to decrease power consumption.\n");
4241  return -E2BIG;
4242 }
4243 
4244 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4245  struct usb_device *udev,
4246  enum usb3_link_state state)
4247 {
4248  if (xhci->quirks & XHCI_INTEL_HOST)
4249  return xhci_check_intel_tier_policy(udev, state);
4250  return -EINVAL;
4251 }
4252 
4253 /* Returns the U1 or U2 timeout that should be enabled.
4254  * If the tier check or timeout setting functions return with a non-zero exit
4255  * code, that means the timeout value has been finalized and we shouldn't look
4256  * at any more endpoints.
4257  */
4258 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4259  struct usb_device *udev, enum usb3_link_state state)
4260 {
4261  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4262  struct usb_host_config *config;
4263  char *state_name;
4264  int i;
4265  u16 timeout = USB3_LPM_DISABLED;
4266 
4267  if (state == USB3_LPM_U1)
4268  state_name = "U1";
4269  else if (state == USB3_LPM_U2)
4270  state_name = "U2";
4271  else {
4272  dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4273  state);
4274  return timeout;
4275  }
4276 
4277  if (xhci_check_tier_policy(xhci, udev, state) < 0)
4278  return timeout;
4279 
4280  /* Gather some information about the currently installed configuration
4281  * and alternate interface settings.
4282  */
4283  if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4284  state, &timeout))
4285  return timeout;
4286 
4287  config = udev->actconfig;
4288  if (!config)
4289  return timeout;
4290 
4291  for (i = 0; i < USB_MAXINTERFACES; i++) {
4292  struct usb_driver *driver;
4293  struct usb_interface *intf = config->interface[i];
4294 
4295  if (!intf)
4296  continue;
4297 
4298  /* Check if any currently bound drivers want hub-initiated LPM
4299  * disabled.
4300  */
4301  if (intf->dev.driver) {
4302  driver = to_usb_driver(intf->dev.driver);
4303  if (driver && driver->disable_hub_initiated_lpm) {
4304  dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4305  "at request of driver %s\n",
4306  state_name, driver->name);
4307  return xhci_get_timeout_no_hub_lpm(udev, state);
4308  }
4309  }
4310 
4311  /* Not sure how this could happen... */
4312  if (!intf->cur_altsetting)
4313  continue;
4314 
4315  if (xhci_update_timeout_for_interface(xhci, udev,
4316  intf->cur_altsetting,
4317  state, &timeout))
4318  return timeout;
4319  }
4320  return timeout;
4321 }
4322 
4323 /*
4324  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4325  * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4326  */
4327 static int xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4328  struct usb_device *udev, u16 max_exit_latency)
4329 {
4330  struct xhci_virt_device *virt_dev;
4331  struct xhci_command *command;
4332  struct xhci_input_control_ctx *ctrl_ctx;
4333  struct xhci_slot_ctx *slot_ctx;
4334  unsigned long flags;
4335  int ret;
4336 
4337  spin_lock_irqsave(&xhci->lock, flags);
4338  if (max_exit_latency == xhci->devs[udev->slot_id]->current_mel) {
4339  spin_unlock_irqrestore(&xhci->lock, flags);
4340  return 0;
4341  }
4342 
4343  /* Attempt to issue an Evaluate Context command to change the MEL. */
4344  virt_dev = xhci->devs[udev->slot_id];
4345  command = xhci->lpm_command;
4346  xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4347  spin_unlock_irqrestore(&xhci->lock, flags);
4348 
4349  ctrl_ctx = xhci_get_input_control_ctx(xhci, command->in_ctx);
4350  ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4351  slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4352  slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4353  slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4354 
4355  xhci_dbg(xhci, "Set up evaluate context for LPM MEL change.\n");
4356  xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4357  xhci_dbg_ctx(xhci, command->in_ctx, 0);
4358 
4359  /* Issue and wait for the evaluate context command. */
4360  ret = xhci_configure_endpoint(xhci, udev, command,
4361  true, true);
4362  xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4363  xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4364 
4365  if (!ret) {
4366  spin_lock_irqsave(&xhci->lock, flags);
4367  virt_dev->current_mel = max_exit_latency;
4368  spin_unlock_irqrestore(&xhci->lock, flags);
4369  }
4370  return ret;
4371 }
4372 
4373 static int calculate_max_exit_latency(struct usb_device *udev,
4374  enum usb3_link_state state_changed,
4375  u16 hub_encoded_timeout)
4376 {
4377  unsigned long long u1_mel_us = 0;
4378  unsigned long long u2_mel_us = 0;
4379  unsigned long long mel_us = 0;
4380  bool disabling_u1;
4381  bool disabling_u2;
4382  bool enabling_u1;
4383  bool enabling_u2;
4384 
4385  disabling_u1 = (state_changed == USB3_LPM_U1 &&
4386  hub_encoded_timeout == USB3_LPM_DISABLED);
4387  disabling_u2 = (state_changed == USB3_LPM_U2 &&
4388  hub_encoded_timeout == USB3_LPM_DISABLED);
4389 
4390  enabling_u1 = (state_changed == USB3_LPM_U1 &&
4391  hub_encoded_timeout != USB3_LPM_DISABLED);
4392  enabling_u2 = (state_changed == USB3_LPM_U2 &&
4393  hub_encoded_timeout != USB3_LPM_DISABLED);
4394 
4395  /* If U1 was already enabled and we're not disabling it,
4396  * or we're going to enable U1, account for the U1 max exit latency.
4397  */
4398  if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4399  enabling_u1)
4400  u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4401  if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4402  enabling_u2)
4403  u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4404 
4405  if (u1_mel_us > u2_mel_us)
4406  mel_us = u1_mel_us;
4407  else
4408  mel_us = u2_mel_us;
4409  /* xHCI host controller max exit latency field is only 16 bits wide. */
4410  if (mel_us > MAX_EXIT) {
4411  dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4412  "is too big.\n", mel_us);
4413  return -E2BIG;
4414  }
4415  return mel_us;
4416 }
4417 
4418 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4419 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4420  struct usb_device *udev, enum usb3_link_state state)
4421 {
4422  struct xhci_hcd *xhci;
4423  u16 hub_encoded_timeout;
4424  int mel;
4425  int ret;
4426 
4427  xhci = hcd_to_xhci(hcd);
4428  /* The LPM timeout values are pretty host-controller specific, so don't
4429  * enable hub-initiated timeouts unless the vendor has provided
4430  * information about their timeout algorithm.
4431  */
4432  if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4433  !xhci->devs[udev->slot_id])
4434  return USB3_LPM_DISABLED;
4435 
4436  hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4437  mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4438  if (mel < 0) {
4439  /* Max Exit Latency is too big, disable LPM. */
4440  hub_encoded_timeout = USB3_LPM_DISABLED;
4441  mel = 0;
4442  }
4443 
4444  ret = xhci_change_max_exit_latency(xhci, udev, mel);
4445  if (ret)
4446  return ret;
4447  return hub_encoded_timeout;
4448 }
4449 
4450 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4451  struct usb_device *udev, enum usb3_link_state state)
4452 {
4453  struct xhci_hcd *xhci;
4454  u16 mel;
4455  int ret;
4456 
4457  xhci = hcd_to_xhci(hcd);
4458  if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4459  !xhci->devs[udev->slot_id])
4460  return 0;
4461 
4462  mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4463  ret = xhci_change_max_exit_latency(xhci, udev, mel);
4464  if (ret)
4465  return ret;
4466  return 0;
4467 }
4468 #else /* CONFIG_PM */
4469 
4470 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4471  struct usb_device *udev, enum usb3_link_state state)
4472 {
4473  return USB3_LPM_DISABLED;
4474 }
4475 
4476 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4477  struct usb_device *udev, enum usb3_link_state state)
4478 {
4479  return 0;
4480 }
4481 #endif /* CONFIG_PM */
4482 
4483 /*-------------------------------------------------------------------------*/
4484 
4485 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4486  * internal data structures for the device.
4487  */
4488 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4489  struct usb_tt *tt, gfp_t mem_flags)
4490 {
4491  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4492  struct xhci_virt_device *vdev;
4493  struct xhci_command *config_cmd;
4494  struct xhci_input_control_ctx *ctrl_ctx;
4495  struct xhci_slot_ctx *slot_ctx;
4496  unsigned long flags;
4497  unsigned think_time;
4498  int ret;
4499 
4500  /* Ignore root hubs */
4501  if (!hdev->parent)
4502  return 0;
4503 
4504  vdev = xhci->devs[hdev->slot_id];
4505  if (!vdev) {
4506  xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4507  return -EINVAL;
4508  }
4509  config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4510  if (!config_cmd) {
4511  xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4512  return -ENOMEM;
4513  }
4514 
4515  spin_lock_irqsave(&xhci->lock, flags);
4516  if (hdev->speed == USB_SPEED_HIGH &&
4517  xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4518  xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4519  xhci_free_command(xhci, config_cmd);
4520  spin_unlock_irqrestore(&xhci->lock, flags);
4521  return -ENOMEM;
4522  }
4523 
4524  xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4525  ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
4526  ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4527  slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4528  slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4529  if (tt->multi)
4530  slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4531  if (xhci->hci_version > 0x95) {
4532  xhci_dbg(xhci, "xHCI version %x needs hub "
4533  "TT think time and number of ports\n",
4534  (unsigned int) xhci->hci_version);
4535  slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4536  /* Set TT think time - convert from ns to FS bit times.
4537  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4538  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4539  *
4540  * xHCI 1.0: this field shall be 0 if the device is not a
4541  * High-spped hub.
4542  */
4543  think_time = tt->think_time;
4544  if (think_time != 0)
4545  think_time = (think_time / 666) - 1;
4546  if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4547  slot_ctx->tt_info |=
4548  cpu_to_le32(TT_THINK_TIME(think_time));
4549  } else {
4550  xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4551  "TT think time or number of ports\n",
4552  (unsigned int) xhci->hci_version);
4553  }
4554  slot_ctx->dev_state = 0;
4555  spin_unlock_irqrestore(&xhci->lock, flags);
4556 
4557  xhci_dbg(xhci, "Set up %s for hub device.\n",
4558  (xhci->hci_version > 0x95) ?
4559  "configure endpoint" : "evaluate context");
4560  xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4561  xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4562 
4563  /* Issue and wait for the configure endpoint or
4564  * evaluate context command.
4565  */
4566  if (xhci->hci_version > 0x95)
4567  ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4568  false, false);
4569  else
4570  ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4571  true, false);
4572 
4573  xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4574  xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4575 
4576  xhci_free_command(xhci, config_cmd);
4577  return ret;
4578 }
4579 
4580 int xhci_get_frame(struct usb_hcd *hcd)
4581 {
4582  struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4583  /* EHCI mods by the periodic size. Why? */
4584  return xhci_readl(xhci, &xhci->run_regs->microframe_index) >> 3;
4585 }
4586 
4587 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4588 {
4589  struct xhci_hcd *xhci;
4590  struct device *dev = hcd->self.controller;
4591  int retval;
4592  u32 temp;
4593 
4594  /* Accept arbitrarily long scatter-gather lists */
4595  hcd->self.sg_tablesize = ~0;
4596  /* XHCI controllers don't stop the ep queue on short packets :| */
4597  hcd->self.no_stop_on_short = 1;
4598 
4599  if (usb_hcd_is_primary_hcd(hcd)) {
4600  xhci = kzalloc(sizeof(struct xhci_hcd), GFP_KERNEL);
4601  if (!xhci)
4602  return -ENOMEM;
4603  *((struct xhci_hcd **) hcd->hcd_priv) = xhci;
4604  xhci->main_hcd = hcd;
4605  /* Mark the first roothub as being USB 2.0.
4606  * The xHCI driver will register the USB 3.0 roothub.
4607  */
4608  hcd->speed = HCD_USB2;
4609  hcd->self.root_hub->speed = USB_SPEED_HIGH;
4610  /*
4611  * USB 2.0 roothub under xHCI has an integrated TT,
4612  * (rate matching hub) as opposed to having an OHCI/UHCI
4613  * companion controller.
4614  */
4615  hcd->has_tt = 1;
4616  } else {
4617  /* xHCI private pointer was set in xhci_pci_probe for the second
4618  * registered roothub.
4619  */
4620  xhci = hcd_to_xhci(hcd);
4621  temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4622  if (HCC_64BIT_ADDR(temp)) {
4623  xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4624  dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4625  } else {
4626  dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4627  }
4628  return 0;
4629  }
4630 
4631  xhci->cap_regs = hcd->regs;
4632  xhci->op_regs = hcd->regs +
4633  HC_LENGTH(xhci_readl(xhci, &xhci->cap_regs->hc_capbase));
4634  xhci->run_regs = hcd->regs +
4635  (xhci_readl(xhci, &xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4636  /* Cache read-only capability registers */
4637  xhci->hcs_params1 = xhci_readl(xhci, &xhci->cap_regs->hcs_params1);
4638  xhci->hcs_params2 = xhci_readl(xhci, &xhci->cap_regs->hcs_params2);
4639  xhci->hcs_params3 = xhci_readl(xhci, &xhci->cap_regs->hcs_params3);
4640  xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hc_capbase);
4641  xhci->hci_version = HC_VERSION(xhci->hcc_params);
4642  xhci->hcc_params = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4643  xhci_print_registers(xhci);
4644 
4645  get_quirks(dev, xhci);
4646 
4647  /* Make sure the HC is halted. */
4648  retval = xhci_halt(xhci);
4649  if (retval)
4650  goto error;
4651 
4652  xhci_dbg(xhci, "Resetting HCD\n");
4653  /* Reset the internal HC memory state and registers. */
4654  retval = xhci_reset(xhci);
4655  if (retval)
4656  goto error;
4657  xhci_dbg(xhci, "Reset complete\n");
4658 
4659  temp = xhci_readl(xhci, &xhci->cap_regs->hcc_params);
4660  if (HCC_64BIT_ADDR(temp)) {
4661  xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4662  dma_set_mask(hcd->self.controller, DMA_BIT_MASK(64));
4663  } else {
4664  dma_set_mask(hcd->self.controller, DMA_BIT_MASK(32));
4665  }
4666 
4667  xhci_dbg(xhci, "Calling HCD init\n");
4668  /* Initialize HCD and host controller data structures. */
4669  retval = xhci_init(hcd);
4670  if (retval)
4671  goto error;
4672  xhci_dbg(xhci, "Called HCD init\n");
4673  return 0;
4674 error:
4675  kfree(xhci);
4676  return retval;
4677 }
4678 
4681 MODULE_LICENSE("GPL");
4682 
4683 static int __init xhci_hcd_init(void)
4684 {
4685  int retval;
4686 
4687  retval = xhci_register_pci();
4688  if (retval < 0) {
4689  printk(KERN_DEBUG "Problem registering PCI driver.");
4690  return retval;
4691  }
4692  retval = xhci_register_plat();
4693  if (retval < 0) {
4694  printk(KERN_DEBUG "Problem registering platform driver.");
4695  goto unreg_pci;
4696  }
4697  /*
4698  * Check the compiler generated sizes of structures that must be laid
4699  * out in specific ways for hardware access.
4700  */
4701  BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
4702  BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
4703  BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
4704  /* xhci_device_control has eight fields, and also
4705  * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
4706  */
4707  BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
4708  BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
4709  BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
4710  BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 7*32/8);
4711  BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
4712  /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
4713  BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
4714  return 0;
4715 unreg_pci:
4717  return retval;
4718 }
4719 module_init(xhci_hcd_init);
4720 
4721 static void __exit xhci_hcd_cleanup(void)
4722 {
4725 }
4726 module_exit(xhci_hcd_cleanup);