LLVM API Documentation
00001 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the AArch64TargetLowering class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "AArch64ISelLowering.h" 00015 #include "AArch64MachineFunctionInfo.h" 00016 #include "AArch64PerfectShuffle.h" 00017 #include "AArch64Subtarget.h" 00018 #include "AArch64TargetMachine.h" 00019 #include "AArch64TargetObjectFile.h" 00020 #include "MCTargetDesc/AArch64AddressingModes.h" 00021 #include "llvm/ADT/Statistic.h" 00022 #include "llvm/CodeGen/CallingConvLower.h" 00023 #include "llvm/CodeGen/MachineFrameInfo.h" 00024 #include "llvm/CodeGen/MachineInstrBuilder.h" 00025 #include "llvm/CodeGen/MachineRegisterInfo.h" 00026 #include "llvm/IR/Function.h" 00027 #include "llvm/IR/Intrinsics.h" 00028 #include "llvm/IR/Type.h" 00029 #include "llvm/Support/CommandLine.h" 00030 #include "llvm/Support/Debug.h" 00031 #include "llvm/Support/ErrorHandling.h" 00032 #include "llvm/Support/raw_ostream.h" 00033 #include "llvm/Target/TargetOptions.h" 00034 using namespace llvm; 00035 00036 #define DEBUG_TYPE "aarch64-lower" 00037 00038 STATISTIC(NumTailCalls, "Number of tail calls"); 00039 STATISTIC(NumShiftInserts, "Number of vector shift inserts"); 00040 00041 namespace { 00042 enum AlignMode { 00043 StrictAlign, 00044 NoStrictAlign 00045 }; 00046 } 00047 00048 static cl::opt<AlignMode> 00049 Align(cl::desc("Load/store alignment support"), 00050 cl::Hidden, cl::init(NoStrictAlign), 00051 cl::values( 00052 clEnumValN(StrictAlign, "aarch64-strict-align", 00053 "Disallow all unaligned memory accesses"), 00054 clEnumValN(NoStrictAlign, "aarch64-no-strict-align", 00055 "Allow unaligned memory accesses"), 00056 clEnumValEnd)); 00057 00058 // Place holder until extr generation is tested fully. 00059 static cl::opt<bool> 00060 EnableAArch64ExtrGeneration("aarch64-extr-generation", cl::Hidden, 00061 cl::desc("Allow AArch64 (or (shift)(shift))->extract"), 00062 cl::init(true)); 00063 00064 static cl::opt<bool> 00065 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, 00066 cl::desc("Allow AArch64 SLI/SRI formation"), 00067 cl::init(false)); 00068 00069 //===----------------------------------------------------------------------===// 00070 // AArch64 Lowering public interface. 00071 //===----------------------------------------------------------------------===// 00072 static TargetLoweringObjectFile *createTLOF(const Triple &TT) { 00073 if (TT.isOSBinFormatMachO()) 00074 return new AArch64_MachoTargetObjectFile(); 00075 00076 return new AArch64_ELFTargetObjectFile(); 00077 } 00078 00079 AArch64TargetLowering::AArch64TargetLowering(TargetMachine &TM) 00080 : TargetLowering(TM, createTLOF(Triple(TM.getTargetTriple()))) { 00081 Subtarget = &TM.getSubtarget<AArch64Subtarget>(); 00082 00083 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so 00084 // we have to make something up. Arbitrarily, choose ZeroOrOne. 00085 setBooleanContents(ZeroOrOneBooleanContent); 00086 // When comparing vectors the result sets the different elements in the 00087 // vector to all-one or all-zero. 00088 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 00089 00090 // Set up the register classes. 00091 addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); 00092 addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); 00093 00094 if (Subtarget->hasFPARMv8()) { 00095 addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); 00096 addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); 00097 addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); 00098 addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); 00099 } 00100 00101 if (Subtarget->hasNEON()) { 00102 addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); 00103 addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); 00104 // Someone set us up the NEON. 00105 addDRTypeForNEON(MVT::v2f32); 00106 addDRTypeForNEON(MVT::v8i8); 00107 addDRTypeForNEON(MVT::v4i16); 00108 addDRTypeForNEON(MVT::v2i32); 00109 addDRTypeForNEON(MVT::v1i64); 00110 addDRTypeForNEON(MVT::v1f64); 00111 addDRTypeForNEON(MVT::v4f16); 00112 00113 addQRTypeForNEON(MVT::v4f32); 00114 addQRTypeForNEON(MVT::v2f64); 00115 addQRTypeForNEON(MVT::v16i8); 00116 addQRTypeForNEON(MVT::v8i16); 00117 addQRTypeForNEON(MVT::v4i32); 00118 addQRTypeForNEON(MVT::v2i64); 00119 addQRTypeForNEON(MVT::v8f16); 00120 } 00121 00122 // Compute derived properties from the register classes 00123 computeRegisterProperties(); 00124 00125 // Provide all sorts of operation actions 00126 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); 00127 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); 00128 setOperationAction(ISD::SETCC, MVT::i32, Custom); 00129 setOperationAction(ISD::SETCC, MVT::i64, Custom); 00130 setOperationAction(ISD::SETCC, MVT::f32, Custom); 00131 setOperationAction(ISD::SETCC, MVT::f64, Custom); 00132 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 00133 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 00134 setOperationAction(ISD::BR_CC, MVT::i64, Custom); 00135 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 00136 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 00137 setOperationAction(ISD::SELECT, MVT::i32, Custom); 00138 setOperationAction(ISD::SELECT, MVT::i64, Custom); 00139 setOperationAction(ISD::SELECT, MVT::f32, Custom); 00140 setOperationAction(ISD::SELECT, MVT::f64, Custom); 00141 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 00142 setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); 00143 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 00144 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 00145 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 00146 setOperationAction(ISD::JumpTable, MVT::i64, Custom); 00147 00148 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); 00149 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); 00150 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); 00151 00152 setOperationAction(ISD::FREM, MVT::f32, Expand); 00153 setOperationAction(ISD::FREM, MVT::f64, Expand); 00154 setOperationAction(ISD::FREM, MVT::f80, Expand); 00155 00156 // Custom lowering hooks are needed for XOR 00157 // to fold it into CSINC/CSINV. 00158 setOperationAction(ISD::XOR, MVT::i32, Custom); 00159 setOperationAction(ISD::XOR, MVT::i64, Custom); 00160 00161 // Virtually no operation on f128 is legal, but LLVM can't expand them when 00162 // there's a valid register class, so we need custom operations in most cases. 00163 setOperationAction(ISD::FABS, MVT::f128, Expand); 00164 setOperationAction(ISD::FADD, MVT::f128, Custom); 00165 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 00166 setOperationAction(ISD::FCOS, MVT::f128, Expand); 00167 setOperationAction(ISD::FDIV, MVT::f128, Custom); 00168 setOperationAction(ISD::FMA, MVT::f128, Expand); 00169 setOperationAction(ISD::FMUL, MVT::f128, Custom); 00170 setOperationAction(ISD::FNEG, MVT::f128, Expand); 00171 setOperationAction(ISD::FPOW, MVT::f128, Expand); 00172 setOperationAction(ISD::FREM, MVT::f128, Expand); 00173 setOperationAction(ISD::FRINT, MVT::f128, Expand); 00174 setOperationAction(ISD::FSIN, MVT::f128, Expand); 00175 setOperationAction(ISD::FSINCOS, MVT::f128, Expand); 00176 setOperationAction(ISD::FSQRT, MVT::f128, Expand); 00177 setOperationAction(ISD::FSUB, MVT::f128, Custom); 00178 setOperationAction(ISD::FTRUNC, MVT::f128, Expand); 00179 setOperationAction(ISD::SETCC, MVT::f128, Custom); 00180 setOperationAction(ISD::BR_CC, MVT::f128, Custom); 00181 setOperationAction(ISD::SELECT, MVT::f128, Custom); 00182 setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); 00183 setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); 00184 00185 // Lowering for many of the conversions is actually specified by the non-f128 00186 // type. The LowerXXX function will be trivial when f128 isn't involved. 00187 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 00188 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 00189 setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); 00190 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 00191 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 00192 setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); 00193 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 00194 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 00195 setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); 00196 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 00197 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 00198 setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); 00199 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 00200 setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); 00201 00202 // Variable arguments. 00203 setOperationAction(ISD::VASTART, MVT::Other, Custom); 00204 setOperationAction(ISD::VAARG, MVT::Other, Custom); 00205 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 00206 setOperationAction(ISD::VAEND, MVT::Other, Expand); 00207 00208 // Variable-sized objects. 00209 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 00210 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 00211 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); 00212 00213 // Exception handling. 00214 // FIXME: These are guesses. Has this been defined yet? 00215 setExceptionPointerRegister(AArch64::X0); 00216 setExceptionSelectorRegister(AArch64::X1); 00217 00218 // Constant pool entries 00219 setOperationAction(ISD::ConstantPool, MVT::i64, Custom); 00220 00221 // BlockAddress 00222 setOperationAction(ISD::BlockAddress, MVT::i64, Custom); 00223 00224 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences. 00225 setOperationAction(ISD::ADDC, MVT::i32, Custom); 00226 setOperationAction(ISD::ADDE, MVT::i32, Custom); 00227 setOperationAction(ISD::SUBC, MVT::i32, Custom); 00228 setOperationAction(ISD::SUBE, MVT::i32, Custom); 00229 setOperationAction(ISD::ADDC, MVT::i64, Custom); 00230 setOperationAction(ISD::ADDE, MVT::i64, Custom); 00231 setOperationAction(ISD::SUBC, MVT::i64, Custom); 00232 setOperationAction(ISD::SUBE, MVT::i64, Custom); 00233 00234 // AArch64 lacks both left-rotate and popcount instructions. 00235 setOperationAction(ISD::ROTL, MVT::i32, Expand); 00236 setOperationAction(ISD::ROTL, MVT::i64, Expand); 00237 00238 // AArch64 doesn't have {U|S}MUL_LOHI. 00239 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); 00240 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); 00241 00242 00243 // Expand the undefined-at-zero variants to cttz/ctlz to their defined-at-zero 00244 // counterparts, which AArch64 supports directly. 00245 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 00246 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 00247 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); 00248 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); 00249 00250 setOperationAction(ISD::CTPOP, MVT::i32, Custom); 00251 setOperationAction(ISD::CTPOP, MVT::i64, Custom); 00252 00253 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 00254 setOperationAction(ISD::SDIVREM, MVT::i64, Expand); 00255 setOperationAction(ISD::SREM, MVT::i32, Expand); 00256 setOperationAction(ISD::SREM, MVT::i64, Expand); 00257 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 00258 setOperationAction(ISD::UDIVREM, MVT::i64, Expand); 00259 setOperationAction(ISD::UREM, MVT::i32, Expand); 00260 setOperationAction(ISD::UREM, MVT::i64, Expand); 00261 00262 // Custom lower Add/Sub/Mul with overflow. 00263 setOperationAction(ISD::SADDO, MVT::i32, Custom); 00264 setOperationAction(ISD::SADDO, MVT::i64, Custom); 00265 setOperationAction(ISD::UADDO, MVT::i32, Custom); 00266 setOperationAction(ISD::UADDO, MVT::i64, Custom); 00267 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 00268 setOperationAction(ISD::SSUBO, MVT::i64, Custom); 00269 setOperationAction(ISD::USUBO, MVT::i32, Custom); 00270 setOperationAction(ISD::USUBO, MVT::i64, Custom); 00271 setOperationAction(ISD::SMULO, MVT::i32, Custom); 00272 setOperationAction(ISD::SMULO, MVT::i64, Custom); 00273 setOperationAction(ISD::UMULO, MVT::i32, Custom); 00274 setOperationAction(ISD::UMULO, MVT::i64, Custom); 00275 00276 setOperationAction(ISD::FSIN, MVT::f32, Expand); 00277 setOperationAction(ISD::FSIN, MVT::f64, Expand); 00278 setOperationAction(ISD::FCOS, MVT::f32, Expand); 00279 setOperationAction(ISD::FCOS, MVT::f64, Expand); 00280 setOperationAction(ISD::FPOW, MVT::f32, Expand); 00281 setOperationAction(ISD::FPOW, MVT::f64, Expand); 00282 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 00283 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 00284 00285 // f16 is storage-only, so we promote operations to f32 if we know this is 00286 // valid, and ignore them otherwise. The operations not mentioned here will 00287 // fail to select, but this is not a major problem as no source language 00288 // should be emitting native f16 operations yet. 00289 setOperationAction(ISD::FADD, MVT::f16, Promote); 00290 setOperationAction(ISD::FDIV, MVT::f16, Promote); 00291 setOperationAction(ISD::FMUL, MVT::f16, Promote); 00292 setOperationAction(ISD::FSUB, MVT::f16, Promote); 00293 00294 // v4f16 is also a storage-only type, so promote it to v4f32 when that is 00295 // known to be safe. 00296 setOperationAction(ISD::FADD, MVT::v4f16, Promote); 00297 setOperationAction(ISD::FSUB, MVT::v4f16, Promote); 00298 setOperationAction(ISD::FMUL, MVT::v4f16, Promote); 00299 setOperationAction(ISD::FDIV, MVT::v4f16, Promote); 00300 setOperationAction(ISD::FP_EXTEND, MVT::v4f16, Promote); 00301 setOperationAction(ISD::FP_ROUND, MVT::v4f16, Promote); 00302 AddPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); 00303 AddPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); 00304 AddPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); 00305 AddPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); 00306 AddPromotedToType(ISD::FP_EXTEND, MVT::v4f16, MVT::v4f32); 00307 AddPromotedToType(ISD::FP_ROUND, MVT::v4f16, MVT::v4f32); 00308 00309 // Expand all other v4f16 operations. 00310 // FIXME: We could generate better code by promoting some operations to 00311 // a pair of v4f32s 00312 setOperationAction(ISD::FABS, MVT::v4f16, Expand); 00313 setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); 00314 setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); 00315 setOperationAction(ISD::FCOS, MVT::v4f16, Expand); 00316 setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); 00317 setOperationAction(ISD::FMA, MVT::v4f16, Expand); 00318 setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); 00319 setOperationAction(ISD::FNEG, MVT::v4f16, Expand); 00320 setOperationAction(ISD::FPOW, MVT::v4f16, Expand); 00321 setOperationAction(ISD::FPOWI, MVT::v4f16, Expand); 00322 setOperationAction(ISD::FREM, MVT::v4f16, Expand); 00323 setOperationAction(ISD::FROUND, MVT::v4f16, Expand); 00324 setOperationAction(ISD::FRINT, MVT::v4f16, Expand); 00325 setOperationAction(ISD::FSIN, MVT::v4f16, Expand); 00326 setOperationAction(ISD::FSINCOS, MVT::v4f16, Expand); 00327 setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); 00328 setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); 00329 setOperationAction(ISD::SETCC, MVT::v4f16, Expand); 00330 setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); 00331 setOperationAction(ISD::SELECT, MVT::v4f16, Expand); 00332 setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); 00333 setOperationAction(ISD::FEXP, MVT::v4f16, Expand); 00334 setOperationAction(ISD::FEXP2, MVT::v4f16, Expand); 00335 setOperationAction(ISD::FLOG, MVT::v4f16, Expand); 00336 setOperationAction(ISD::FLOG2, MVT::v4f16, Expand); 00337 setOperationAction(ISD::FLOG10, MVT::v4f16, Expand); 00338 00339 00340 // v8f16 is also a storage-only type, so expand it. 00341 setOperationAction(ISD::FABS, MVT::v8f16, Expand); 00342 setOperationAction(ISD::FADD, MVT::v8f16, Expand); 00343 setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); 00344 setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); 00345 setOperationAction(ISD::FCOS, MVT::v8f16, Expand); 00346 setOperationAction(ISD::FDIV, MVT::v8f16, Expand); 00347 setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); 00348 setOperationAction(ISD::FMA, MVT::v8f16, Expand); 00349 setOperationAction(ISD::FMUL, MVT::v8f16, Expand); 00350 setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); 00351 setOperationAction(ISD::FNEG, MVT::v8f16, Expand); 00352 setOperationAction(ISD::FPOW, MVT::v8f16, Expand); 00353 setOperationAction(ISD::FPOWI, MVT::v8f16, Expand); 00354 setOperationAction(ISD::FREM, MVT::v8f16, Expand); 00355 setOperationAction(ISD::FROUND, MVT::v8f16, Expand); 00356 setOperationAction(ISD::FRINT, MVT::v8f16, Expand); 00357 setOperationAction(ISD::FSIN, MVT::v8f16, Expand); 00358 setOperationAction(ISD::FSINCOS, MVT::v8f16, Expand); 00359 setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); 00360 setOperationAction(ISD::FSUB, MVT::v8f16, Expand); 00361 setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); 00362 setOperationAction(ISD::SETCC, MVT::v8f16, Expand); 00363 setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); 00364 setOperationAction(ISD::SELECT, MVT::v8f16, Expand); 00365 setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); 00366 setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); 00367 setOperationAction(ISD::FEXP, MVT::v8f16, Expand); 00368 setOperationAction(ISD::FEXP2, MVT::v8f16, Expand); 00369 setOperationAction(ISD::FLOG, MVT::v8f16, Expand); 00370 setOperationAction(ISD::FLOG2, MVT::v8f16, Expand); 00371 setOperationAction(ISD::FLOG10, MVT::v8f16, Expand); 00372 00373 // AArch64 has implementations of a lot of rounding-like FP operations. 00374 static MVT RoundingTypes[] = { MVT::f32, MVT::f64}; 00375 for (unsigned I = 0; I < array_lengthof(RoundingTypes); ++I) { 00376 MVT Ty = RoundingTypes[I]; 00377 setOperationAction(ISD::FFLOOR, Ty, Legal); 00378 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 00379 setOperationAction(ISD::FCEIL, Ty, Legal); 00380 setOperationAction(ISD::FRINT, Ty, Legal); 00381 setOperationAction(ISD::FTRUNC, Ty, Legal); 00382 setOperationAction(ISD::FROUND, Ty, Legal); 00383 } 00384 00385 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 00386 00387 if (Subtarget->isTargetMachO()) { 00388 // For iOS, we don't want to the normal expansion of a libcall to 00389 // sincos. We want to issue a libcall to __sincos_stret to avoid memory 00390 // traffic. 00391 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 00392 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 00393 } else { 00394 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 00395 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 00396 } 00397 00398 // AArch64 does not have floating-point extending loads, i1 sign-extending 00399 // load, floating-point truncating stores, or v2i32->v2i16 truncating store. 00400 setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand); 00401 setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); 00402 setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand); 00403 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); 00404 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); 00405 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 00406 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 00407 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 00408 setTruncStoreAction(MVT::f128, MVT::f80, Expand); 00409 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 00410 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 00411 setTruncStoreAction(MVT::f128, MVT::f16, Expand); 00412 00413 setOperationAction(ISD::BITCAST, MVT::i16, Custom); 00414 setOperationAction(ISD::BITCAST, MVT::f16, Custom); 00415 00416 // Indexed loads and stores are supported. 00417 for (unsigned im = (unsigned)ISD::PRE_INC; 00418 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 00419 setIndexedLoadAction(im, MVT::i8, Legal); 00420 setIndexedLoadAction(im, MVT::i16, Legal); 00421 setIndexedLoadAction(im, MVT::i32, Legal); 00422 setIndexedLoadAction(im, MVT::i64, Legal); 00423 setIndexedLoadAction(im, MVT::f64, Legal); 00424 setIndexedLoadAction(im, MVT::f32, Legal); 00425 setIndexedStoreAction(im, MVT::i8, Legal); 00426 setIndexedStoreAction(im, MVT::i16, Legal); 00427 setIndexedStoreAction(im, MVT::i32, Legal); 00428 setIndexedStoreAction(im, MVT::i64, Legal); 00429 setIndexedStoreAction(im, MVT::f64, Legal); 00430 setIndexedStoreAction(im, MVT::f32, Legal); 00431 } 00432 00433 // Trap. 00434 setOperationAction(ISD::TRAP, MVT::Other, Legal); 00435 00436 // We combine OR nodes for bitfield operations. 00437 setTargetDAGCombine(ISD::OR); 00438 00439 // Vector add and sub nodes may conceal a high-half opportunity. 00440 // Also, try to fold ADD into CSINC/CSINV.. 00441 setTargetDAGCombine(ISD::ADD); 00442 setTargetDAGCombine(ISD::SUB); 00443 00444 setTargetDAGCombine(ISD::XOR); 00445 setTargetDAGCombine(ISD::SINT_TO_FP); 00446 setTargetDAGCombine(ISD::UINT_TO_FP); 00447 00448 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 00449 00450 setTargetDAGCombine(ISD::ANY_EXTEND); 00451 setTargetDAGCombine(ISD::ZERO_EXTEND); 00452 setTargetDAGCombine(ISD::SIGN_EXTEND); 00453 setTargetDAGCombine(ISD::BITCAST); 00454 setTargetDAGCombine(ISD::CONCAT_VECTORS); 00455 setTargetDAGCombine(ISD::STORE); 00456 00457 setTargetDAGCombine(ISD::MUL); 00458 00459 setTargetDAGCombine(ISD::SELECT); 00460 setTargetDAGCombine(ISD::VSELECT); 00461 00462 setTargetDAGCombine(ISD::INTRINSIC_VOID); 00463 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 00464 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 00465 00466 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 8; 00467 MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 4; 00468 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 4; 00469 00470 setStackPointerRegisterToSaveRestore(AArch64::SP); 00471 00472 setSchedulingPreference(Sched::Hybrid); 00473 00474 // Enable TBZ/TBNZ 00475 MaskAndBranchFoldingIsLegal = true; 00476 00477 setMinFunctionAlignment(2); 00478 00479 RequireStrictAlign = (Align == StrictAlign); 00480 00481 setHasExtractBitsInsn(true); 00482 00483 if (Subtarget->hasNEON()) { 00484 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to 00485 // silliness like this: 00486 setOperationAction(ISD::FABS, MVT::v1f64, Expand); 00487 setOperationAction(ISD::FADD, MVT::v1f64, Expand); 00488 setOperationAction(ISD::FCEIL, MVT::v1f64, Expand); 00489 setOperationAction(ISD::FCOPYSIGN, MVT::v1f64, Expand); 00490 setOperationAction(ISD::FCOS, MVT::v1f64, Expand); 00491 setOperationAction(ISD::FDIV, MVT::v1f64, Expand); 00492 setOperationAction(ISD::FFLOOR, MVT::v1f64, Expand); 00493 setOperationAction(ISD::FMA, MVT::v1f64, Expand); 00494 setOperationAction(ISD::FMUL, MVT::v1f64, Expand); 00495 setOperationAction(ISD::FNEARBYINT, MVT::v1f64, Expand); 00496 setOperationAction(ISD::FNEG, MVT::v1f64, Expand); 00497 setOperationAction(ISD::FPOW, MVT::v1f64, Expand); 00498 setOperationAction(ISD::FREM, MVT::v1f64, Expand); 00499 setOperationAction(ISD::FROUND, MVT::v1f64, Expand); 00500 setOperationAction(ISD::FRINT, MVT::v1f64, Expand); 00501 setOperationAction(ISD::FSIN, MVT::v1f64, Expand); 00502 setOperationAction(ISD::FSINCOS, MVT::v1f64, Expand); 00503 setOperationAction(ISD::FSQRT, MVT::v1f64, Expand); 00504 setOperationAction(ISD::FSUB, MVT::v1f64, Expand); 00505 setOperationAction(ISD::FTRUNC, MVT::v1f64, Expand); 00506 setOperationAction(ISD::SETCC, MVT::v1f64, Expand); 00507 setOperationAction(ISD::BR_CC, MVT::v1f64, Expand); 00508 setOperationAction(ISD::SELECT, MVT::v1f64, Expand); 00509 setOperationAction(ISD::SELECT_CC, MVT::v1f64, Expand); 00510 setOperationAction(ISD::FP_EXTEND, MVT::v1f64, Expand); 00511 00512 setOperationAction(ISD::FP_TO_SINT, MVT::v1i64, Expand); 00513 setOperationAction(ISD::FP_TO_UINT, MVT::v1i64, Expand); 00514 setOperationAction(ISD::SINT_TO_FP, MVT::v1i64, Expand); 00515 setOperationAction(ISD::UINT_TO_FP, MVT::v1i64, Expand); 00516 setOperationAction(ISD::FP_ROUND, MVT::v1f64, Expand); 00517 00518 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 00519 00520 // AArch64 doesn't have a direct vector ->f32 conversion instructions for 00521 // elements smaller than i32, so promote the input to i32 first. 00522 setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Promote); 00523 setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Promote); 00524 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Promote); 00525 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Promote); 00526 // Similarly, there is no direct i32 -> f64 vector conversion instruction. 00527 setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); 00528 setOperationAction(ISD::UINT_TO_FP, MVT::v2i32, Custom); 00529 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Custom); 00530 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Custom); 00531 00532 // AArch64 doesn't have MUL.2d: 00533 setOperationAction(ISD::MUL, MVT::v2i64, Expand); 00534 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); 00535 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); 00536 // Likewise, narrowing and extending vector loads/stores aren't handled 00537 // directly. 00538 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 00539 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { 00540 00541 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, 00542 Expand); 00543 00544 setOperationAction(ISD::MULHS, (MVT::SimpleValueType)VT, Expand); 00545 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 00546 setOperationAction(ISD::MULHU, (MVT::SimpleValueType)VT, Expand); 00547 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); 00548 00549 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); 00550 00551 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; 00552 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) 00553 setTruncStoreAction((MVT::SimpleValueType)VT, 00554 (MVT::SimpleValueType)InnerVT, Expand); 00555 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); 00556 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); 00557 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); 00558 } 00559 00560 // AArch64 has implementations of a lot of rounding-like FP operations. 00561 static MVT RoundingVecTypes[] = {MVT::v2f32, MVT::v4f32, MVT::v2f64 }; 00562 for (unsigned I = 0; I < array_lengthof(RoundingVecTypes); ++I) { 00563 MVT Ty = RoundingVecTypes[I]; 00564 setOperationAction(ISD::FFLOOR, Ty, Legal); 00565 setOperationAction(ISD::FNEARBYINT, Ty, Legal); 00566 setOperationAction(ISD::FCEIL, Ty, Legal); 00567 setOperationAction(ISD::FRINT, Ty, Legal); 00568 setOperationAction(ISD::FTRUNC, Ty, Legal); 00569 setOperationAction(ISD::FROUND, Ty, Legal); 00570 } 00571 } 00572 00573 // Prefer likely predicted branches to selects on out-of-order cores. 00574 if (Subtarget->isCortexA57()) 00575 PredictableSelectIsExpensive = true; 00576 } 00577 00578 void AArch64TargetLowering::addTypeForNEON(EVT VT, EVT PromotedBitwiseVT) { 00579 if (VT == MVT::v2f32 || VT == MVT::v4f16) { 00580 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); 00581 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i32); 00582 00583 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); 00584 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i32); 00585 } else if (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16) { 00586 setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); 00587 AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), MVT::v2i64); 00588 00589 setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); 00590 AddPromotedToType(ISD::STORE, VT.getSimpleVT(), MVT::v2i64); 00591 } 00592 00593 // Mark vector float intrinsics as expand. 00594 if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { 00595 setOperationAction(ISD::FSIN, VT.getSimpleVT(), Expand); 00596 setOperationAction(ISD::FCOS, VT.getSimpleVT(), Expand); 00597 setOperationAction(ISD::FPOWI, VT.getSimpleVT(), Expand); 00598 setOperationAction(ISD::FPOW, VT.getSimpleVT(), Expand); 00599 setOperationAction(ISD::FLOG, VT.getSimpleVT(), Expand); 00600 setOperationAction(ISD::FLOG2, VT.getSimpleVT(), Expand); 00601 setOperationAction(ISD::FLOG10, VT.getSimpleVT(), Expand); 00602 setOperationAction(ISD::FEXP, VT.getSimpleVT(), Expand); 00603 setOperationAction(ISD::FEXP2, VT.getSimpleVT(), Expand); 00604 } 00605 00606 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); 00607 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getSimpleVT(), Custom); 00608 setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); 00609 setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); 00610 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Custom); 00611 setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); 00612 setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); 00613 setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); 00614 setOperationAction(ISD::AND, VT.getSimpleVT(), Custom); 00615 setOperationAction(ISD::OR, VT.getSimpleVT(), Custom); 00616 setOperationAction(ISD::SETCC, VT.getSimpleVT(), Custom); 00617 setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); 00618 00619 setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); 00620 setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); 00621 setOperationAction(ISD::VSELECT, VT.getSimpleVT(), Expand); 00622 setLoadExtAction(ISD::EXTLOAD, VT.getSimpleVT(), Expand); 00623 00624 // CNT supports only B element sizes. 00625 if (VT != MVT::v8i8 && VT != MVT::v16i8) 00626 setOperationAction(ISD::CTPOP, VT.getSimpleVT(), Expand); 00627 00628 setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); 00629 setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); 00630 setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); 00631 setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); 00632 setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); 00633 00634 setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Custom); 00635 setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Custom); 00636 00637 if (Subtarget->isLittleEndian()) { 00638 for (unsigned im = (unsigned)ISD::PRE_INC; 00639 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 00640 setIndexedLoadAction(im, VT.getSimpleVT(), Legal); 00641 setIndexedStoreAction(im, VT.getSimpleVT(), Legal); 00642 } 00643 } 00644 } 00645 00646 void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { 00647 addRegisterClass(VT, &AArch64::FPR64RegClass); 00648 addTypeForNEON(VT, MVT::v2i32); 00649 } 00650 00651 void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { 00652 addRegisterClass(VT, &AArch64::FPR128RegClass); 00653 addTypeForNEON(VT, MVT::v4i32); 00654 } 00655 00656 EVT AArch64TargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 00657 if (!VT.isVector()) 00658 return MVT::i32; 00659 return VT.changeVectorElementTypeToInteger(); 00660 } 00661 00662 /// computeKnownBitsForTargetNode - Determine which of the bits specified in 00663 /// Mask are known to be either zero or one and return them in the 00664 /// KnownZero/KnownOne bitsets. 00665 void AArch64TargetLowering::computeKnownBitsForTargetNode( 00666 const SDValue Op, APInt &KnownZero, APInt &KnownOne, 00667 const SelectionDAG &DAG, unsigned Depth) const { 00668 switch (Op.getOpcode()) { 00669 default: 00670 break; 00671 case AArch64ISD::CSEL: { 00672 APInt KnownZero2, KnownOne2; 00673 DAG.computeKnownBits(Op->getOperand(0), KnownZero, KnownOne, Depth + 1); 00674 DAG.computeKnownBits(Op->getOperand(1), KnownZero2, KnownOne2, Depth + 1); 00675 KnownZero &= KnownZero2; 00676 KnownOne &= KnownOne2; 00677 break; 00678 } 00679 case ISD::INTRINSIC_W_CHAIN: { 00680 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 00681 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 00682 switch (IntID) { 00683 default: return; 00684 case Intrinsic::aarch64_ldaxr: 00685 case Intrinsic::aarch64_ldxr: { 00686 unsigned BitWidth = KnownOne.getBitWidth(); 00687 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 00688 unsigned MemBits = VT.getScalarType().getSizeInBits(); 00689 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 00690 return; 00691 } 00692 } 00693 break; 00694 } 00695 case ISD::INTRINSIC_WO_CHAIN: 00696 case ISD::INTRINSIC_VOID: { 00697 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 00698 switch (IntNo) { 00699 default: 00700 break; 00701 case Intrinsic::aarch64_neon_umaxv: 00702 case Intrinsic::aarch64_neon_uminv: { 00703 // Figure out the datatype of the vector operand. The UMINV instruction 00704 // will zero extend the result, so we can mark as known zero all the 00705 // bits larger than the element datatype. 32-bit or larget doesn't need 00706 // this as those are legal types and will be handled by isel directly. 00707 MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); 00708 unsigned BitWidth = KnownZero.getBitWidth(); 00709 if (VT == MVT::v8i8 || VT == MVT::v16i8) { 00710 assert(BitWidth >= 8 && "Unexpected width!"); 00711 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); 00712 KnownZero |= Mask; 00713 } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { 00714 assert(BitWidth >= 16 && "Unexpected width!"); 00715 APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); 00716 KnownZero |= Mask; 00717 } 00718 break; 00719 } break; 00720 } 00721 } 00722 } 00723 } 00724 00725 MVT AArch64TargetLowering::getScalarShiftAmountTy(EVT LHSTy) const { 00726 return MVT::i64; 00727 } 00728 00729 unsigned AArch64TargetLowering::getMaximalGlobalOffset() const { 00730 // FIXME: On AArch64, this depends on the type. 00731 // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes(). 00732 // and the offset has to be a multiple of the related size in bytes. 00733 return 4095; 00734 } 00735 00736 FastISel * 00737 AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 00738 const TargetLibraryInfo *libInfo) const { 00739 return AArch64::createFastISel(funcInfo, libInfo); 00740 } 00741 00742 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { 00743 switch (Opcode) { 00744 default: 00745 return nullptr; 00746 case AArch64ISD::CALL: return "AArch64ISD::CALL"; 00747 case AArch64ISD::ADRP: return "AArch64ISD::ADRP"; 00748 case AArch64ISD::ADDlow: return "AArch64ISD::ADDlow"; 00749 case AArch64ISD::LOADgot: return "AArch64ISD::LOADgot"; 00750 case AArch64ISD::RET_FLAG: return "AArch64ISD::RET_FLAG"; 00751 case AArch64ISD::BRCOND: return "AArch64ISD::BRCOND"; 00752 case AArch64ISD::CSEL: return "AArch64ISD::CSEL"; 00753 case AArch64ISD::FCSEL: return "AArch64ISD::FCSEL"; 00754 case AArch64ISD::CSINV: return "AArch64ISD::CSINV"; 00755 case AArch64ISD::CSNEG: return "AArch64ISD::CSNEG"; 00756 case AArch64ISD::CSINC: return "AArch64ISD::CSINC"; 00757 case AArch64ISD::THREAD_POINTER: return "AArch64ISD::THREAD_POINTER"; 00758 case AArch64ISD::TLSDESC_CALL: return "AArch64ISD::TLSDESC_CALL"; 00759 case AArch64ISD::ADC: return "AArch64ISD::ADC"; 00760 case AArch64ISD::SBC: return "AArch64ISD::SBC"; 00761 case AArch64ISD::ADDS: return "AArch64ISD::ADDS"; 00762 case AArch64ISD::SUBS: return "AArch64ISD::SUBS"; 00763 case AArch64ISD::ADCS: return "AArch64ISD::ADCS"; 00764 case AArch64ISD::SBCS: return "AArch64ISD::SBCS"; 00765 case AArch64ISD::ANDS: return "AArch64ISD::ANDS"; 00766 case AArch64ISD::FCMP: return "AArch64ISD::FCMP"; 00767 case AArch64ISD::FMIN: return "AArch64ISD::FMIN"; 00768 case AArch64ISD::FMAX: return "AArch64ISD::FMAX"; 00769 case AArch64ISD::DUP: return "AArch64ISD::DUP"; 00770 case AArch64ISD::DUPLANE8: return "AArch64ISD::DUPLANE8"; 00771 case AArch64ISD::DUPLANE16: return "AArch64ISD::DUPLANE16"; 00772 case AArch64ISD::DUPLANE32: return "AArch64ISD::DUPLANE32"; 00773 case AArch64ISD::DUPLANE64: return "AArch64ISD::DUPLANE64"; 00774 case AArch64ISD::MOVI: return "AArch64ISD::MOVI"; 00775 case AArch64ISD::MOVIshift: return "AArch64ISD::MOVIshift"; 00776 case AArch64ISD::MOVIedit: return "AArch64ISD::MOVIedit"; 00777 case AArch64ISD::MOVImsl: return "AArch64ISD::MOVImsl"; 00778 case AArch64ISD::FMOV: return "AArch64ISD::FMOV"; 00779 case AArch64ISD::MVNIshift: return "AArch64ISD::MVNIshift"; 00780 case AArch64ISD::MVNImsl: return "AArch64ISD::MVNImsl"; 00781 case AArch64ISD::BICi: return "AArch64ISD::BICi"; 00782 case AArch64ISD::ORRi: return "AArch64ISD::ORRi"; 00783 case AArch64ISD::BSL: return "AArch64ISD::BSL"; 00784 case AArch64ISD::NEG: return "AArch64ISD::NEG"; 00785 case AArch64ISD::EXTR: return "AArch64ISD::EXTR"; 00786 case AArch64ISD::ZIP1: return "AArch64ISD::ZIP1"; 00787 case AArch64ISD::ZIP2: return "AArch64ISD::ZIP2"; 00788 case AArch64ISD::UZP1: return "AArch64ISD::UZP1"; 00789 case AArch64ISD::UZP2: return "AArch64ISD::UZP2"; 00790 case AArch64ISD::TRN1: return "AArch64ISD::TRN1"; 00791 case AArch64ISD::TRN2: return "AArch64ISD::TRN2"; 00792 case AArch64ISD::REV16: return "AArch64ISD::REV16"; 00793 case AArch64ISD::REV32: return "AArch64ISD::REV32"; 00794 case AArch64ISD::REV64: return "AArch64ISD::REV64"; 00795 case AArch64ISD::EXT: return "AArch64ISD::EXT"; 00796 case AArch64ISD::VSHL: return "AArch64ISD::VSHL"; 00797 case AArch64ISD::VLSHR: return "AArch64ISD::VLSHR"; 00798 case AArch64ISD::VASHR: return "AArch64ISD::VASHR"; 00799 case AArch64ISD::CMEQ: return "AArch64ISD::CMEQ"; 00800 case AArch64ISD::CMGE: return "AArch64ISD::CMGE"; 00801 case AArch64ISD::CMGT: return "AArch64ISD::CMGT"; 00802 case AArch64ISD::CMHI: return "AArch64ISD::CMHI"; 00803 case AArch64ISD::CMHS: return "AArch64ISD::CMHS"; 00804 case AArch64ISD::FCMEQ: return "AArch64ISD::FCMEQ"; 00805 case AArch64ISD::FCMGE: return "AArch64ISD::FCMGE"; 00806 case AArch64ISD::FCMGT: return "AArch64ISD::FCMGT"; 00807 case AArch64ISD::CMEQz: return "AArch64ISD::CMEQz"; 00808 case AArch64ISD::CMGEz: return "AArch64ISD::CMGEz"; 00809 case AArch64ISD::CMGTz: return "AArch64ISD::CMGTz"; 00810 case AArch64ISD::CMLEz: return "AArch64ISD::CMLEz"; 00811 case AArch64ISD::CMLTz: return "AArch64ISD::CMLTz"; 00812 case AArch64ISD::FCMEQz: return "AArch64ISD::FCMEQz"; 00813 case AArch64ISD::FCMGEz: return "AArch64ISD::FCMGEz"; 00814 case AArch64ISD::FCMGTz: return "AArch64ISD::FCMGTz"; 00815 case AArch64ISD::FCMLEz: return "AArch64ISD::FCMLEz"; 00816 case AArch64ISD::FCMLTz: return "AArch64ISD::FCMLTz"; 00817 case AArch64ISD::NOT: return "AArch64ISD::NOT"; 00818 case AArch64ISD::BIT: return "AArch64ISD::BIT"; 00819 case AArch64ISD::CBZ: return "AArch64ISD::CBZ"; 00820 case AArch64ISD::CBNZ: return "AArch64ISD::CBNZ"; 00821 case AArch64ISD::TBZ: return "AArch64ISD::TBZ"; 00822 case AArch64ISD::TBNZ: return "AArch64ISD::TBNZ"; 00823 case AArch64ISD::TC_RETURN: return "AArch64ISD::TC_RETURN"; 00824 case AArch64ISD::SITOF: return "AArch64ISD::SITOF"; 00825 case AArch64ISD::UITOF: return "AArch64ISD::UITOF"; 00826 case AArch64ISD::SQSHL_I: return "AArch64ISD::SQSHL_I"; 00827 case AArch64ISD::UQSHL_I: return "AArch64ISD::UQSHL_I"; 00828 case AArch64ISD::SRSHR_I: return "AArch64ISD::SRSHR_I"; 00829 case AArch64ISD::URSHR_I: return "AArch64ISD::URSHR_I"; 00830 case AArch64ISD::SQSHLU_I: return "AArch64ISD::SQSHLU_I"; 00831 case AArch64ISD::WrapperLarge: return "AArch64ISD::WrapperLarge"; 00832 case AArch64ISD::LD2post: return "AArch64ISD::LD2post"; 00833 case AArch64ISD::LD3post: return "AArch64ISD::LD3post"; 00834 case AArch64ISD::LD4post: return "AArch64ISD::LD4post"; 00835 case AArch64ISD::ST2post: return "AArch64ISD::ST2post"; 00836 case AArch64ISD::ST3post: return "AArch64ISD::ST3post"; 00837 case AArch64ISD::ST4post: return "AArch64ISD::ST4post"; 00838 case AArch64ISD::LD1x2post: return "AArch64ISD::LD1x2post"; 00839 case AArch64ISD::LD1x3post: return "AArch64ISD::LD1x3post"; 00840 case AArch64ISD::LD1x4post: return "AArch64ISD::LD1x4post"; 00841 case AArch64ISD::ST1x2post: return "AArch64ISD::ST1x2post"; 00842 case AArch64ISD::ST1x3post: return "AArch64ISD::ST1x3post"; 00843 case AArch64ISD::ST1x4post: return "AArch64ISD::ST1x4post"; 00844 case AArch64ISD::LD1DUPpost: return "AArch64ISD::LD1DUPpost"; 00845 case AArch64ISD::LD2DUPpost: return "AArch64ISD::LD2DUPpost"; 00846 case AArch64ISD::LD3DUPpost: return "AArch64ISD::LD3DUPpost"; 00847 case AArch64ISD::LD4DUPpost: return "AArch64ISD::LD4DUPpost"; 00848 case AArch64ISD::LD1LANEpost: return "AArch64ISD::LD1LANEpost"; 00849 case AArch64ISD::LD2LANEpost: return "AArch64ISD::LD2LANEpost"; 00850 case AArch64ISD::LD3LANEpost: return "AArch64ISD::LD3LANEpost"; 00851 case AArch64ISD::LD4LANEpost: return "AArch64ISD::LD4LANEpost"; 00852 case AArch64ISD::ST2LANEpost: return "AArch64ISD::ST2LANEpost"; 00853 case AArch64ISD::ST3LANEpost: return "AArch64ISD::ST3LANEpost"; 00854 case AArch64ISD::ST4LANEpost: return "AArch64ISD::ST4LANEpost"; 00855 } 00856 } 00857 00858 MachineBasicBlock * 00859 AArch64TargetLowering::EmitF128CSEL(MachineInstr *MI, 00860 MachineBasicBlock *MBB) const { 00861 // We materialise the F128CSEL pseudo-instruction as some control flow and a 00862 // phi node: 00863 00864 // OrigBB: 00865 // [... previous instrs leading to comparison ...] 00866 // b.ne TrueBB 00867 // b EndBB 00868 // TrueBB: 00869 // ; Fallthrough 00870 // EndBB: 00871 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] 00872 00873 const TargetInstrInfo *TII = 00874 getTargetMachine().getSubtargetImpl()->getInstrInfo(); 00875 MachineFunction *MF = MBB->getParent(); 00876 const BasicBlock *LLVM_BB = MBB->getBasicBlock(); 00877 DebugLoc DL = MI->getDebugLoc(); 00878 MachineFunction::iterator It = MBB; 00879 ++It; 00880 00881 unsigned DestReg = MI->getOperand(0).getReg(); 00882 unsigned IfTrueReg = MI->getOperand(1).getReg(); 00883 unsigned IfFalseReg = MI->getOperand(2).getReg(); 00884 unsigned CondCode = MI->getOperand(3).getImm(); 00885 bool NZCVKilled = MI->getOperand(4).isKill(); 00886 00887 MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); 00888 MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); 00889 MF->insert(It, TrueBB); 00890 MF->insert(It, EndBB); 00891 00892 // Transfer rest of current basic-block to EndBB 00893 EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), 00894 MBB->end()); 00895 EndBB->transferSuccessorsAndUpdatePHIs(MBB); 00896 00897 BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); 00898 BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); 00899 MBB->addSuccessor(TrueBB); 00900 MBB->addSuccessor(EndBB); 00901 00902 // TrueBB falls through to the end. 00903 TrueBB->addSuccessor(EndBB); 00904 00905 if (!NZCVKilled) { 00906 TrueBB->addLiveIn(AArch64::NZCV); 00907 EndBB->addLiveIn(AArch64::NZCV); 00908 } 00909 00910 BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) 00911 .addReg(IfTrueReg) 00912 .addMBB(TrueBB) 00913 .addReg(IfFalseReg) 00914 .addMBB(MBB); 00915 00916 MI->eraseFromParent(); 00917 return EndBB; 00918 } 00919 00920 MachineBasicBlock * 00921 AArch64TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 00922 MachineBasicBlock *BB) const { 00923 switch (MI->getOpcode()) { 00924 default: 00925 #ifndef NDEBUG 00926 MI->dump(); 00927 #endif 00928 llvm_unreachable("Unexpected instruction for custom inserter!"); 00929 00930 case AArch64::F128CSEL: 00931 return EmitF128CSEL(MI, BB); 00932 00933 case TargetOpcode::STACKMAP: 00934 case TargetOpcode::PATCHPOINT: 00935 return emitPatchPoint(MI, BB); 00936 } 00937 } 00938 00939 //===----------------------------------------------------------------------===// 00940 // AArch64 Lowering private implementation. 00941 //===----------------------------------------------------------------------===// 00942 00943 //===----------------------------------------------------------------------===// 00944 // Lowering Code 00945 //===----------------------------------------------------------------------===// 00946 00947 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 00948 /// CC 00949 static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { 00950 switch (CC) { 00951 default: 00952 llvm_unreachable("Unknown condition code!"); 00953 case ISD::SETNE: 00954 return AArch64CC::NE; 00955 case ISD::SETEQ: 00956 return AArch64CC::EQ; 00957 case ISD::SETGT: 00958 return AArch64CC::GT; 00959 case ISD::SETGE: 00960 return AArch64CC::GE; 00961 case ISD::SETLT: 00962 return AArch64CC::LT; 00963 case ISD::SETLE: 00964 return AArch64CC::LE; 00965 case ISD::SETUGT: 00966 return AArch64CC::HI; 00967 case ISD::SETUGE: 00968 return AArch64CC::HS; 00969 case ISD::SETULT: 00970 return AArch64CC::LO; 00971 case ISD::SETULE: 00972 return AArch64CC::LS; 00973 } 00974 } 00975 00976 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. 00977 static void changeFPCCToAArch64CC(ISD::CondCode CC, 00978 AArch64CC::CondCode &CondCode, 00979 AArch64CC::CondCode &CondCode2) { 00980 CondCode2 = AArch64CC::AL; 00981 switch (CC) { 00982 default: 00983 llvm_unreachable("Unknown FP condition!"); 00984 case ISD::SETEQ: 00985 case ISD::SETOEQ: 00986 CondCode = AArch64CC::EQ; 00987 break; 00988 case ISD::SETGT: 00989 case ISD::SETOGT: 00990 CondCode = AArch64CC::GT; 00991 break; 00992 case ISD::SETGE: 00993 case ISD::SETOGE: 00994 CondCode = AArch64CC::GE; 00995 break; 00996 case ISD::SETOLT: 00997 CondCode = AArch64CC::MI; 00998 break; 00999 case ISD::SETOLE: 01000 CondCode = AArch64CC::LS; 01001 break; 01002 case ISD::SETONE: 01003 CondCode = AArch64CC::MI; 01004 CondCode2 = AArch64CC::GT; 01005 break; 01006 case ISD::SETO: 01007 CondCode = AArch64CC::VC; 01008 break; 01009 case ISD::SETUO: 01010 CondCode = AArch64CC::VS; 01011 break; 01012 case ISD::SETUEQ: 01013 CondCode = AArch64CC::EQ; 01014 CondCode2 = AArch64CC::VS; 01015 break; 01016 case ISD::SETUGT: 01017 CondCode = AArch64CC::HI; 01018 break; 01019 case ISD::SETUGE: 01020 CondCode = AArch64CC::PL; 01021 break; 01022 case ISD::SETLT: 01023 case ISD::SETULT: 01024 CondCode = AArch64CC::LT; 01025 break; 01026 case ISD::SETLE: 01027 case ISD::SETULE: 01028 CondCode = AArch64CC::LE; 01029 break; 01030 case ISD::SETNE: 01031 case ISD::SETUNE: 01032 CondCode = AArch64CC::NE; 01033 break; 01034 } 01035 } 01036 01037 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 01038 /// CC usable with the vector instructions. Fewer operations are available 01039 /// without a real NZCV register, so we have to use less efficient combinations 01040 /// to get the same effect. 01041 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, 01042 AArch64CC::CondCode &CondCode, 01043 AArch64CC::CondCode &CondCode2, 01044 bool &Invert) { 01045 Invert = false; 01046 switch (CC) { 01047 default: 01048 // Mostly the scalar mappings work fine. 01049 changeFPCCToAArch64CC(CC, CondCode, CondCode2); 01050 break; 01051 case ISD::SETUO: 01052 Invert = true; // Fallthrough 01053 case ISD::SETO: 01054 CondCode = AArch64CC::MI; 01055 CondCode2 = AArch64CC::GE; 01056 break; 01057 case ISD::SETUEQ: 01058 case ISD::SETULT: 01059 case ISD::SETULE: 01060 case ISD::SETUGT: 01061 case ISD::SETUGE: 01062 // All of the compare-mask comparisons are ordered, but we can switch 01063 // between the two by a double inversion. E.g. ULE == !OGT. 01064 Invert = true; 01065 changeFPCCToAArch64CC(getSetCCInverse(CC, false), CondCode, CondCode2); 01066 break; 01067 } 01068 } 01069 01070 static bool isLegalArithImmed(uint64_t C) { 01071 // Matches AArch64DAGToDAGISel::SelectArithImmed(). 01072 return (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); 01073 } 01074 01075 static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, 01076 SDLoc dl, SelectionDAG &DAG) { 01077 EVT VT = LHS.getValueType(); 01078 01079 if (VT.isFloatingPoint()) 01080 return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); 01081 01082 // The CMP instruction is just an alias for SUBS, and representing it as 01083 // SUBS means that it's possible to get CSE with subtract operations. 01084 // A later phase can perform the optimization of setting the destination 01085 // register to WZR/XZR if it ends up being unused. 01086 unsigned Opcode = AArch64ISD::SUBS; 01087 01088 if (RHS.getOpcode() == ISD::SUB && isa<ConstantSDNode>(RHS.getOperand(0)) && 01089 cast<ConstantSDNode>(RHS.getOperand(0))->getZExtValue() == 0 && 01090 (CC == ISD::SETEQ || CC == ISD::SETNE)) { 01091 // We'd like to combine a (CMP op1, (sub 0, op2) into a CMN instruction on 01092 // the grounds that "op1 - (-op2) == op1 + op2". However, the C and V flags 01093 // can be set differently by this operation. It comes down to whether 01094 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then 01095 // everything is fine. If not then the optimization is wrong. Thus general 01096 // comparisons are only valid if op2 != 0. 01097 01098 // So, finally, the only LLVM-native comparisons that don't mention C and V 01099 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in 01100 // the absence of information about op2. 01101 Opcode = AArch64ISD::ADDS; 01102 RHS = RHS.getOperand(1); 01103 } else if (LHS.getOpcode() == ISD::AND && isa<ConstantSDNode>(RHS) && 01104 cast<ConstantSDNode>(RHS)->getZExtValue() == 0 && 01105 !isUnsignedIntSetCC(CC)) { 01106 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST 01107 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one 01108 // of the signed comparisons. 01109 Opcode = AArch64ISD::ANDS; 01110 RHS = LHS.getOperand(1); 01111 LHS = LHS.getOperand(0); 01112 } 01113 01114 return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS) 01115 .getValue(1); 01116 } 01117 01118 static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 01119 SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) { 01120 SDValue Cmp; 01121 AArch64CC::CondCode AArch64CC; 01122 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 01123 EVT VT = RHS.getValueType(); 01124 uint64_t C = RHSC->getZExtValue(); 01125 if (!isLegalArithImmed(C)) { 01126 // Constant does not fit, try adjusting it by one? 01127 switch (CC) { 01128 default: 01129 break; 01130 case ISD::SETLT: 01131 case ISD::SETGE: 01132 if ((VT == MVT::i32 && C != 0x80000000 && 01133 isLegalArithImmed((uint32_t)(C - 1))) || 01134 (VT == MVT::i64 && C != 0x80000000ULL && 01135 isLegalArithImmed(C - 1ULL))) { 01136 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 01137 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 01138 RHS = DAG.getConstant(C, VT); 01139 } 01140 break; 01141 case ISD::SETULT: 01142 case ISD::SETUGE: 01143 if ((VT == MVT::i32 && C != 0 && 01144 isLegalArithImmed((uint32_t)(C - 1))) || 01145 (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { 01146 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 01147 C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; 01148 RHS = DAG.getConstant(C, VT); 01149 } 01150 break; 01151 case ISD::SETLE: 01152 case ISD::SETGT: 01153 if ((VT == MVT::i32 && C != 0x7fffffff && 01154 isLegalArithImmed((uint32_t)(C + 1))) || 01155 (VT == MVT::i64 && C != 0x7ffffffffffffffULL && 01156 isLegalArithImmed(C + 1ULL))) { 01157 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 01158 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 01159 RHS = DAG.getConstant(C, VT); 01160 } 01161 break; 01162 case ISD::SETULE: 01163 case ISD::SETUGT: 01164 if ((VT == MVT::i32 && C != 0xffffffff && 01165 isLegalArithImmed((uint32_t)(C + 1))) || 01166 (VT == MVT::i64 && C != 0xfffffffffffffffULL && 01167 isLegalArithImmed(C + 1ULL))) { 01168 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 01169 C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; 01170 RHS = DAG.getConstant(C, VT); 01171 } 01172 break; 01173 } 01174 } 01175 } 01176 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. 01177 // For the i8 operand, the largest immediate is 255, so this can be easily 01178 // encoded in the compare instruction. For the i16 operand, however, the 01179 // largest immediate cannot be encoded in the compare. 01180 // Therefore, use a sign extending load and cmn to avoid materializing the -1 01181 // constant. For example, 01182 // movz w1, #65535 01183 // ldrh w0, [x0, #0] 01184 // cmp w0, w1 01185 // > 01186 // ldrsh w0, [x0, #0] 01187 // cmn w0, #1 01188 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) 01189 // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure 01190 // both the LHS and RHS are truely zero extended and to make sure the 01191 // transformation is profitable. 01192 if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { 01193 if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) && 01194 isa<LoadSDNode>(LHS)) { 01195 if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && 01196 cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && 01197 LHS.getNode()->hasNUsesOfValue(1, 0)) { 01198 int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); 01199 if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { 01200 SDValue SExt = 01201 DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, 01202 DAG.getValueType(MVT::i16)); 01203 Cmp = emitComparison(SExt, 01204 DAG.getConstant(ValueofRHS, RHS.getValueType()), 01205 CC, dl, DAG); 01206 AArch64CC = changeIntCCToAArch64CC(CC); 01207 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32); 01208 return Cmp; 01209 } 01210 } 01211 } 01212 } 01213 Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 01214 AArch64CC = changeIntCCToAArch64CC(CC); 01215 AArch64cc = DAG.getConstant(AArch64CC, MVT::i32); 01216 return Cmp; 01217 } 01218 01219 static std::pair<SDValue, SDValue> 01220 getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { 01221 assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && 01222 "Unsupported value type"); 01223 SDValue Value, Overflow; 01224 SDLoc DL(Op); 01225 SDValue LHS = Op.getOperand(0); 01226 SDValue RHS = Op.getOperand(1); 01227 unsigned Opc = 0; 01228 switch (Op.getOpcode()) { 01229 default: 01230 llvm_unreachable("Unknown overflow instruction!"); 01231 case ISD::SADDO: 01232 Opc = AArch64ISD::ADDS; 01233 CC = AArch64CC::VS; 01234 break; 01235 case ISD::UADDO: 01236 Opc = AArch64ISD::ADDS; 01237 CC = AArch64CC::HS; 01238 break; 01239 case ISD::SSUBO: 01240 Opc = AArch64ISD::SUBS; 01241 CC = AArch64CC::VS; 01242 break; 01243 case ISD::USUBO: 01244 Opc = AArch64ISD::SUBS; 01245 CC = AArch64CC::LO; 01246 break; 01247 // Multiply needs a little bit extra work. 01248 case ISD::SMULO: 01249 case ISD::UMULO: { 01250 CC = AArch64CC::NE; 01251 bool IsSigned = (Op.getOpcode() == ISD::SMULO) ? true : false; 01252 if (Op.getValueType() == MVT::i32) { 01253 unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 01254 // For a 32 bit multiply with overflow check we want the instruction 01255 // selector to generate a widening multiply (SMADDL/UMADDL). For that we 01256 // need to generate the following pattern: 01257 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b)) 01258 LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); 01259 RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); 01260 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 01261 SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Mul, 01262 DAG.getConstant(0, MVT::i64)); 01263 // On AArch64 the upper 32 bits are always zero extended for a 32 bit 01264 // operation. We need to clear out the upper 32 bits, because we used a 01265 // widening multiply that wrote all 64 bits. In the end this should be a 01266 // noop. 01267 Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Add); 01268 if (IsSigned) { 01269 // The signed overflow check requires more than just a simple check for 01270 // any bit set in the upper 32 bits of the result. These bits could be 01271 // just the sign bits of a negative number. To perform the overflow 01272 // check we have to arithmetic shift right the 32nd bit of the result by 01273 // 31 bits. Then we compare the result to the upper 32 bits. 01274 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Add, 01275 DAG.getConstant(32, MVT::i64)); 01276 UpperBits = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, UpperBits); 01277 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i32, Value, 01278 DAG.getConstant(31, MVT::i64)); 01279 // It is important that LowerBits is last, otherwise the arithmetic 01280 // shift will not be folded into the compare (SUBS). 01281 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32); 01282 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 01283 .getValue(1); 01284 } else { 01285 // The overflow check for unsigned multiply is easy. We only need to 01286 // check if any of the upper 32 bits are set. This can be done with a 01287 // CMP (shifted register). For that we need to generate the following 01288 // pattern: 01289 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32) 01290 SDValue UpperBits = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 01291 DAG.getConstant(32, MVT::i64)); 01292 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 01293 Overflow = 01294 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), 01295 UpperBits).getValue(1); 01296 } 01297 break; 01298 } 01299 assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type"); 01300 // For the 64 bit multiply 01301 Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); 01302 if (IsSigned) { 01303 SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); 01304 SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, 01305 DAG.getConstant(63, MVT::i64)); 01306 // It is important that LowerBits is last, otherwise the arithmetic 01307 // shift will not be folded into the compare (SUBS). 01308 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 01309 Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) 01310 .getValue(1); 01311 } else { 01312 SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); 01313 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); 01314 Overflow = 01315 DAG.getNode(AArch64ISD::SUBS, DL, VTs, DAG.getConstant(0, MVT::i64), 01316 UpperBits).getValue(1); 01317 } 01318 break; 01319 } 01320 } // switch (...) 01321 01322 if (Opc) { 01323 SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); 01324 01325 // Emit the AArch64 operation with overflow check. 01326 Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); 01327 Overflow = Value.getValue(1); 01328 } 01329 return std::make_pair(Value, Overflow); 01330 } 01331 01332 SDValue AArch64TargetLowering::LowerF128Call(SDValue Op, SelectionDAG &DAG, 01333 RTLIB::Libcall Call) const { 01334 SmallVector<SDValue, 2> Ops; 01335 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) 01336 Ops.push_back(Op.getOperand(i)); 01337 01338 return makeLibCall(DAG, Call, MVT::f128, &Ops[0], Ops.size(), false, 01339 SDLoc(Op)).first; 01340 } 01341 01342 static SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) { 01343 SDValue Sel = Op.getOperand(0); 01344 SDValue Other = Op.getOperand(1); 01345 01346 // If neither operand is a SELECT_CC, give up. 01347 if (Sel.getOpcode() != ISD::SELECT_CC) 01348 std::swap(Sel, Other); 01349 if (Sel.getOpcode() != ISD::SELECT_CC) 01350 return Op; 01351 01352 // The folding we want to perform is: 01353 // (xor x, (select_cc a, b, cc, 0, -1) ) 01354 // --> 01355 // (csel x, (xor x, -1), cc ...) 01356 // 01357 // The latter will get matched to a CSINV instruction. 01358 01359 ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); 01360 SDValue LHS = Sel.getOperand(0); 01361 SDValue RHS = Sel.getOperand(1); 01362 SDValue TVal = Sel.getOperand(2); 01363 SDValue FVal = Sel.getOperand(3); 01364 SDLoc dl(Sel); 01365 01366 // FIXME: This could be generalized to non-integer comparisons. 01367 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 01368 return Op; 01369 01370 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 01371 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 01372 01373 // The the values aren't constants, this isn't the pattern we're looking for. 01374 if (!CFVal || !CTVal) 01375 return Op; 01376 01377 // We can commute the SELECT_CC by inverting the condition. This 01378 // might be needed to make this fit into a CSINV pattern. 01379 if (CTVal->isAllOnesValue() && CFVal->isNullValue()) { 01380 std::swap(TVal, FVal); 01381 std::swap(CTVal, CFVal); 01382 CC = ISD::getSetCCInverse(CC, true); 01383 } 01384 01385 // If the constants line up, perform the transform! 01386 if (CTVal->isNullValue() && CFVal->isAllOnesValue()) { 01387 SDValue CCVal; 01388 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 01389 01390 FVal = Other; 01391 TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, 01392 DAG.getConstant(-1ULL, Other.getValueType())); 01393 01394 return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, 01395 CCVal, Cmp); 01396 } 01397 01398 return Op; 01399 } 01400 01401 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 01402 EVT VT = Op.getValueType(); 01403 01404 // Let legalize expand this if it isn't a legal type yet. 01405 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 01406 return SDValue(); 01407 01408 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 01409 01410 unsigned Opc; 01411 bool ExtraOp = false; 01412 switch (Op.getOpcode()) { 01413 default: 01414 llvm_unreachable("Invalid code"); 01415 case ISD::ADDC: 01416 Opc = AArch64ISD::ADDS; 01417 break; 01418 case ISD::SUBC: 01419 Opc = AArch64ISD::SUBS; 01420 break; 01421 case ISD::ADDE: 01422 Opc = AArch64ISD::ADCS; 01423 ExtraOp = true; 01424 break; 01425 case ISD::SUBE: 01426 Opc = AArch64ISD::SBCS; 01427 ExtraOp = true; 01428 break; 01429 } 01430 01431 if (!ExtraOp) 01432 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1)); 01433 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), Op.getOperand(1), 01434 Op.getOperand(2)); 01435 } 01436 01437 static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { 01438 // Let legalize expand this if it isn't a legal type yet. 01439 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 01440 return SDValue(); 01441 01442 AArch64CC::CondCode CC; 01443 // The actual operation that sets the overflow or carry flag. 01444 SDValue Value, Overflow; 01445 std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); 01446 01447 // We use 0 and 1 as false and true values. 01448 SDValue TVal = DAG.getConstant(1, MVT::i32); 01449 SDValue FVal = DAG.getConstant(0, MVT::i32); 01450 01451 // We use an inverted condition, because the conditional select is inverted 01452 // too. This will allow it to be selected to a single instruction: 01453 // CSINC Wd, WZR, WZR, invert(cond). 01454 SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), MVT::i32); 01455 Overflow = DAG.getNode(AArch64ISD::CSEL, SDLoc(Op), MVT::i32, FVal, TVal, 01456 CCVal, Overflow); 01457 01458 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 01459 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), VTs, Value, Overflow); 01460 } 01461 01462 // Prefetch operands are: 01463 // 1: Address to prefetch 01464 // 2: bool isWrite 01465 // 3: int locality (0 = no locality ... 3 = extreme locality) 01466 // 4: bool isDataCache 01467 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { 01468 SDLoc DL(Op); 01469 unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 01470 unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 01471 unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 01472 01473 bool IsStream = !Locality; 01474 // When the locality number is set 01475 if (Locality) { 01476 // The front-end should have filtered out the out-of-range values 01477 assert(Locality <= 3 && "Prefetch locality out-of-range"); 01478 // The locality degree is the opposite of the cache speed. 01479 // Put the number the other way around. 01480 // The encoding starts at 0 for level 1 01481 Locality = 3 - Locality; 01482 } 01483 01484 // built the mask value encoding the expected behavior. 01485 unsigned PrfOp = (IsWrite << 4) | // Load/Store bit 01486 (!IsData << 3) | // IsDataCache bit 01487 (Locality << 1) | // Cache level bits 01488 (unsigned)IsStream; // Stream bit 01489 return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), 01490 DAG.getConstant(PrfOp, MVT::i32), Op.getOperand(1)); 01491 } 01492 01493 SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, 01494 SelectionDAG &DAG) const { 01495 assert(Op.getValueType() == MVT::f128 && "Unexpected lowering"); 01496 01497 RTLIB::Libcall LC; 01498 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); 01499 01500 return LowerF128Call(Op, DAG, LC); 01501 } 01502 01503 SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, 01504 SelectionDAG &DAG) const { 01505 if (Op.getOperand(0).getValueType() != MVT::f128) { 01506 // It's legal except when f128 is involved 01507 return Op; 01508 } 01509 01510 RTLIB::Libcall LC; 01511 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); 01512 01513 // FP_ROUND node has a second operand indicating whether it is known to be 01514 // precise. That doesn't take part in the LibCall so we can't directly use 01515 // LowerF128Call. 01516 SDValue SrcVal = Op.getOperand(0); 01517 return makeLibCall(DAG, LC, Op.getValueType(), &SrcVal, 1, 01518 /*isSigned*/ false, SDLoc(Op)).first; 01519 } 01520 01521 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 01522 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 01523 // Any additional optimization in this function should be recorded 01524 // in the cost tables. 01525 EVT InVT = Op.getOperand(0).getValueType(); 01526 EVT VT = Op.getValueType(); 01527 01528 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 01529 SDLoc dl(Op); 01530 SDValue Cv = 01531 DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), 01532 Op.getOperand(0)); 01533 return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); 01534 } 01535 01536 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 01537 SDLoc dl(Op); 01538 MVT ExtVT = 01539 MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), 01540 VT.getVectorNumElements()); 01541 SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); 01542 return DAG.getNode(Op.getOpcode(), dl, VT, Ext); 01543 } 01544 01545 // Type changing conversions are illegal. 01546 return Op; 01547 } 01548 01549 SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, 01550 SelectionDAG &DAG) const { 01551 if (Op.getOperand(0).getValueType().isVector()) 01552 return LowerVectorFP_TO_INT(Op, DAG); 01553 01554 if (Op.getOperand(0).getValueType() != MVT::f128) { 01555 // It's legal except when f128 is involved 01556 return Op; 01557 } 01558 01559 RTLIB::Libcall LC; 01560 if (Op.getOpcode() == ISD::FP_TO_SINT) 01561 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), Op.getValueType()); 01562 else 01563 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), Op.getValueType()); 01564 01565 SmallVector<SDValue, 2> Ops; 01566 for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) 01567 Ops.push_back(Op.getOperand(i)); 01568 01569 return makeLibCall(DAG, LC, Op.getValueType(), &Ops[0], Ops.size(), false, 01570 SDLoc(Op)).first; 01571 } 01572 01573 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 01574 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. 01575 // Any additional optimization in this function should be recorded 01576 // in the cost tables. 01577 EVT VT = Op.getValueType(); 01578 SDLoc dl(Op); 01579 SDValue In = Op.getOperand(0); 01580 EVT InVT = In.getValueType(); 01581 01582 if (VT.getSizeInBits() < InVT.getSizeInBits()) { 01583 MVT CastVT = 01584 MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), 01585 InVT.getVectorNumElements()); 01586 In = DAG.getNode(Op.getOpcode(), dl, CastVT, In); 01587 return DAG.getNode(ISD::FP_ROUND, dl, VT, In, DAG.getIntPtrConstant(0)); 01588 } 01589 01590 if (VT.getSizeInBits() > InVT.getSizeInBits()) { 01591 unsigned CastOpc = 01592 Op.getOpcode() == ISD::SINT_TO_FP ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 01593 EVT CastVT = VT.changeVectorElementTypeToInteger(); 01594 In = DAG.getNode(CastOpc, dl, CastVT, In); 01595 return DAG.getNode(Op.getOpcode(), dl, VT, In); 01596 } 01597 01598 return Op; 01599 } 01600 01601 SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, 01602 SelectionDAG &DAG) const { 01603 if (Op.getValueType().isVector()) 01604 return LowerVectorINT_TO_FP(Op, DAG); 01605 01606 // i128 conversions are libcalls. 01607 if (Op.getOperand(0).getValueType() == MVT::i128) 01608 return SDValue(); 01609 01610 // Other conversions are legal, unless it's to the completely software-based 01611 // fp128. 01612 if (Op.getValueType() != MVT::f128) 01613 return Op; 01614 01615 RTLIB::Libcall LC; 01616 if (Op.getOpcode() == ISD::SINT_TO_FP) 01617 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); 01618 else 01619 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), Op.getValueType()); 01620 01621 return LowerF128Call(Op, DAG, LC); 01622 } 01623 01624 SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, 01625 SelectionDAG &DAG) const { 01626 // For iOS, we want to call an alternative entry point: __sincos_stret, 01627 // which returns the values in two S / D registers. 01628 SDLoc dl(Op); 01629 SDValue Arg = Op.getOperand(0); 01630 EVT ArgVT = Arg.getValueType(); 01631 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 01632 01633 ArgListTy Args; 01634 ArgListEntry Entry; 01635 01636 Entry.Node = Arg; 01637 Entry.Ty = ArgTy; 01638 Entry.isSExt = false; 01639 Entry.isZExt = false; 01640 Args.push_back(Entry); 01641 01642 const char *LibcallName = 01643 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; 01644 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy()); 01645 01646 StructType *RetTy = StructType::get(ArgTy, ArgTy, NULL); 01647 TargetLowering::CallLoweringInfo CLI(DAG); 01648 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 01649 .setCallee(CallingConv::Fast, RetTy, Callee, std::move(Args), 0); 01650 01651 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 01652 return CallResult.first; 01653 } 01654 01655 static SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) { 01656 if (Op.getValueType() != MVT::f16) 01657 return SDValue(); 01658 01659 assert(Op.getOperand(0).getValueType() == MVT::i16); 01660 SDLoc DL(Op); 01661 01662 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); 01663 Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); 01664 return SDValue( 01665 DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::f16, Op, 01666 DAG.getTargetConstant(AArch64::hsub, MVT::i32)), 01667 0); 01668 } 01669 01670 01671 SDValue AArch64TargetLowering::LowerOperation(SDValue Op, 01672 SelectionDAG &DAG) const { 01673 switch (Op.getOpcode()) { 01674 default: 01675 llvm_unreachable("unimplemented operand"); 01676 return SDValue(); 01677 case ISD::BITCAST: 01678 return LowerBITCAST(Op, DAG); 01679 case ISD::GlobalAddress: 01680 return LowerGlobalAddress(Op, DAG); 01681 case ISD::GlobalTLSAddress: 01682 return LowerGlobalTLSAddress(Op, DAG); 01683 case ISD::SETCC: 01684 return LowerSETCC(Op, DAG); 01685 case ISD::BR_CC: 01686 return LowerBR_CC(Op, DAG); 01687 case ISD::SELECT: 01688 return LowerSELECT(Op, DAG); 01689 case ISD::SELECT_CC: 01690 return LowerSELECT_CC(Op, DAG); 01691 case ISD::JumpTable: 01692 return LowerJumpTable(Op, DAG); 01693 case ISD::ConstantPool: 01694 return LowerConstantPool(Op, DAG); 01695 case ISD::BlockAddress: 01696 return LowerBlockAddress(Op, DAG); 01697 case ISD::VASTART: 01698 return LowerVASTART(Op, DAG); 01699 case ISD::VACOPY: 01700 return LowerVACOPY(Op, DAG); 01701 case ISD::VAARG: 01702 return LowerVAARG(Op, DAG); 01703 case ISD::ADDC: 01704 case ISD::ADDE: 01705 case ISD::SUBC: 01706 case ISD::SUBE: 01707 return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 01708 case ISD::SADDO: 01709 case ISD::UADDO: 01710 case ISD::SSUBO: 01711 case ISD::USUBO: 01712 case ISD::SMULO: 01713 case ISD::UMULO: 01714 return LowerXALUO(Op, DAG); 01715 case ISD::FADD: 01716 return LowerF128Call(Op, DAG, RTLIB::ADD_F128); 01717 case ISD::FSUB: 01718 return LowerF128Call(Op, DAG, RTLIB::SUB_F128); 01719 case ISD::FMUL: 01720 return LowerF128Call(Op, DAG, RTLIB::MUL_F128); 01721 case ISD::FDIV: 01722 return LowerF128Call(Op, DAG, RTLIB::DIV_F128); 01723 case ISD::FP_ROUND: 01724 return LowerFP_ROUND(Op, DAG); 01725 case ISD::FP_EXTEND: 01726 return LowerFP_EXTEND(Op, DAG); 01727 case ISD::FRAMEADDR: 01728 return LowerFRAMEADDR(Op, DAG); 01729 case ISD::RETURNADDR: 01730 return LowerRETURNADDR(Op, DAG); 01731 case ISD::INSERT_VECTOR_ELT: 01732 return LowerINSERT_VECTOR_ELT(Op, DAG); 01733 case ISD::EXTRACT_VECTOR_ELT: 01734 return LowerEXTRACT_VECTOR_ELT(Op, DAG); 01735 case ISD::BUILD_VECTOR: 01736 return LowerBUILD_VECTOR(Op, DAG); 01737 case ISD::VECTOR_SHUFFLE: 01738 return LowerVECTOR_SHUFFLE(Op, DAG); 01739 case ISD::EXTRACT_SUBVECTOR: 01740 return LowerEXTRACT_SUBVECTOR(Op, DAG); 01741 case ISD::SRA: 01742 case ISD::SRL: 01743 case ISD::SHL: 01744 return LowerVectorSRA_SRL_SHL(Op, DAG); 01745 case ISD::SHL_PARTS: 01746 return LowerShiftLeftParts(Op, DAG); 01747 case ISD::SRL_PARTS: 01748 case ISD::SRA_PARTS: 01749 return LowerShiftRightParts(Op, DAG); 01750 case ISD::CTPOP: 01751 return LowerCTPOP(Op, DAG); 01752 case ISD::FCOPYSIGN: 01753 return LowerFCOPYSIGN(Op, DAG); 01754 case ISD::AND: 01755 return LowerVectorAND(Op, DAG); 01756 case ISD::OR: 01757 return LowerVectorOR(Op, DAG); 01758 case ISD::XOR: 01759 return LowerXOR(Op, DAG); 01760 case ISD::PREFETCH: 01761 return LowerPREFETCH(Op, DAG); 01762 case ISD::SINT_TO_FP: 01763 case ISD::UINT_TO_FP: 01764 return LowerINT_TO_FP(Op, DAG); 01765 case ISD::FP_TO_SINT: 01766 case ISD::FP_TO_UINT: 01767 return LowerFP_TO_INT(Op, DAG); 01768 case ISD::FSINCOS: 01769 return LowerFSINCOS(Op, DAG); 01770 } 01771 } 01772 01773 /// getFunctionAlignment - Return the Log2 alignment of this function. 01774 unsigned AArch64TargetLowering::getFunctionAlignment(const Function *F) const { 01775 return 2; 01776 } 01777 01778 //===----------------------------------------------------------------------===// 01779 // Calling Convention Implementation 01780 //===----------------------------------------------------------------------===// 01781 01782 #include "AArch64GenCallingConv.inc" 01783 01784 /// Selects the correct CCAssignFn for a given CallingConvention value. 01785 CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, 01786 bool IsVarArg) const { 01787 switch (CC) { 01788 default: 01789 llvm_unreachable("Unsupported calling convention."); 01790 case CallingConv::WebKit_JS: 01791 return CC_AArch64_WebKit_JS; 01792 case CallingConv::C: 01793 case CallingConv::Fast: 01794 if (!Subtarget->isTargetDarwin()) 01795 return CC_AArch64_AAPCS; 01796 return IsVarArg ? CC_AArch64_DarwinPCS_VarArg : CC_AArch64_DarwinPCS; 01797 } 01798 } 01799 01800 SDValue AArch64TargetLowering::LowerFormalArguments( 01801 SDValue Chain, CallingConv::ID CallConv, bool isVarArg, 01802 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, 01803 SmallVectorImpl<SDValue> &InVals) const { 01804 MachineFunction &MF = DAG.getMachineFunction(); 01805 MachineFrameInfo *MFI = MF.getFrameInfo(); 01806 01807 // Assign locations to all of the incoming arguments. 01808 SmallVector<CCValAssign, 16> ArgLocs; 01809 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 01810 *DAG.getContext()); 01811 01812 // At this point, Ins[].VT may already be promoted to i32. To correctly 01813 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 01814 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 01815 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here 01816 // we use a special version of AnalyzeFormalArguments to pass in ValVT and 01817 // LocVT. 01818 unsigned NumArgs = Ins.size(); 01819 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); 01820 unsigned CurArgIdx = 0; 01821 for (unsigned i = 0; i != NumArgs; ++i) { 01822 MVT ValVT = Ins[i].VT; 01823 std::advance(CurOrigArg, Ins[i].OrigArgIndex - CurArgIdx); 01824 CurArgIdx = Ins[i].OrigArgIndex; 01825 01826 // Get type of the original argument. 01827 EVT ActualVT = getValueType(CurOrigArg->getType(), /*AllowUnknown*/ true); 01828 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; 01829 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 01830 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 01831 ValVT = MVT::i8; 01832 else if (ActualMVT == MVT::i16) 01833 ValVT = MVT::i16; 01834 01835 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 01836 bool Res = 01837 AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); 01838 assert(!Res && "Call operand has unhandled type"); 01839 (void)Res; 01840 } 01841 assert(ArgLocs.size() == Ins.size()); 01842 SmallVector<SDValue, 16> ArgValues; 01843 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 01844 CCValAssign &VA = ArgLocs[i]; 01845 01846 if (Ins[i].Flags.isByVal()) { 01847 // Byval is used for HFAs in the PCS, but the system should work in a 01848 // non-compliant manner for larger structs. 01849 EVT PtrTy = getPointerTy(); 01850 int Size = Ins[i].Flags.getByValSize(); 01851 unsigned NumRegs = (Size + 7) / 8; 01852 01853 // FIXME: This works on big-endian for composite byvals, which are the common 01854 // case. It should also work for fundamental types too. 01855 unsigned FrameIdx = 01856 MFI->CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); 01857 SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrTy); 01858 InVals.push_back(FrameIdxN); 01859 01860 continue; 01861 } 01862 01863 if (VA.isRegLoc()) { 01864 // Arguments stored in registers. 01865 EVT RegVT = VA.getLocVT(); 01866 01867 SDValue ArgValue; 01868 const TargetRegisterClass *RC; 01869 01870 if (RegVT == MVT::i32) 01871 RC = &AArch64::GPR32RegClass; 01872 else if (RegVT == MVT::i64) 01873 RC = &AArch64::GPR64RegClass; 01874 else if (RegVT == MVT::f16) 01875 RC = &AArch64::FPR16RegClass; 01876 else if (RegVT == MVT::f32) 01877 RC = &AArch64::FPR32RegClass; 01878 else if (RegVT == MVT::f64 || RegVT.is64BitVector()) 01879 RC = &AArch64::FPR64RegClass; 01880 else if (RegVT == MVT::f128 || RegVT.is128BitVector()) 01881 RC = &AArch64::FPR128RegClass; 01882 else 01883 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 01884 01885 // Transform the arguments in physical registers into virtual ones. 01886 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 01887 ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); 01888 01889 // If this is an 8, 16 or 32-bit value, it is really passed promoted 01890 // to 64 bits. Insert an assert[sz]ext to capture this, then 01891 // truncate to the right size. 01892 switch (VA.getLocInfo()) { 01893 default: 01894 llvm_unreachable("Unknown loc info!"); 01895 case CCValAssign::Full: 01896 break; 01897 case CCValAssign::BCvt: 01898 ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); 01899 break; 01900 case CCValAssign::AExt: 01901 case CCValAssign::SExt: 01902 case CCValAssign::ZExt: 01903 // SelectionDAGBuilder will insert appropriate AssertZExt & AssertSExt 01904 // nodes after our lowering. 01905 assert(RegVT == Ins[i].VT && "incorrect register location selected"); 01906 break; 01907 } 01908 01909 InVals.push_back(ArgValue); 01910 01911 } else { // VA.isRegLoc() 01912 assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem"); 01913 unsigned ArgOffset = VA.getLocMemOffset(); 01914 unsigned ArgSize = VA.getValVT().getSizeInBits() / 8; 01915 01916 uint32_t BEAlign = 0; 01917 if (ArgSize < 8 && !Subtarget->isLittleEndian()) 01918 BEAlign = 8 - ArgSize; 01919 01920 int FI = MFI->CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); 01921 01922 // Create load nodes to retrieve arguments from the stack. 01923 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 01924 SDValue ArgValue; 01925 01926 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) 01927 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; 01928 MVT MemVT = VA.getValVT(); 01929 01930 switch (VA.getLocInfo()) { 01931 default: 01932 break; 01933 case CCValAssign::BCvt: 01934 MemVT = VA.getLocVT(); 01935 break; 01936 case CCValAssign::SExt: 01937 ExtType = ISD::SEXTLOAD; 01938 break; 01939 case CCValAssign::ZExt: 01940 ExtType = ISD::ZEXTLOAD; 01941 break; 01942 case CCValAssign::AExt: 01943 ExtType = ISD::EXTLOAD; 01944 break; 01945 } 01946 01947 ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, 01948 MachinePointerInfo::getFixedStack(FI), 01949 MemVT, false, false, false, 0, nullptr); 01950 01951 InVals.push_back(ArgValue); 01952 } 01953 } 01954 01955 // varargs 01956 if (isVarArg) { 01957 if (!Subtarget->isTargetDarwin()) { 01958 // The AAPCS variadic function ABI is identical to the non-variadic 01959 // one. As a result there may be more arguments in registers and we should 01960 // save them for future reference. 01961 saveVarArgRegisters(CCInfo, DAG, DL, Chain); 01962 } 01963 01964 AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); 01965 // This will point to the next argument passed via stack. 01966 unsigned StackOffset = CCInfo.getNextStackOffset(); 01967 // We currently pass all varargs at 8-byte alignment. 01968 StackOffset = ((StackOffset + 7) & ~7); 01969 AFI->setVarArgsStackIndex(MFI->CreateFixedObject(4, StackOffset, true)); 01970 } 01971 01972 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 01973 unsigned StackArgSize = CCInfo.getNextStackOffset(); 01974 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 01975 if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { 01976 // This is a non-standard ABI so by fiat I say we're allowed to make full 01977 // use of the stack area to be popped, which must be aligned to 16 bytes in 01978 // any case: 01979 StackArgSize = RoundUpToAlignment(StackArgSize, 16); 01980 01981 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding 01982 // a multiple of 16. 01983 FuncInfo->setArgumentStackToRestore(StackArgSize); 01984 01985 // This realignment carries over to the available bytes below. Our own 01986 // callers will guarantee the space is free by giving an aligned value to 01987 // CALLSEQ_START. 01988 } 01989 // Even if we're not expected to free up the space, it's useful to know how 01990 // much is there while considering tail calls (because we can reuse it). 01991 FuncInfo->setBytesInStackArgArea(StackArgSize); 01992 01993 return Chain; 01994 } 01995 01996 void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, 01997 SelectionDAG &DAG, SDLoc DL, 01998 SDValue &Chain) const { 01999 MachineFunction &MF = DAG.getMachineFunction(); 02000 MachineFrameInfo *MFI = MF.getFrameInfo(); 02001 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 02002 02003 SmallVector<SDValue, 8> MemOps; 02004 02005 static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, 02006 AArch64::X3, AArch64::X4, AArch64::X5, 02007 AArch64::X6, AArch64::X7 }; 02008 static const unsigned NumGPRArgRegs = array_lengthof(GPRArgRegs); 02009 unsigned FirstVariadicGPR = 02010 CCInfo.getFirstUnallocated(GPRArgRegs, NumGPRArgRegs); 02011 02012 unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); 02013 int GPRIdx = 0; 02014 if (GPRSaveSize != 0) { 02015 GPRIdx = MFI->CreateStackObject(GPRSaveSize, 8, false); 02016 02017 SDValue FIN = DAG.getFrameIndex(GPRIdx, getPointerTy()); 02018 02019 for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { 02020 unsigned VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); 02021 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); 02022 SDValue Store = 02023 DAG.getStore(Val.getValue(1), DL, Val, FIN, 02024 MachinePointerInfo::getStack(i * 8), false, false, 0); 02025 MemOps.push_back(Store); 02026 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, 02027 DAG.getConstant(8, getPointerTy())); 02028 } 02029 } 02030 FuncInfo->setVarArgsGPRIndex(GPRIdx); 02031 FuncInfo->setVarArgsGPRSize(GPRSaveSize); 02032 02033 if (Subtarget->hasFPARMv8()) { 02034 static const MCPhysReg FPRArgRegs[] = { 02035 AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, 02036 AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; 02037 static const unsigned NumFPRArgRegs = array_lengthof(FPRArgRegs); 02038 unsigned FirstVariadicFPR = 02039 CCInfo.getFirstUnallocated(FPRArgRegs, NumFPRArgRegs); 02040 02041 unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); 02042 int FPRIdx = 0; 02043 if (FPRSaveSize != 0) { 02044 FPRIdx = MFI->CreateStackObject(FPRSaveSize, 16, false); 02045 02046 SDValue FIN = DAG.getFrameIndex(FPRIdx, getPointerTy()); 02047 02048 for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { 02049 unsigned VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); 02050 SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); 02051 02052 SDValue Store = 02053 DAG.getStore(Val.getValue(1), DL, Val, FIN, 02054 MachinePointerInfo::getStack(i * 16), false, false, 0); 02055 MemOps.push_back(Store); 02056 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(), FIN, 02057 DAG.getConstant(16, getPointerTy())); 02058 } 02059 } 02060 FuncInfo->setVarArgsFPRIndex(FPRIdx); 02061 FuncInfo->setVarArgsFPRSize(FPRSaveSize); 02062 } 02063 02064 if (!MemOps.empty()) { 02065 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 02066 } 02067 } 02068 02069 /// LowerCallResult - Lower the result values of a call into the 02070 /// appropriate copies out of appropriate physical registers. 02071 SDValue AArch64TargetLowering::LowerCallResult( 02072 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, 02073 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, 02074 SmallVectorImpl<SDValue> &InVals, bool isThisReturn, 02075 SDValue ThisVal) const { 02076 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 02077 ? RetCC_AArch64_WebKit_JS 02078 : RetCC_AArch64_AAPCS; 02079 // Assign locations to each value returned by this call. 02080 SmallVector<CCValAssign, 16> RVLocs; 02081 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 02082 *DAG.getContext()); 02083 CCInfo.AnalyzeCallResult(Ins, RetCC); 02084 02085 // Copy all of the result registers out of their specified physreg. 02086 for (unsigned i = 0; i != RVLocs.size(); ++i) { 02087 CCValAssign VA = RVLocs[i]; 02088 02089 // Pass 'this' value directly from the argument to return value, to avoid 02090 // reg unit interference 02091 if (i == 0 && isThisReturn) { 02092 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 && 02093 "unexpected return calling convention register assignment"); 02094 InVals.push_back(ThisVal); 02095 continue; 02096 } 02097 02098 SDValue Val = 02099 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); 02100 Chain = Val.getValue(1); 02101 InFlag = Val.getValue(2); 02102 02103 switch (VA.getLocInfo()) { 02104 default: 02105 llvm_unreachable("Unknown loc info!"); 02106 case CCValAssign::Full: 02107 break; 02108 case CCValAssign::BCvt: 02109 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); 02110 break; 02111 } 02112 02113 InVals.push_back(Val); 02114 } 02115 02116 return Chain; 02117 } 02118 02119 bool AArch64TargetLowering::isEligibleForTailCallOptimization( 02120 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, 02121 bool isCalleeStructRet, bool isCallerStructRet, 02122 const SmallVectorImpl<ISD::OutputArg> &Outs, 02123 const SmallVectorImpl<SDValue> &OutVals, 02124 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const { 02125 // For CallingConv::C this function knows whether the ABI needs 02126 // changing. That's not true for other conventions so they will have to opt in 02127 // manually. 02128 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C) 02129 return false; 02130 02131 const MachineFunction &MF = DAG.getMachineFunction(); 02132 const Function *CallerF = MF.getFunction(); 02133 CallingConv::ID CallerCC = CallerF->getCallingConv(); 02134 bool CCMatch = CallerCC == CalleeCC; 02135 02136 // Byval parameters hand the function a pointer directly into the stack area 02137 // we want to reuse during a tail call. Working around this *is* possible (see 02138 // X86) but less efficient and uglier in LowerCall. 02139 for (Function::const_arg_iterator i = CallerF->arg_begin(), 02140 e = CallerF->arg_end(); 02141 i != e; ++i) 02142 if (i->hasByValAttr()) 02143 return false; 02144 02145 if (getTargetMachine().Options.GuaranteedTailCallOpt) { 02146 if (IsTailCallConvention(CalleeCC) && CCMatch) 02147 return true; 02148 return false; 02149 } 02150 02151 // Externally-defined functions with weak linkage should not be 02152 // tail-called on AArch64 when the OS does not support dynamic 02153 // pre-emption of symbols, as the AAELF spec requires normal calls 02154 // to undefined weak functions to be replaced with a NOP or jump to the 02155 // next instruction. The behaviour of branch instructions in this 02156 // situation (as used for tail calls) is implementation-defined, so we 02157 // cannot rely on the linker replacing the tail call with a return. 02158 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 02159 const GlobalValue *GV = G->getGlobal(); 02160 if (GV->hasExternalWeakLinkage()) 02161 return false; 02162 } 02163 02164 // Now we search for cases where we can use a tail call without changing the 02165 // ABI. Sibcall is used in some places (particularly gcc) to refer to this 02166 // concept. 02167 02168 // I want anyone implementing a new calling convention to think long and hard 02169 // about this assert. 02170 assert((!isVarArg || CalleeCC == CallingConv::C) && 02171 "Unexpected variadic calling convention"); 02172 02173 if (isVarArg && !Outs.empty()) { 02174 // At least two cases here: if caller is fastcc then we can't have any 02175 // memory arguments (we'd be expected to clean up the stack afterwards). If 02176 // caller is C then we could potentially use its argument area. 02177 02178 // FIXME: for now we take the most conservative of these in both cases: 02179 // disallow all variadic memory operands. 02180 SmallVector<CCValAssign, 16> ArgLocs; 02181 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, 02182 *DAG.getContext()); 02183 02184 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, true)); 02185 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) 02186 if (!ArgLocs[i].isRegLoc()) 02187 return false; 02188 } 02189 02190 // If the calling conventions do not match, then we'd better make sure the 02191 // results are returned in the same way as what the caller expects. 02192 if (!CCMatch) { 02193 SmallVector<CCValAssign, 16> RVLocs1; 02194 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, 02195 *DAG.getContext()); 02196 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForCall(CalleeCC, isVarArg)); 02197 02198 SmallVector<CCValAssign, 16> RVLocs2; 02199 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, 02200 *DAG.getContext()); 02201 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForCall(CallerCC, isVarArg)); 02202 02203 if (RVLocs1.size() != RVLocs2.size()) 02204 return false; 02205 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 02206 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 02207 return false; 02208 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 02209 return false; 02210 if (RVLocs1[i].isRegLoc()) { 02211 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 02212 return false; 02213 } else { 02214 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 02215 return false; 02216 } 02217 } 02218 } 02219 02220 // Nothing more to check if the callee is taking no arguments 02221 if (Outs.empty()) 02222 return true; 02223 02224 SmallVector<CCValAssign, 16> ArgLocs; 02225 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, 02226 *DAG.getContext()); 02227 02228 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg)); 02229 02230 const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 02231 02232 // If the stack arguments for this call would fit into our own save area then 02233 // the call can be made tail. 02234 return CCInfo.getNextStackOffset() <= FuncInfo->getBytesInStackArgArea(); 02235 } 02236 02237 SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, 02238 SelectionDAG &DAG, 02239 MachineFrameInfo *MFI, 02240 int ClobberedFI) const { 02241 SmallVector<SDValue, 8> ArgChains; 02242 int64_t FirstByte = MFI->getObjectOffset(ClobberedFI); 02243 int64_t LastByte = FirstByte + MFI->getObjectSize(ClobberedFI) - 1; 02244 02245 // Include the original chain at the beginning of the list. When this is 02246 // used by target LowerCall hooks, this helps legalize find the 02247 // CALLSEQ_BEGIN node. 02248 ArgChains.push_back(Chain); 02249 02250 // Add a chain value for each stack argument corresponding 02251 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), 02252 UE = DAG.getEntryNode().getNode()->use_end(); 02253 U != UE; ++U) 02254 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) 02255 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) 02256 if (FI->getIndex() < 0) { 02257 int64_t InFirstByte = MFI->getObjectOffset(FI->getIndex()); 02258 int64_t InLastByte = InFirstByte; 02259 InLastByte += MFI->getObjectSize(FI->getIndex()) - 1; 02260 02261 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || 02262 (FirstByte <= InFirstByte && InFirstByte <= LastByte)) 02263 ArgChains.push_back(SDValue(L, 1)); 02264 } 02265 02266 // Build a tokenfactor for all the chains. 02267 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); 02268 } 02269 02270 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, 02271 bool TailCallOpt) const { 02272 return CallCC == CallingConv::Fast && TailCallOpt; 02273 } 02274 02275 bool AArch64TargetLowering::IsTailCallConvention(CallingConv::ID CallCC) const { 02276 return CallCC == CallingConv::Fast; 02277 } 02278 02279 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, 02280 /// and add input and output parameter nodes. 02281 SDValue 02282 AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, 02283 SmallVectorImpl<SDValue> &InVals) const { 02284 SelectionDAG &DAG = CLI.DAG; 02285 SDLoc &DL = CLI.DL; 02286 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; 02287 SmallVector<SDValue, 32> &OutVals = CLI.OutVals; 02288 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; 02289 SDValue Chain = CLI.Chain; 02290 SDValue Callee = CLI.Callee; 02291 bool &IsTailCall = CLI.IsTailCall; 02292 CallingConv::ID CallConv = CLI.CallConv; 02293 bool IsVarArg = CLI.IsVarArg; 02294 02295 MachineFunction &MF = DAG.getMachineFunction(); 02296 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 02297 bool IsThisReturn = false; 02298 02299 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 02300 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; 02301 bool IsSibCall = false; 02302 02303 if (IsTailCall) { 02304 // Check if it's really possible to do a tail call. 02305 IsTailCall = isEligibleForTailCallOptimization( 02306 Callee, CallConv, IsVarArg, IsStructRet, 02307 MF.getFunction()->hasStructRetAttr(), Outs, OutVals, Ins, DAG); 02308 if (!IsTailCall && CLI.CS && CLI.CS->isMustTailCall()) 02309 report_fatal_error("failed to perform tail call elimination on a call " 02310 "site marked musttail"); 02311 02312 // A sibling call is one where we're under the usual C ABI and not planning 02313 // to change that but can still do a tail call: 02314 if (!TailCallOpt && IsTailCall) 02315 IsSibCall = true; 02316 02317 if (IsTailCall) 02318 ++NumTailCalls; 02319 } 02320 02321 // Analyze operands of the call, assigning locations to each operand. 02322 SmallVector<CCValAssign, 16> ArgLocs; 02323 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, 02324 *DAG.getContext()); 02325 02326 if (IsVarArg) { 02327 // Handle fixed and variable vector arguments differently. 02328 // Variable vector arguments always go into memory. 02329 unsigned NumArgs = Outs.size(); 02330 02331 for (unsigned i = 0; i != NumArgs; ++i) { 02332 MVT ArgVT = Outs[i].VT; 02333 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 02334 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, 02335 /*IsVarArg=*/ !Outs[i].IsFixed); 02336 bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); 02337 assert(!Res && "Call operand has unhandled type"); 02338 (void)Res; 02339 } 02340 } else { 02341 // At this point, Outs[].VT may already be promoted to i32. To correctly 02342 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and 02343 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. 02344 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here 02345 // we use a special version of AnalyzeCallOperands to pass in ValVT and 02346 // LocVT. 02347 unsigned NumArgs = Outs.size(); 02348 for (unsigned i = 0; i != NumArgs; ++i) { 02349 MVT ValVT = Outs[i].VT; 02350 // Get type of the original argument. 02351 EVT ActualVT = getValueType(CLI.getArgs()[Outs[i].OrigArgIndex].Ty, 02352 /*AllowUnknown*/ true); 02353 MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ValVT; 02354 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; 02355 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. 02356 if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) 02357 ValVT = MVT::i8; 02358 else if (ActualMVT == MVT::i16) 02359 ValVT = MVT::i16; 02360 02361 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, /*IsVarArg=*/false); 02362 bool Res = AssignFn(i, ValVT, ValVT, CCValAssign::Full, ArgFlags, CCInfo); 02363 assert(!Res && "Call operand has unhandled type"); 02364 (void)Res; 02365 } 02366 } 02367 02368 // Get a count of how many bytes are to be pushed on the stack. 02369 unsigned NumBytes = CCInfo.getNextStackOffset(); 02370 02371 if (IsSibCall) { 02372 // Since we're not changing the ABI to make this a tail call, the memory 02373 // operands are already available in the caller's incoming argument space. 02374 NumBytes = 0; 02375 } 02376 02377 // FPDiff is the byte offset of the call's argument area from the callee's. 02378 // Stores to callee stack arguments will be placed in FixedStackSlots offset 02379 // by this amount for a tail call. In a sibling call it must be 0 because the 02380 // caller will deallocate the entire stack and the callee still expects its 02381 // arguments to begin at SP+0. Completely unused for non-tail calls. 02382 int FPDiff = 0; 02383 02384 if (IsTailCall && !IsSibCall) { 02385 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); 02386 02387 // Since callee will pop argument stack as a tail call, we must keep the 02388 // popped size 16-byte aligned. 02389 NumBytes = RoundUpToAlignment(NumBytes, 16); 02390 02391 // FPDiff will be negative if this tail call requires more space than we 02392 // would automatically have in our incoming argument space. Positive if we 02393 // can actually shrink the stack. 02394 FPDiff = NumReusableBytes - NumBytes; 02395 02396 // The stack pointer must be 16-byte aligned at all times it's used for a 02397 // memory operation, which in practice means at *all* times and in 02398 // particular across call boundaries. Therefore our own arguments started at 02399 // a 16-byte aligned SP and the delta applied for the tail call should 02400 // satisfy the same constraint. 02401 assert(FPDiff % 16 == 0 && "unaligned stack on tail call"); 02402 } 02403 02404 // Adjust the stack pointer for the new arguments... 02405 // These operations are automatically eliminated by the prolog/epilog pass 02406 if (!IsSibCall) 02407 Chain = 02408 DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true), DL); 02409 02410 SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, getPointerTy()); 02411 02412 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; 02413 SmallVector<SDValue, 8> MemOpChains; 02414 02415 // Walk the register/memloc assignments, inserting copies/loads. 02416 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e; 02417 ++i, ++realArgIdx) { 02418 CCValAssign &VA = ArgLocs[i]; 02419 SDValue Arg = OutVals[realArgIdx]; 02420 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 02421 02422 // Promote the value if needed. 02423 switch (VA.getLocInfo()) { 02424 default: 02425 llvm_unreachable("Unknown loc info!"); 02426 case CCValAssign::Full: 02427 break; 02428 case CCValAssign::SExt: 02429 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); 02430 break; 02431 case CCValAssign::ZExt: 02432 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 02433 break; 02434 case CCValAssign::AExt: 02435 if (Outs[realArgIdx].ArgVT == MVT::i1) { 02436 // AAPCS requires i1 to be zero-extended to 8-bits by the caller. 02437 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 02438 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); 02439 } 02440 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); 02441 break; 02442 case CCValAssign::BCvt: 02443 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 02444 break; 02445 case CCValAssign::FPExt: 02446 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); 02447 break; 02448 } 02449 02450 if (VA.isRegLoc()) { 02451 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i64) { 02452 assert(VA.getLocVT() == MVT::i64 && 02453 "unexpected calling convention register assignment"); 02454 assert(!Ins.empty() && Ins[0].VT == MVT::i64 && 02455 "unexpected use of 'returned'"); 02456 IsThisReturn = true; 02457 } 02458 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 02459 } else { 02460 assert(VA.isMemLoc()); 02461 02462 SDValue DstAddr; 02463 MachinePointerInfo DstInfo; 02464 02465 // FIXME: This works on big-endian for composite byvals, which are the 02466 // common case. It should also work for fundamental types too. 02467 uint32_t BEAlign = 0; 02468 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 02469 : VA.getValVT().getSizeInBits(); 02470 OpSize = (OpSize + 7) / 8; 02471 if (!Subtarget->isLittleEndian() && !Flags.isByVal()) { 02472 if (OpSize < 8) 02473 BEAlign = 8 - OpSize; 02474 } 02475 unsigned LocMemOffset = VA.getLocMemOffset(); 02476 int32_t Offset = LocMemOffset + BEAlign; 02477 SDValue PtrOff = DAG.getIntPtrConstant(Offset); 02478 PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); 02479 02480 if (IsTailCall) { 02481 Offset = Offset + FPDiff; 02482 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true); 02483 02484 DstAddr = DAG.getFrameIndex(FI, getPointerTy()); 02485 DstInfo = MachinePointerInfo::getFixedStack(FI); 02486 02487 // Make sure any stack arguments overlapping with where we're storing 02488 // are loaded before this eventual operation. Otherwise they'll be 02489 // clobbered. 02490 Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); 02491 } else { 02492 SDValue PtrOff = DAG.getIntPtrConstant(Offset); 02493 02494 DstAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr, PtrOff); 02495 DstInfo = MachinePointerInfo::getStack(LocMemOffset); 02496 } 02497 02498 if (Outs[i].Flags.isByVal()) { 02499 SDValue SizeNode = 02500 DAG.getConstant(Outs[i].Flags.getByValSize(), MVT::i64); 02501 SDValue Cpy = DAG.getMemcpy( 02502 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(), 02503 /*isVol = */ false, 02504 /*AlwaysInline = */ false, DstInfo, MachinePointerInfo()); 02505 02506 MemOpChains.push_back(Cpy); 02507 } else { 02508 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already 02509 // promoted to a legal register type i32, we should truncate Arg back to 02510 // i1/i8/i16. 02511 if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || 02512 VA.getValVT() == MVT::i16) 02513 Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); 02514 02515 SDValue Store = 02516 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, false, false, 0); 02517 MemOpChains.push_back(Store); 02518 } 02519 } 02520 } 02521 02522 if (!MemOpChains.empty()) 02523 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 02524 02525 // Build a sequence of copy-to-reg nodes chained together with token chain 02526 // and flag operands which copy the outgoing args into the appropriate regs. 02527 SDValue InFlag; 02528 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 02529 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[i].first, 02530 RegsToPass[i].second, InFlag); 02531 InFlag = Chain.getValue(1); 02532 } 02533 02534 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 02535 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 02536 // node so that legalize doesn't hack it. 02537 if (getTargetMachine().getCodeModel() == CodeModel::Large && 02538 Subtarget->isTargetMachO()) { 02539 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 02540 const GlobalValue *GV = G->getGlobal(); 02541 bool InternalLinkage = GV->hasInternalLinkage(); 02542 if (InternalLinkage) 02543 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); 02544 else { 02545 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 02546 AArch64II::MO_GOT); 02547 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); 02548 } 02549 } else if (ExternalSymbolSDNode *S = 02550 dyn_cast<ExternalSymbolSDNode>(Callee)) { 02551 const char *Sym = S->getSymbol(); 02552 Callee = 02553 DAG.getTargetExternalSymbol(Sym, getPointerTy(), AArch64II::MO_GOT); 02554 Callee = DAG.getNode(AArch64ISD::LOADgot, DL, getPointerTy(), Callee); 02555 } 02556 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 02557 const GlobalValue *GV = G->getGlobal(); 02558 Callee = DAG.getTargetGlobalAddress(GV, DL, getPointerTy(), 0, 0); 02559 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 02560 const char *Sym = S->getSymbol(); 02561 Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), 0); 02562 } 02563 02564 // We don't usually want to end the call-sequence here because we would tidy 02565 // the frame up *after* the call, however in the ABI-changing tail-call case 02566 // we've carefully laid out the parameters so that when sp is reset they'll be 02567 // in the correct location. 02568 if (IsTailCall && !IsSibCall) { 02569 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 02570 DAG.getIntPtrConstant(0, true), InFlag, DL); 02571 InFlag = Chain.getValue(1); 02572 } 02573 02574 std::vector<SDValue> Ops; 02575 Ops.push_back(Chain); 02576 Ops.push_back(Callee); 02577 02578 if (IsTailCall) { 02579 // Each tail call may have to adjust the stack by a different amount, so 02580 // this information must travel along with the operation for eventual 02581 // consumption by emitEpilogue. 02582 Ops.push_back(DAG.getTargetConstant(FPDiff, MVT::i32)); 02583 } 02584 02585 // Add argument registers to the end of the list so that they are known live 02586 // into the call. 02587 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 02588 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 02589 RegsToPass[i].second.getValueType())); 02590 02591 // Add a register mask operand representing the call-preserved registers. 02592 const uint32_t *Mask; 02593 const TargetRegisterInfo *TRI = 02594 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 02595 const AArch64RegisterInfo *ARI = 02596 static_cast<const AArch64RegisterInfo *>(TRI); 02597 if (IsThisReturn) { 02598 // For 'this' returns, use the X0-preserving mask if applicable 02599 Mask = ARI->getThisReturnPreservedMask(CallConv); 02600 if (!Mask) { 02601 IsThisReturn = false; 02602 Mask = ARI->getCallPreservedMask(CallConv); 02603 } 02604 } else 02605 Mask = ARI->getCallPreservedMask(CallConv); 02606 02607 assert(Mask && "Missing call preserved mask for calling convention"); 02608 Ops.push_back(DAG.getRegisterMask(Mask)); 02609 02610 if (InFlag.getNode()) 02611 Ops.push_back(InFlag); 02612 02613 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 02614 02615 // If we're doing a tall call, use a TC_RETURN here rather than an 02616 // actual call instruction. 02617 if (IsTailCall) 02618 return DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); 02619 02620 // Returns a chain and a flag for retval copy to use. 02621 Chain = DAG.getNode(AArch64ISD::CALL, DL, NodeTys, Ops); 02622 InFlag = Chain.getValue(1); 02623 02624 uint64_t CalleePopBytes = DoesCalleeRestoreStack(CallConv, TailCallOpt) 02625 ? RoundUpToAlignment(NumBytes, 16) 02626 : 0; 02627 02628 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), 02629 DAG.getIntPtrConstant(CalleePopBytes, true), 02630 InFlag, DL); 02631 if (!Ins.empty()) 02632 InFlag = Chain.getValue(1); 02633 02634 // Handle result values, copying them out of physregs into vregs that we 02635 // return. 02636 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG, 02637 InVals, IsThisReturn, 02638 IsThisReturn ? OutVals[0] : SDValue()); 02639 } 02640 02641 bool AArch64TargetLowering::CanLowerReturn( 02642 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, 02643 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { 02644 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 02645 ? RetCC_AArch64_WebKit_JS 02646 : RetCC_AArch64_AAPCS; 02647 SmallVector<CCValAssign, 16> RVLocs; 02648 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 02649 return CCInfo.CheckReturn(Outs, RetCC); 02650 } 02651 02652 SDValue 02653 AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 02654 bool isVarArg, 02655 const SmallVectorImpl<ISD::OutputArg> &Outs, 02656 const SmallVectorImpl<SDValue> &OutVals, 02657 SDLoc DL, SelectionDAG &DAG) const { 02658 CCAssignFn *RetCC = CallConv == CallingConv::WebKit_JS 02659 ? RetCC_AArch64_WebKit_JS 02660 : RetCC_AArch64_AAPCS; 02661 SmallVector<CCValAssign, 16> RVLocs; 02662 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 02663 *DAG.getContext()); 02664 CCInfo.AnalyzeReturn(Outs, RetCC); 02665 02666 // Copy the result values into the output registers. 02667 SDValue Flag; 02668 SmallVector<SDValue, 4> RetOps(1, Chain); 02669 for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); 02670 ++i, ++realRVLocIdx) { 02671 CCValAssign &VA = RVLocs[i]; 02672 assert(VA.isRegLoc() && "Can only return in registers!"); 02673 SDValue Arg = OutVals[realRVLocIdx]; 02674 02675 switch (VA.getLocInfo()) { 02676 default: 02677 llvm_unreachable("Unknown loc info!"); 02678 case CCValAssign::Full: 02679 if (Outs[i].ArgVT == MVT::i1) { 02680 // AAPCS requires i1 to be zero-extended to i8 by the producer of the 02681 // value. This is strictly redundant on Darwin (which uses "zeroext 02682 // i1"), but will be optimised out before ISel. 02683 Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); 02684 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); 02685 } 02686 break; 02687 case CCValAssign::BCvt: 02688 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); 02689 break; 02690 } 02691 02692 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag); 02693 Flag = Chain.getValue(1); 02694 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 02695 } 02696 02697 RetOps[0] = Chain; // Update chain. 02698 02699 // Add the flag if we have it. 02700 if (Flag.getNode()) 02701 RetOps.push_back(Flag); 02702 02703 return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); 02704 } 02705 02706 //===----------------------------------------------------------------------===// 02707 // Other Lowering Code 02708 //===----------------------------------------------------------------------===// 02709 02710 SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, 02711 SelectionDAG &DAG) const { 02712 EVT PtrVT = getPointerTy(); 02713 SDLoc DL(Op); 02714 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 02715 const GlobalValue *GV = GN->getGlobal(); 02716 unsigned char OpFlags = 02717 Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); 02718 02719 assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && 02720 "unexpected offset in global node"); 02721 02722 // This also catched the large code model case for Darwin. 02723 if ((OpFlags & AArch64II::MO_GOT) != 0) { 02724 SDValue GotAddr = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); 02725 // FIXME: Once remat is capable of dealing with instructions with register 02726 // operands, expand this into two nodes instead of using a wrapper node. 02727 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); 02728 } 02729 02730 if ((OpFlags & AArch64II::MO_CONSTPOOL) != 0) { 02731 assert(getTargetMachine().getCodeModel() == CodeModel::Small && 02732 "use of MO_CONSTPOOL only supported on small model"); 02733 SDValue Hi = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, AArch64II::MO_PAGE); 02734 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); 02735 unsigned char LoFlags = AArch64II::MO_PAGEOFF | AArch64II::MO_NC; 02736 SDValue Lo = DAG.getTargetConstantPool(GV, PtrVT, 0, 0, LoFlags); 02737 SDValue PoolAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); 02738 SDValue GlobalAddr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), PoolAddr, 02739 MachinePointerInfo::getConstantPool(), 02740 /*isVolatile=*/ false, 02741 /*isNonTemporal=*/ true, 02742 /*isInvariant=*/ true, 8); 02743 if (GN->getOffset() != 0) 02744 return DAG.getNode(ISD::ADD, DL, PtrVT, GlobalAddr, 02745 DAG.getConstant(GN->getOffset(), PtrVT)); 02746 return GlobalAddr; 02747 } 02748 02749 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 02750 const unsigned char MO_NC = AArch64II::MO_NC; 02751 return DAG.getNode( 02752 AArch64ISD::WrapperLarge, DL, PtrVT, 02753 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G3), 02754 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G2 | MO_NC), 02755 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G1 | MO_NC), 02756 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); 02757 } else { 02758 // Use ADRP/ADD or ADRP/LDR for everything else: the small model on ELF and 02759 // the only correct model on Darwin. 02760 SDValue Hi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 02761 OpFlags | AArch64II::MO_PAGE); 02762 unsigned char LoFlags = OpFlags | AArch64II::MO_PAGEOFF | AArch64II::MO_NC; 02763 SDValue Lo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, LoFlags); 02764 02765 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); 02766 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); 02767 } 02768 } 02769 02770 /// \brief Convert a TLS address reference into the correct sequence of loads 02771 /// and calls to compute the variable's address (for Darwin, currently) and 02772 /// return an SDValue containing the final node. 02773 02774 /// Darwin only has one TLS scheme which must be capable of dealing with the 02775 /// fully general situation, in the worst case. This means: 02776 /// + "extern __thread" declaration. 02777 /// + Defined in a possibly unknown dynamic library. 02778 /// 02779 /// The general system is that each __thread variable has a [3 x i64] descriptor 02780 /// which contains information used by the runtime to calculate the address. The 02781 /// only part of this the compiler needs to know about is the first xword, which 02782 /// contains a function pointer that must be called with the address of the 02783 /// entire descriptor in "x0". 02784 /// 02785 /// Since this descriptor may be in a different unit, in general even the 02786 /// descriptor must be accessed via an indirect load. The "ideal" code sequence 02787 /// is: 02788 /// adrp x0, _var@TLVPPAGE 02789 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor 02790 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, 02791 /// ; the function pointer 02792 /// blr x1 ; Uses descriptor address in x0 02793 /// ; Address of _var is now in x0. 02794 /// 02795 /// If the address of _var's descriptor *is* known to the linker, then it can 02796 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for 02797 /// a slight efficiency gain. 02798 SDValue 02799 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, 02800 SelectionDAG &DAG) const { 02801 assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin"); 02802 02803 SDLoc DL(Op); 02804 MVT PtrVT = getPointerTy(); 02805 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 02806 02807 SDValue TLVPAddr = 02808 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 02809 SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); 02810 02811 // The first entry in the descriptor is a function pointer that we must call 02812 // to obtain the address of the variable. 02813 SDValue Chain = DAG.getEntryNode(); 02814 SDValue FuncTLVGet = 02815 DAG.getLoad(MVT::i64, DL, Chain, DescAddr, MachinePointerInfo::getGOT(), 02816 false, true, true, 8); 02817 Chain = FuncTLVGet.getValue(1); 02818 02819 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 02820 MFI->setAdjustsStack(true); 02821 02822 // TLS calls preserve all registers except those that absolutely must be 02823 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be 02824 // silly). 02825 const TargetRegisterInfo *TRI = 02826 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 02827 const AArch64RegisterInfo *ARI = 02828 static_cast<const AArch64RegisterInfo *>(TRI); 02829 const uint32_t *Mask = ARI->getTLSCallPreservedMask(); 02830 02831 // Finally, we can make the call. This is just a degenerate version of a 02832 // normal AArch64 call node: x0 takes the address of the descriptor, and 02833 // returns the address of the variable in this thread. 02834 Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); 02835 Chain = 02836 DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), 02837 Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), 02838 DAG.getRegisterMask(Mask), Chain.getValue(1)); 02839 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); 02840 } 02841 02842 /// When accessing thread-local variables under either the general-dynamic or 02843 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will 02844 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry 02845 /// is a function pointer to carry out the resolution. This function takes the 02846 /// address of the descriptor in X0 and returns the TPIDR_EL0 offset in X0. All 02847 /// other registers (except LR, NZCV) are preserved. 02848 /// 02849 /// Thus, the ideal call sequence on AArch64 is: 02850 /// 02851 /// adrp x0, :tlsdesc:thread_var 02852 /// ldr x8, [x0, :tlsdesc_lo12:thread_var] 02853 /// add x0, x0, :tlsdesc_lo12:thread_var 02854 /// .tlsdesccall thread_var 02855 /// blr x8 02856 /// (TPIDR_EL0 offset now in x0). 02857 /// 02858 /// The ".tlsdesccall" directive instructs the assembler to insert a particular 02859 /// relocation to help the linker relax this sequence if it turns out to be too 02860 /// conservative. 02861 /// 02862 /// FIXME: we currently produce an extra, duplicated, ADRP instruction, but this 02863 /// is harmless. 02864 SDValue AArch64TargetLowering::LowerELFTLSDescCall(SDValue SymAddr, 02865 SDValue DescAddr, SDLoc DL, 02866 SelectionDAG &DAG) const { 02867 EVT PtrVT = getPointerTy(); 02868 02869 // The function we need to call is simply the first entry in the GOT for this 02870 // descriptor, load it in preparation. 02871 SDValue Func = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, SymAddr); 02872 02873 // TLS calls preserve all registers except those that absolutely must be 02874 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be 02875 // silly). 02876 const TargetRegisterInfo *TRI = 02877 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 02878 const AArch64RegisterInfo *ARI = 02879 static_cast<const AArch64RegisterInfo *>(TRI); 02880 const uint32_t *Mask = ARI->getTLSCallPreservedMask(); 02881 02882 // The function takes only one argument: the address of the descriptor itself 02883 // in X0. 02884 SDValue Glue, Chain; 02885 Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::X0, DescAddr, Glue); 02886 Glue = Chain.getValue(1); 02887 02888 // We're now ready to populate the argument list, as with a normal call: 02889 SmallVector<SDValue, 6> Ops; 02890 Ops.push_back(Chain); 02891 Ops.push_back(Func); 02892 Ops.push_back(SymAddr); 02893 Ops.push_back(DAG.getRegister(AArch64::X0, PtrVT)); 02894 Ops.push_back(DAG.getRegisterMask(Mask)); 02895 Ops.push_back(Glue); 02896 02897 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 02898 Chain = DAG.getNode(AArch64ISD::TLSDESC_CALL, DL, NodeTys, Ops); 02899 Glue = Chain.getValue(1); 02900 02901 return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); 02902 } 02903 02904 SDValue 02905 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, 02906 SelectionDAG &DAG) const { 02907 assert(Subtarget->isTargetELF() && "This function expects an ELF target"); 02908 assert(getTargetMachine().getCodeModel() == CodeModel::Small && 02909 "ELF TLS only supported in small memory model"); 02910 const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 02911 02912 TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); 02913 02914 SDValue TPOff; 02915 EVT PtrVT = getPointerTy(); 02916 SDLoc DL(Op); 02917 const GlobalValue *GV = GA->getGlobal(); 02918 02919 SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); 02920 02921 if (Model == TLSModel::LocalExec) { 02922 SDValue HiVar = DAG.getTargetGlobalAddress( 02923 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); 02924 SDValue LoVar = DAG.getTargetGlobalAddress( 02925 GV, DL, PtrVT, 0, 02926 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 02927 02928 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 02929 DAG.getTargetConstant(16, MVT::i32)), 02930 0); 02931 TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, 02932 DAG.getTargetConstant(0, MVT::i32)), 02933 0); 02934 } else if (Model == TLSModel::InitialExec) { 02935 TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 02936 TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); 02937 } else if (Model == TLSModel::LocalDynamic) { 02938 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS 02939 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate 02940 // the beginning of the module's TLS region, followed by a DTPREL offset 02941 // calculation. 02942 02943 // These accesses will need deduplicating if there's more than one. 02944 AArch64FunctionInfo *MFI = 02945 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 02946 MFI->incNumLocalDynamicTLSAccesses(); 02947 02948 // Accesses used in this sequence go via the TLS descriptor which lives in 02949 // the GOT. Prepare an address we can use to handle this. 02950 SDValue HiDesc = DAG.getTargetExternalSymbol( 02951 "_TLS_MODULE_BASE_", PtrVT, AArch64II::MO_TLS | AArch64II::MO_PAGE); 02952 SDValue LoDesc = DAG.getTargetExternalSymbol( 02953 "_TLS_MODULE_BASE_", PtrVT, 02954 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 02955 02956 // First argument to the descriptor call is the address of the descriptor 02957 // itself. 02958 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); 02959 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); 02960 02961 // The call needs a relocation too for linker relaxation. It doesn't make 02962 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 02963 // the address. 02964 SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, 02965 AArch64II::MO_TLS); 02966 02967 // Now we can calculate the offset from TPIDR_EL0 to this module's 02968 // thread-local area. 02969 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); 02970 02971 // Now use :dtprel_whatever: operations to calculate this variable's offset 02972 // in its thread-storage area. 02973 SDValue HiVar = DAG.getTargetGlobalAddress( 02974 GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_G1); 02975 SDValue LoVar = DAG.getTargetGlobalAddress( 02976 GV, DL, MVT::i64, 0, 02977 AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); 02978 02979 SDValue DTPOff = 02980 SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, 02981 DAG.getTargetConstant(16, MVT::i32)), 02982 0); 02983 DTPOff = 02984 SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, DTPOff, LoVar, 02985 DAG.getTargetConstant(0, MVT::i32)), 02986 0); 02987 02988 TPOff = DAG.getNode(ISD::ADD, DL, PtrVT, TPOff, DTPOff); 02989 } else if (Model == TLSModel::GeneralDynamic) { 02990 // Accesses used in this sequence go via the TLS descriptor which lives in 02991 // the GOT. Prepare an address we can use to handle this. 02992 SDValue HiDesc = DAG.getTargetGlobalAddress( 02993 GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGE); 02994 SDValue LoDesc = DAG.getTargetGlobalAddress( 02995 GV, DL, PtrVT, 0, 02996 AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 02997 02998 // First argument to the descriptor call is the address of the descriptor 02999 // itself. 03000 SDValue DescAddr = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, HiDesc); 03001 DescAddr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, DescAddr, LoDesc); 03002 03003 // The call needs a relocation too for linker relaxation. It doesn't make 03004 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of 03005 // the address. 03006 SDValue SymAddr = 03007 DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); 03008 03009 // Finally we can make a call to calculate the offset from tpidr_el0. 03010 TPOff = LowerELFTLSDescCall(SymAddr, DescAddr, DL, DAG); 03011 } else 03012 llvm_unreachable("Unsupported ELF TLS access model"); 03013 03014 return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); 03015 } 03016 03017 SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, 03018 SelectionDAG &DAG) const { 03019 if (Subtarget->isTargetDarwin()) 03020 return LowerDarwinGlobalTLSAddress(Op, DAG); 03021 else if (Subtarget->isTargetELF()) 03022 return LowerELFGlobalTLSAddress(Op, DAG); 03023 03024 llvm_unreachable("Unexpected platform trying to use TLS"); 03025 } 03026 SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 03027 SDValue Chain = Op.getOperand(0); 03028 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 03029 SDValue LHS = Op.getOperand(2); 03030 SDValue RHS = Op.getOperand(3); 03031 SDValue Dest = Op.getOperand(4); 03032 SDLoc dl(Op); 03033 03034 // Handle f128 first, since lowering it will result in comparing the return 03035 // value of a libcall against zero, which is just what the rest of LowerBR_CC 03036 // is expecting to deal with. 03037 if (LHS.getValueType() == MVT::f128) { 03038 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); 03039 03040 // If softenSetCCOperands returned a scalar, we need to compare the result 03041 // against zero to select between true and false values. 03042 if (!RHS.getNode()) { 03043 RHS = DAG.getConstant(0, LHS.getValueType()); 03044 CC = ISD::SETNE; 03045 } 03046 } 03047 03048 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch 03049 // instruction. 03050 unsigned Opc = LHS.getOpcode(); 03051 if (LHS.getResNo() == 1 && isa<ConstantSDNode>(RHS) && 03052 cast<ConstantSDNode>(RHS)->isOne() && 03053 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 03054 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { 03055 assert((CC == ISD::SETEQ || CC == ISD::SETNE) && 03056 "Unexpected condition code."); 03057 // Only lower legal XALUO ops. 03058 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) 03059 return SDValue(); 03060 03061 // The actual operation with overflow check. 03062 AArch64CC::CondCode OFCC; 03063 SDValue Value, Overflow; 03064 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); 03065 03066 if (CC == ISD::SETNE) 03067 OFCC = getInvertedCondCode(OFCC); 03068 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); 03069 03070 return DAG.getNode(AArch64ISD::BRCOND, SDLoc(LHS), MVT::Other, Chain, Dest, 03071 CCVal, Overflow); 03072 } 03073 03074 if (LHS.getValueType().isInteger()) { 03075 assert((LHS.getValueType() == RHS.getValueType()) && 03076 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 03077 03078 // If the RHS of the comparison is zero, we can potentially fold this 03079 // to a specialized branch. 03080 const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); 03081 if (RHSC && RHSC->getZExtValue() == 0) { 03082 if (CC == ISD::SETEQ) { 03083 // See if we can use a TBZ to fold in an AND as well. 03084 // TBZ has a smaller branch displacement than CBZ. If the offset is 03085 // out of bounds, a late MI-layer pass rewrites branches. 03086 // 403.gcc is an example that hits this case. 03087 if (LHS.getOpcode() == ISD::AND && 03088 isa<ConstantSDNode>(LHS.getOperand(1)) && 03089 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 03090 SDValue Test = LHS.getOperand(0); 03091 uint64_t Mask = LHS.getConstantOperandVal(1); 03092 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, 03093 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); 03094 } 03095 03096 return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); 03097 } else if (CC == ISD::SETNE) { 03098 // See if we can use a TBZ to fold in an AND as well. 03099 // TBZ has a smaller branch displacement than CBZ. If the offset is 03100 // out of bounds, a late MI-layer pass rewrites branches. 03101 // 403.gcc is an example that hits this case. 03102 if (LHS.getOpcode() == ISD::AND && 03103 isa<ConstantSDNode>(LHS.getOperand(1)) && 03104 isPowerOf2_64(LHS.getConstantOperandVal(1))) { 03105 SDValue Test = LHS.getOperand(0); 03106 uint64_t Mask = LHS.getConstantOperandVal(1); 03107 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, 03108 DAG.getConstant(Log2_64(Mask), MVT::i64), Dest); 03109 } 03110 03111 return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); 03112 } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { 03113 // Don't combine AND since emitComparison converts the AND to an ANDS 03114 // (a.k.a. TST) and the test in the test bit and branch instruction 03115 // becomes redundant. This would also increase register pressure. 03116 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1; 03117 return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, 03118 DAG.getConstant(Mask, MVT::i64), Dest); 03119 } 03120 } 03121 if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && 03122 LHS.getOpcode() != ISD::AND) { 03123 // Don't combine AND since emitComparison converts the AND to an ANDS 03124 // (a.k.a. TST) and the test in the test bit and branch instruction 03125 // becomes redundant. This would also increase register pressure. 03126 uint64_t Mask = LHS.getValueType().getSizeInBits() - 1; 03127 return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, 03128 DAG.getConstant(Mask, MVT::i64), Dest); 03129 } 03130 03131 SDValue CCVal; 03132 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 03133 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, 03134 Cmp); 03135 } 03136 03137 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 03138 03139 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 03140 // clean. Some of them require two branches to implement. 03141 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 03142 AArch64CC::CondCode CC1, CC2; 03143 changeFPCCToAArch64CC(CC, CC1, CC2); 03144 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); 03145 SDValue BR1 = 03146 DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); 03147 if (CC2 != AArch64CC::AL) { 03148 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); 03149 return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, 03150 Cmp); 03151 } 03152 03153 return BR1; 03154 } 03155 03156 SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, 03157 SelectionDAG &DAG) const { 03158 EVT VT = Op.getValueType(); 03159 SDLoc DL(Op); 03160 03161 SDValue In1 = Op.getOperand(0); 03162 SDValue In2 = Op.getOperand(1); 03163 EVT SrcVT = In2.getValueType(); 03164 if (SrcVT != VT) { 03165 if (SrcVT == MVT::f32 && VT == MVT::f64) 03166 In2 = DAG.getNode(ISD::FP_EXTEND, DL, VT, In2); 03167 else if (SrcVT == MVT::f64 && VT == MVT::f32) 03168 In2 = DAG.getNode(ISD::FP_ROUND, DL, VT, In2, DAG.getIntPtrConstant(0)); 03169 else 03170 // FIXME: Src type is different, bail out for now. Can VT really be a 03171 // vector type? 03172 return SDValue(); 03173 } 03174 03175 EVT VecVT; 03176 EVT EltVT; 03177 SDValue EltMask, VecVal1, VecVal2; 03178 if (VT == MVT::f32 || VT == MVT::v2f32 || VT == MVT::v4f32) { 03179 EltVT = MVT::i32; 03180 VecVT = MVT::v4i32; 03181 EltMask = DAG.getConstant(0x80000000ULL, EltVT); 03182 03183 if (!VT.isVector()) { 03184 VecVal1 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, 03185 DAG.getUNDEF(VecVT), In1); 03186 VecVal2 = DAG.getTargetInsertSubreg(AArch64::ssub, DL, VecVT, 03187 DAG.getUNDEF(VecVT), In2); 03188 } else { 03189 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); 03190 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); 03191 } 03192 } else if (VT == MVT::f64 || VT == MVT::v2f64) { 03193 EltVT = MVT::i64; 03194 VecVT = MVT::v2i64; 03195 03196 // We want to materialize a mask with the the high bit set, but the AdvSIMD 03197 // immediate moves cannot materialize that in a single instruction for 03198 // 64-bit elements. Instead, materialize zero and then negate it. 03199 EltMask = DAG.getConstant(0, EltVT); 03200 03201 if (!VT.isVector()) { 03202 VecVal1 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, 03203 DAG.getUNDEF(VecVT), In1); 03204 VecVal2 = DAG.getTargetInsertSubreg(AArch64::dsub, DL, VecVT, 03205 DAG.getUNDEF(VecVT), In2); 03206 } else { 03207 VecVal1 = DAG.getNode(ISD::BITCAST, DL, VecVT, In1); 03208 VecVal2 = DAG.getNode(ISD::BITCAST, DL, VecVT, In2); 03209 } 03210 } else { 03211 llvm_unreachable("Invalid type for copysign!"); 03212 } 03213 03214 std::vector<SDValue> BuildVectorOps; 03215 for (unsigned i = 0; i < VecVT.getVectorNumElements(); ++i) 03216 BuildVectorOps.push_back(EltMask); 03217 03218 SDValue BuildVec = DAG.getNode(ISD::BUILD_VECTOR, DL, VecVT, BuildVectorOps); 03219 03220 // If we couldn't materialize the mask above, then the mask vector will be 03221 // the zero vector, and we need to negate it here. 03222 if (VT == MVT::f64 || VT == MVT::v2f64) { 03223 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, BuildVec); 03224 BuildVec = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, BuildVec); 03225 BuildVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, BuildVec); 03226 } 03227 03228 SDValue Sel = 03229 DAG.getNode(AArch64ISD::BIT, DL, VecVT, VecVal1, VecVal2, BuildVec); 03230 03231 if (VT == MVT::f32) 03232 return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, Sel); 03233 else if (VT == MVT::f64) 03234 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, Sel); 03235 else 03236 return DAG.getNode(ISD::BITCAST, DL, VT, Sel); 03237 } 03238 03239 SDValue AArch64TargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { 03240 if (DAG.getMachineFunction().getFunction()->getAttributes().hasAttribute( 03241 AttributeSet::FunctionIndex, Attribute::NoImplicitFloat)) 03242 return SDValue(); 03243 03244 // While there is no integer popcount instruction, it can 03245 // be more efficiently lowered to the following sequence that uses 03246 // AdvSIMD registers/instructions as long as the copies to/from 03247 // the AdvSIMD registers are cheap. 03248 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd 03249 // CNT V0.8B, V0.8B // 8xbyte pop-counts 03250 // ADDV B0, V0.8B // sum 8xbyte pop-counts 03251 // UMOV X0, V0.B[0] // copy byte result back to integer reg 03252 SDValue Val = Op.getOperand(0); 03253 SDLoc DL(Op); 03254 EVT VT = Op.getValueType(); 03255 SDValue ZeroVec = DAG.getUNDEF(MVT::v8i8); 03256 03257 SDValue VecVal; 03258 if (VT == MVT::i32) { 03259 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Val); 03260 VecVal = DAG.getTargetInsertSubreg(AArch64::ssub, DL, MVT::v8i8, ZeroVec, 03261 VecVal); 03262 } else { 03263 VecVal = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); 03264 } 03265 03266 SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, VecVal); 03267 SDValue UaddLV = DAG.getNode( 03268 ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, 03269 DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, MVT::i32), CtPop); 03270 03271 if (VT == MVT::i64) 03272 UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); 03273 return UaddLV; 03274 } 03275 03276 SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { 03277 03278 if (Op.getValueType().isVector()) 03279 return LowerVSETCC(Op, DAG); 03280 03281 SDValue LHS = Op.getOperand(0); 03282 SDValue RHS = Op.getOperand(1); 03283 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 03284 SDLoc dl(Op); 03285 03286 // We chose ZeroOrOneBooleanContents, so use zero and one. 03287 EVT VT = Op.getValueType(); 03288 SDValue TVal = DAG.getConstant(1, VT); 03289 SDValue FVal = DAG.getConstant(0, VT); 03290 03291 // Handle f128 first, since one possible outcome is a normal integer 03292 // comparison which gets picked up by the next if statement. 03293 if (LHS.getValueType() == MVT::f128) { 03294 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); 03295 03296 // If softenSetCCOperands returned a scalar, use it. 03297 if (!RHS.getNode()) { 03298 assert(LHS.getValueType() == Op.getValueType() && 03299 "Unexpected setcc expansion!"); 03300 return LHS; 03301 } 03302 } 03303 03304 if (LHS.getValueType().isInteger()) { 03305 SDValue CCVal; 03306 SDValue Cmp = 03307 getAArch64Cmp(LHS, RHS, ISD::getSetCCInverse(CC, true), CCVal, DAG, dl); 03308 03309 // Note that we inverted the condition above, so we reverse the order of 03310 // the true and false operands here. This will allow the setcc to be 03311 // matched to a single CSINC instruction. 03312 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); 03313 } 03314 03315 // Now we know we're dealing with FP values. 03316 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 03317 03318 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead 03319 // and do the comparison. 03320 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 03321 03322 AArch64CC::CondCode CC1, CC2; 03323 changeFPCCToAArch64CC(CC, CC1, CC2); 03324 if (CC2 == AArch64CC::AL) { 03325 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, false), CC1, CC2); 03326 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); 03327 03328 // Note that we inverted the condition above, so we reverse the order of 03329 // the true and false operands here. This will allow the setcc to be 03330 // matched to a single CSINC instruction. 03331 return DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); 03332 } else { 03333 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't 03334 // totally clean. Some of them require two CSELs to implement. As is in 03335 // this case, we emit the first CSEL and then emit a second using the output 03336 // of the first as the RHS. We're effectively OR'ing the two CC's together. 03337 03338 // FIXME: It would be nice if we could match the two CSELs to two CSINCs. 03339 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); 03340 SDValue CS1 = 03341 DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 03342 03343 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); 03344 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 03345 } 03346 } 03347 03348 /// A SELECT_CC operation is really some kind of max or min if both values being 03349 /// compared are, in some sense, equal to the results in either case. However, 03350 /// it is permissible to compare f32 values and produce directly extended f64 03351 /// values. 03352 /// 03353 /// Extending the comparison operands would also be allowed, but is less likely 03354 /// to happen in practice since their use is right here. Note that truncate 03355 /// operations would *not* be semantically equivalent. 03356 static bool selectCCOpsAreFMaxCompatible(SDValue Cmp, SDValue Result) { 03357 if (Cmp == Result) 03358 return true; 03359 03360 ConstantFPSDNode *CCmp = dyn_cast<ConstantFPSDNode>(Cmp); 03361 ConstantFPSDNode *CResult = dyn_cast<ConstantFPSDNode>(Result); 03362 if (CCmp && CResult && Cmp.getValueType() == MVT::f32 && 03363 Result.getValueType() == MVT::f64) { 03364 bool Lossy; 03365 APFloat CmpVal = CCmp->getValueAPF(); 03366 CmpVal.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &Lossy); 03367 return CResult->getValueAPF().bitwiseIsEqual(CmpVal); 03368 } 03369 03370 return Result->getOpcode() == ISD::FP_EXTEND && Result->getOperand(0) == Cmp; 03371 } 03372 03373 SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, 03374 SelectionDAG &DAG) const { 03375 SDValue CC = Op->getOperand(0); 03376 SDValue TVal = Op->getOperand(1); 03377 SDValue FVal = Op->getOperand(2); 03378 SDLoc DL(Op); 03379 03380 unsigned Opc = CC.getOpcode(); 03381 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select 03382 // instruction. 03383 if (CC.getResNo() == 1 && 03384 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 03385 Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)) { 03386 // Only lower legal XALUO ops. 03387 if (!DAG.getTargetLoweringInfo().isTypeLegal(CC->getValueType(0))) 03388 return SDValue(); 03389 03390 AArch64CC::CondCode OFCC; 03391 SDValue Value, Overflow; 03392 std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CC.getValue(0), DAG); 03393 SDValue CCVal = DAG.getConstant(OFCC, MVT::i32); 03394 03395 return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, 03396 CCVal, Overflow); 03397 } 03398 03399 if (CC.getOpcode() == ISD::SETCC) 03400 return DAG.getSelectCC(DL, CC.getOperand(0), CC.getOperand(1), TVal, FVal, 03401 cast<CondCodeSDNode>(CC.getOperand(2))->get()); 03402 else 03403 return DAG.getSelectCC(DL, CC, DAG.getConstant(0, CC.getValueType()), TVal, 03404 FVal, ISD::SETNE); 03405 } 03406 03407 SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, 03408 SelectionDAG &DAG) const { 03409 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 03410 SDValue LHS = Op.getOperand(0); 03411 SDValue RHS = Op.getOperand(1); 03412 SDValue TVal = Op.getOperand(2); 03413 SDValue FVal = Op.getOperand(3); 03414 SDLoc dl(Op); 03415 03416 // Handle f128 first, because it will result in a comparison of some RTLIB 03417 // call result against zero. 03418 if (LHS.getValueType() == MVT::f128) { 03419 softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl); 03420 03421 // If softenSetCCOperands returned a scalar, we need to compare the result 03422 // against zero to select between true and false values. 03423 if (!RHS.getNode()) { 03424 RHS = DAG.getConstant(0, LHS.getValueType()); 03425 CC = ISD::SETNE; 03426 } 03427 } 03428 03429 // Handle integers first. 03430 if (LHS.getValueType().isInteger()) { 03431 assert((LHS.getValueType() == RHS.getValueType()) && 03432 (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)); 03433 03434 unsigned Opcode = AArch64ISD::CSEL; 03435 03436 // If both the TVal and the FVal are constants, see if we can swap them in 03437 // order to for a CSINV or CSINC out of them. 03438 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); 03439 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); 03440 03441 if (CTVal && CFVal && CTVal->isAllOnesValue() && CFVal->isNullValue()) { 03442 std::swap(TVal, FVal); 03443 std::swap(CTVal, CFVal); 03444 CC = ISD::getSetCCInverse(CC, true); 03445 } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isNullValue()) { 03446 std::swap(TVal, FVal); 03447 std::swap(CTVal, CFVal); 03448 CC = ISD::getSetCCInverse(CC, true); 03449 } else if (TVal.getOpcode() == ISD::XOR) { 03450 // If TVal is a NOT we want to swap TVal and FVal so that we can match 03451 // with a CSINV rather than a CSEL. 03452 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(1)); 03453 03454 if (CVal && CVal->isAllOnesValue()) { 03455 std::swap(TVal, FVal); 03456 std::swap(CTVal, CFVal); 03457 CC = ISD::getSetCCInverse(CC, true); 03458 } 03459 } else if (TVal.getOpcode() == ISD::SUB) { 03460 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so 03461 // that we can match with a CSNEG rather than a CSEL. 03462 ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(TVal.getOperand(0)); 03463 03464 if (CVal && CVal->isNullValue()) { 03465 std::swap(TVal, FVal); 03466 std::swap(CTVal, CFVal); 03467 CC = ISD::getSetCCInverse(CC, true); 03468 } 03469 } else if (CTVal && CFVal) { 03470 const int64_t TrueVal = CTVal->getSExtValue(); 03471 const int64_t FalseVal = CFVal->getSExtValue(); 03472 bool Swap = false; 03473 03474 // If both TVal and FVal are constants, see if FVal is the 03475 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC 03476 // instead of a CSEL in that case. 03477 if (TrueVal == ~FalseVal) { 03478 Opcode = AArch64ISD::CSINV; 03479 } else if (TrueVal == -FalseVal) { 03480 Opcode = AArch64ISD::CSNEG; 03481 } else if (TVal.getValueType() == MVT::i32) { 03482 // If our operands are only 32-bit wide, make sure we use 32-bit 03483 // arithmetic for the check whether we can use CSINC. This ensures that 03484 // the addition in the check will wrap around properly in case there is 03485 // an overflow (which would not be the case if we do the check with 03486 // 64-bit arithmetic). 03487 const uint32_t TrueVal32 = CTVal->getZExtValue(); 03488 const uint32_t FalseVal32 = CFVal->getZExtValue(); 03489 03490 if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { 03491 Opcode = AArch64ISD::CSINC; 03492 03493 if (TrueVal32 > FalseVal32) { 03494 Swap = true; 03495 } 03496 } 03497 // 64-bit check whether we can use CSINC. 03498 } else if ((TrueVal == FalseVal + 1) || (TrueVal + 1 == FalseVal)) { 03499 Opcode = AArch64ISD::CSINC; 03500 03501 if (TrueVal > FalseVal) { 03502 Swap = true; 03503 } 03504 } 03505 03506 // Swap TVal and FVal if necessary. 03507 if (Swap) { 03508 std::swap(TVal, FVal); 03509 std::swap(CTVal, CFVal); 03510 CC = ISD::getSetCCInverse(CC, true); 03511 } 03512 03513 if (Opcode != AArch64ISD::CSEL) { 03514 // Drop FVal since we can get its value by simply inverting/negating 03515 // TVal. 03516 FVal = TVal; 03517 } 03518 } 03519 03520 SDValue CCVal; 03521 SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); 03522 03523 EVT VT = Op.getValueType(); 03524 return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); 03525 } 03526 03527 // Now we know we're dealing with FP values. 03528 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 03529 assert(LHS.getValueType() == RHS.getValueType()); 03530 EVT VT = Op.getValueType(); 03531 03532 // Try to match this select into a max/min operation, which have dedicated 03533 // opcode in the instruction set. 03534 // FIXME: This is not correct in the presence of NaNs, so we only enable this 03535 // in no-NaNs mode. 03536 if (getTargetMachine().Options.NoNaNsFPMath) { 03537 SDValue MinMaxLHS = TVal, MinMaxRHS = FVal; 03538 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxRHS) && 03539 selectCCOpsAreFMaxCompatible(RHS, MinMaxLHS)) { 03540 CC = ISD::getSetCCSwappedOperands(CC); 03541 std::swap(MinMaxLHS, MinMaxRHS); 03542 } 03543 03544 if (selectCCOpsAreFMaxCompatible(LHS, MinMaxLHS) && 03545 selectCCOpsAreFMaxCompatible(RHS, MinMaxRHS)) { 03546 switch (CC) { 03547 default: 03548 break; 03549 case ISD::SETGT: 03550 case ISD::SETGE: 03551 case ISD::SETUGT: 03552 case ISD::SETUGE: 03553 case ISD::SETOGT: 03554 case ISD::SETOGE: 03555 return DAG.getNode(AArch64ISD::FMAX, dl, VT, MinMaxLHS, MinMaxRHS); 03556 break; 03557 case ISD::SETLT: 03558 case ISD::SETLE: 03559 case ISD::SETULT: 03560 case ISD::SETULE: 03561 case ISD::SETOLT: 03562 case ISD::SETOLE: 03563 return DAG.getNode(AArch64ISD::FMIN, dl, VT, MinMaxLHS, MinMaxRHS); 03564 break; 03565 } 03566 } 03567 } 03568 03569 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead 03570 // and do the comparison. 03571 SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); 03572 03573 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 03574 // clean. Some of them require two CSELs to implement. 03575 AArch64CC::CondCode CC1, CC2; 03576 changeFPCCToAArch64CC(CC, CC1, CC2); 03577 SDValue CC1Val = DAG.getConstant(CC1, MVT::i32); 03578 SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); 03579 03580 // If we need a second CSEL, emit it, using the output of the first as the 03581 // RHS. We're effectively OR'ing the two CC's together. 03582 if (CC2 != AArch64CC::AL) { 03583 SDValue CC2Val = DAG.getConstant(CC2, MVT::i32); 03584 return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); 03585 } 03586 03587 // Otherwise, return the output of the first CSEL. 03588 return CS1; 03589 } 03590 03591 SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, 03592 SelectionDAG &DAG) const { 03593 // Jump table entries as PC relative offsets. No additional tweaking 03594 // is necessary here. Just get the address of the jump table. 03595 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); 03596 EVT PtrVT = getPointerTy(); 03597 SDLoc DL(Op); 03598 03599 if (getTargetMachine().getCodeModel() == CodeModel::Large && 03600 !Subtarget->isTargetMachO()) { 03601 const unsigned char MO_NC = AArch64II::MO_NC; 03602 return DAG.getNode( 03603 AArch64ISD::WrapperLarge, DL, PtrVT, 03604 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G3), 03605 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G2 | MO_NC), 03606 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_G1 | MO_NC), 03607 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 03608 AArch64II::MO_G0 | MO_NC)); 03609 } 03610 03611 SDValue Hi = 03612 DAG.getTargetJumpTable(JT->getIndex(), PtrVT, AArch64II::MO_PAGE); 03613 SDValue Lo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, 03614 AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 03615 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); 03616 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); 03617 } 03618 03619 SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, 03620 SelectionDAG &DAG) const { 03621 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 03622 EVT PtrVT = getPointerTy(); 03623 SDLoc DL(Op); 03624 03625 if (getTargetMachine().getCodeModel() == CodeModel::Large) { 03626 // Use the GOT for the large code model on iOS. 03627 if (Subtarget->isTargetMachO()) { 03628 SDValue GotAddr = DAG.getTargetConstantPool( 03629 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), 03630 AArch64II::MO_GOT); 03631 return DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, GotAddr); 03632 } 03633 03634 const unsigned char MO_NC = AArch64II::MO_NC; 03635 return DAG.getNode( 03636 AArch64ISD::WrapperLarge, DL, PtrVT, 03637 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), 03638 CP->getOffset(), AArch64II::MO_G3), 03639 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), 03640 CP->getOffset(), AArch64II::MO_G2 | MO_NC), 03641 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), 03642 CP->getOffset(), AArch64II::MO_G1 | MO_NC), 03643 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), 03644 CP->getOffset(), AArch64II::MO_G0 | MO_NC)); 03645 } else { 03646 // Use ADRP/ADD or ADRP/LDR for everything else: the small memory model on 03647 // ELF, the only valid one on Darwin. 03648 SDValue Hi = 03649 DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlignment(), 03650 CP->getOffset(), AArch64II::MO_PAGE); 03651 SDValue Lo = DAG.getTargetConstantPool( 03652 CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), 03653 AArch64II::MO_PAGEOFF | AArch64II::MO_NC); 03654 03655 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); 03656 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); 03657 } 03658 } 03659 03660 SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, 03661 SelectionDAG &DAG) const { 03662 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 03663 EVT PtrVT = getPointerTy(); 03664 SDLoc DL(Op); 03665 if (getTargetMachine().getCodeModel() == CodeModel::Large && 03666 !Subtarget->isTargetMachO()) { 03667 const unsigned char MO_NC = AArch64II::MO_NC; 03668 return DAG.getNode( 03669 AArch64ISD::WrapperLarge, DL, PtrVT, 03670 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G3), 03671 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G2 | MO_NC), 03672 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G1 | MO_NC), 03673 DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_G0 | MO_NC)); 03674 } else { 03675 SDValue Hi = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGE); 03676 SDValue Lo = DAG.getTargetBlockAddress(BA, PtrVT, 0, AArch64II::MO_PAGEOFF | 03677 AArch64II::MO_NC); 03678 SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, Hi); 03679 return DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, Lo); 03680 } 03681 } 03682 03683 SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, 03684 SelectionDAG &DAG) const { 03685 AArch64FunctionInfo *FuncInfo = 03686 DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); 03687 03688 SDLoc DL(Op); 03689 SDValue FR = 03690 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); 03691 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 03692 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 03693 MachinePointerInfo(SV), false, false, 0); 03694 } 03695 03696 SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, 03697 SelectionDAG &DAG) const { 03698 // The layout of the va_list struct is specified in the AArch64 Procedure Call 03699 // Standard, section B.3. 03700 MachineFunction &MF = DAG.getMachineFunction(); 03701 AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); 03702 SDLoc DL(Op); 03703 03704 SDValue Chain = Op.getOperand(0); 03705 SDValue VAList = Op.getOperand(1); 03706 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 03707 SmallVector<SDValue, 4> MemOps; 03708 03709 // void *__stack at offset 0 03710 SDValue Stack = 03711 DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), getPointerTy()); 03712 MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, 03713 MachinePointerInfo(SV), false, false, 8)); 03714 03715 // void *__gr_top at offset 8 03716 int GPRSize = FuncInfo->getVarArgsGPRSize(); 03717 if (GPRSize > 0) { 03718 SDValue GRTop, GRTopAddr; 03719 03720 GRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03721 DAG.getConstant(8, getPointerTy())); 03722 03723 GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), getPointerTy()); 03724 GRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), GRTop, 03725 DAG.getConstant(GPRSize, getPointerTy())); 03726 03727 MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, 03728 MachinePointerInfo(SV, 8), false, false, 8)); 03729 } 03730 03731 // void *__vr_top at offset 16 03732 int FPRSize = FuncInfo->getVarArgsFPRSize(); 03733 if (FPRSize > 0) { 03734 SDValue VRTop, VRTopAddr; 03735 VRTopAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03736 DAG.getConstant(16, getPointerTy())); 03737 03738 VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), getPointerTy()); 03739 VRTop = DAG.getNode(ISD::ADD, DL, getPointerTy(), VRTop, 03740 DAG.getConstant(FPRSize, getPointerTy())); 03741 03742 MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, 03743 MachinePointerInfo(SV, 16), false, false, 8)); 03744 } 03745 03746 // int __gr_offs at offset 24 03747 SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03748 DAG.getConstant(24, getPointerTy())); 03749 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, MVT::i32), 03750 GROffsAddr, MachinePointerInfo(SV, 24), false, 03751 false, 4)); 03752 03753 // int __vr_offs at offset 28 03754 SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03755 DAG.getConstant(28, getPointerTy())); 03756 MemOps.push_back(DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, MVT::i32), 03757 VROffsAddr, MachinePointerInfo(SV, 28), false, 03758 false, 4)); 03759 03760 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 03761 } 03762 03763 SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, 03764 SelectionDAG &DAG) const { 03765 return Subtarget->isTargetDarwin() ? LowerDarwin_VASTART(Op, DAG) 03766 : LowerAAPCS_VASTART(Op, DAG); 03767 } 03768 03769 SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, 03770 SelectionDAG &DAG) const { 03771 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single 03772 // pointer. 03773 unsigned VaListSize = Subtarget->isTargetDarwin() ? 8 : 32; 03774 const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 03775 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 03776 03777 return DAG.getMemcpy(Op.getOperand(0), SDLoc(Op), Op.getOperand(1), 03778 Op.getOperand(2), DAG.getConstant(VaListSize, MVT::i32), 03779 8, false, false, MachinePointerInfo(DestSV), 03780 MachinePointerInfo(SrcSV)); 03781 } 03782 03783 SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { 03784 assert(Subtarget->isTargetDarwin() && 03785 "automatic va_arg instruction only works on Darwin"); 03786 03787 const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 03788 EVT VT = Op.getValueType(); 03789 SDLoc DL(Op); 03790 SDValue Chain = Op.getOperand(0); 03791 SDValue Addr = Op.getOperand(1); 03792 unsigned Align = Op.getConstantOperandVal(3); 03793 03794 SDValue VAList = DAG.getLoad(getPointerTy(), DL, Chain, Addr, 03795 MachinePointerInfo(V), false, false, false, 0); 03796 Chain = VAList.getValue(1); 03797 03798 if (Align > 8) { 03799 assert(((Align & (Align - 1)) == 0) && "Expected Align to be a power of 2"); 03800 VAList = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03801 DAG.getConstant(Align - 1, getPointerTy())); 03802 VAList = DAG.getNode(ISD::AND, DL, getPointerTy(), VAList, 03803 DAG.getConstant(-(int64_t)Align, getPointerTy())); 03804 } 03805 03806 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 03807 uint64_t ArgSize = getDataLayout()->getTypeAllocSize(ArgTy); 03808 03809 // Scalar integer and FP values smaller than 64 bits are implicitly extended 03810 // up to 64 bits. At the very least, we have to increase the striding of the 03811 // vaargs list to match this, and for FP values we need to introduce 03812 // FP_ROUND nodes as well. 03813 if (VT.isInteger() && !VT.isVector()) 03814 ArgSize = 8; 03815 bool NeedFPTrunc = false; 03816 if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { 03817 ArgSize = 8; 03818 NeedFPTrunc = true; 03819 } 03820 03821 // Increment the pointer, VAList, to the next vaarg 03822 SDValue VANext = DAG.getNode(ISD::ADD, DL, getPointerTy(), VAList, 03823 DAG.getConstant(ArgSize, getPointerTy())); 03824 // Store the incremented VAList to the legalized pointer 03825 SDValue APStore = DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V), 03826 false, false, 0); 03827 03828 // Load the actual argument out of the pointer VAList 03829 if (NeedFPTrunc) { 03830 // Load the value as an f64. 03831 SDValue WideFP = DAG.getLoad(MVT::f64, DL, APStore, VAList, 03832 MachinePointerInfo(), false, false, false, 0); 03833 // Round the value down to an f32. 03834 SDValue NarrowFP = DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), 03835 DAG.getIntPtrConstant(1)); 03836 SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; 03837 // Merge the rounded value with the chain output of the load. 03838 return DAG.getMergeValues(Ops, DL); 03839 } 03840 03841 return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo(), false, 03842 false, false, 0); 03843 } 03844 03845 SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, 03846 SelectionDAG &DAG) const { 03847 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 03848 MFI->setFrameAddressIsTaken(true); 03849 03850 EVT VT = Op.getValueType(); 03851 SDLoc DL(Op); 03852 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 03853 SDValue FrameAddr = 03854 DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); 03855 while (Depth--) 03856 FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, 03857 MachinePointerInfo(), false, false, false, 0); 03858 return FrameAddr; 03859 } 03860 03861 // FIXME? Maybe this could be a TableGen attribute on some registers and 03862 // this table could be generated automatically from RegInfo. 03863 unsigned AArch64TargetLowering::getRegisterByName(const char* RegName, 03864 EVT VT) const { 03865 unsigned Reg = StringSwitch<unsigned>(RegName) 03866 .Case("sp", AArch64::SP) 03867 .Default(0); 03868 if (Reg) 03869 return Reg; 03870 report_fatal_error("Invalid register name global variable"); 03871 } 03872 03873 SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, 03874 SelectionDAG &DAG) const { 03875 MachineFunction &MF = DAG.getMachineFunction(); 03876 MachineFrameInfo *MFI = MF.getFrameInfo(); 03877 MFI->setReturnAddressIsTaken(true); 03878 03879 EVT VT = Op.getValueType(); 03880 SDLoc DL(Op); 03881 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 03882 if (Depth) { 03883 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 03884 SDValue Offset = DAG.getConstant(8, getPointerTy()); 03885 return DAG.getLoad(VT, DL, DAG.getEntryNode(), 03886 DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), 03887 MachinePointerInfo(), false, false, false, 0); 03888 } 03889 03890 // Return LR, which contains the return address. Mark it an implicit live-in. 03891 unsigned Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); 03892 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); 03893 } 03894 03895 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 03896 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 03897 SDValue AArch64TargetLowering::LowerShiftRightParts(SDValue Op, 03898 SelectionDAG &DAG) const { 03899 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 03900 EVT VT = Op.getValueType(); 03901 unsigned VTBits = VT.getSizeInBits(); 03902 SDLoc dl(Op); 03903 SDValue ShOpLo = Op.getOperand(0); 03904 SDValue ShOpHi = Op.getOperand(1); 03905 SDValue ShAmt = Op.getOperand(2); 03906 SDValue ARMcc; 03907 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 03908 03909 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 03910 03911 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 03912 DAG.getConstant(VTBits, MVT::i64), ShAmt); 03913 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 03914 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 03915 DAG.getConstant(VTBits, MVT::i64)); 03916 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 03917 03918 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), 03919 ISD::SETGE, dl, DAG); 03920 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); 03921 03922 SDValue FalseValLo = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 03923 SDValue TrueValLo = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 03924 SDValue Lo = 03925 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); 03926 03927 // AArch64 shifts larger than the register width are wrapped rather than 03928 // clamped, so we can't just emit "hi >> x". 03929 SDValue FalseValHi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 03930 SDValue TrueValHi = Opc == ISD::SRA 03931 ? DAG.getNode(Opc, dl, VT, ShOpHi, 03932 DAG.getConstant(VTBits - 1, MVT::i64)) 03933 : DAG.getConstant(0, VT); 03934 SDValue Hi = 03935 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValHi, FalseValHi, CCVal, Cmp); 03936 03937 SDValue Ops[2] = { Lo, Hi }; 03938 return DAG.getMergeValues(Ops, dl); 03939 } 03940 03941 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 03942 /// i64 values and take a 2 x i64 value to shift plus a shift amount. 03943 SDValue AArch64TargetLowering::LowerShiftLeftParts(SDValue Op, 03944 SelectionDAG &DAG) const { 03945 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 03946 EVT VT = Op.getValueType(); 03947 unsigned VTBits = VT.getSizeInBits(); 03948 SDLoc dl(Op); 03949 SDValue ShOpLo = Op.getOperand(0); 03950 SDValue ShOpHi = Op.getOperand(1); 03951 SDValue ShAmt = Op.getOperand(2); 03952 SDValue ARMcc; 03953 03954 assert(Op.getOpcode() == ISD::SHL_PARTS); 03955 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, 03956 DAG.getConstant(VTBits, MVT::i64), ShAmt); 03957 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 03958 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i64, ShAmt, 03959 DAG.getConstant(VTBits, MVT::i64)); 03960 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 03961 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 03962 03963 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 03964 03965 SDValue Cmp = emitComparison(ExtraShAmt, DAG.getConstant(0, MVT::i64), 03966 ISD::SETGE, dl, DAG); 03967 SDValue CCVal = DAG.getConstant(AArch64CC::GE, MVT::i32); 03968 SDValue Hi = 03969 DAG.getNode(AArch64ISD::CSEL, dl, VT, Tmp3, FalseVal, CCVal, Cmp); 03970 03971 // AArch64 shifts of larger than register sizes are wrapped rather than 03972 // clamped, so we can't just emit "lo << a" if a is too big. 03973 SDValue TrueValLo = DAG.getConstant(0, VT); 03974 SDValue FalseValLo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 03975 SDValue Lo = 03976 DAG.getNode(AArch64ISD::CSEL, dl, VT, TrueValLo, FalseValLo, CCVal, Cmp); 03977 03978 SDValue Ops[2] = { Lo, Hi }; 03979 return DAG.getMergeValues(Ops, dl); 03980 } 03981 03982 bool AArch64TargetLowering::isOffsetFoldingLegal( 03983 const GlobalAddressSDNode *GA) const { 03984 // The AArch64 target doesn't support folding offsets into global addresses. 03985 return false; 03986 } 03987 03988 bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 03989 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit and 32-bit cases. 03990 // FIXME: We should be able to handle f128 as well with a clever lowering. 03991 if (Imm.isPosZero() && (VT == MVT::f64 || VT == MVT::f32)) 03992 return true; 03993 03994 if (VT == MVT::f64) 03995 return AArch64_AM::getFP64Imm(Imm) != -1; 03996 else if (VT == MVT::f32) 03997 return AArch64_AM::getFP32Imm(Imm) != -1; 03998 return false; 03999 } 04000 04001 //===----------------------------------------------------------------------===// 04002 // AArch64 Optimization Hooks 04003 //===----------------------------------------------------------------------===// 04004 04005 //===----------------------------------------------------------------------===// 04006 // AArch64 Inline Assembly Support 04007 //===----------------------------------------------------------------------===// 04008 04009 // Table of Constraints 04010 // TODO: This is the current set of constraints supported by ARM for the 04011 // compiler, not all of them may make sense, e.g. S may be difficult to support. 04012 // 04013 // r - A general register 04014 // w - An FP/SIMD register of some size in the range v0-v31 04015 // x - An FP/SIMD register of some size in the range v0-v15 04016 // I - Constant that can be used with an ADD instruction 04017 // J - Constant that can be used with a SUB instruction 04018 // K - Constant that can be used with a 32-bit logical instruction 04019 // L - Constant that can be used with a 64-bit logical instruction 04020 // M - Constant that can be used as a 32-bit MOV immediate 04021 // N - Constant that can be used as a 64-bit MOV immediate 04022 // Q - A memory reference with base register and no offset 04023 // S - A symbolic address 04024 // Y - Floating point constant zero 04025 // Z - Integer constant zero 04026 // 04027 // Note that general register operands will be output using their 64-bit x 04028 // register name, whatever the size of the variable, unless the asm operand 04029 // is prefixed by the %w modifier. Floating-point and SIMD register operands 04030 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or 04031 // %q modifier. 04032 04033 /// getConstraintType - Given a constraint letter, return the type of 04034 /// constraint it is for this target. 04035 AArch64TargetLowering::ConstraintType 04036 AArch64TargetLowering::getConstraintType(const std::string &Constraint) const { 04037 if (Constraint.size() == 1) { 04038 switch (Constraint[0]) { 04039 default: 04040 break; 04041 case 'z': 04042 return C_Other; 04043 case 'x': 04044 case 'w': 04045 return C_RegisterClass; 04046 // An address with a single base register. Due to the way we 04047 // currently handle addresses it is the same as 'r'. 04048 case 'Q': 04049 return C_Memory; 04050 } 04051 } 04052 return TargetLowering::getConstraintType(Constraint); 04053 } 04054 04055 /// Examine constraint type and operand type and determine a weight value. 04056 /// This object must already have been set up with the operand type 04057 /// and the current alternative constraint selected. 04058 TargetLowering::ConstraintWeight 04059 AArch64TargetLowering::getSingleConstraintMatchWeight( 04060 AsmOperandInfo &info, const char *constraint) const { 04061 ConstraintWeight weight = CW_Invalid; 04062 Value *CallOperandVal = info.CallOperandVal; 04063 // If we don't have a value, we can't do a match, 04064 // but allow it at the lowest weight. 04065 if (!CallOperandVal) 04066 return CW_Default; 04067 Type *type = CallOperandVal->getType(); 04068 // Look at the constraint type. 04069 switch (*constraint) { 04070 default: 04071 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 04072 break; 04073 case 'x': 04074 case 'w': 04075 if (type->isFloatingPointTy() || type->isVectorTy()) 04076 weight = CW_Register; 04077 break; 04078 case 'z': 04079 weight = CW_Constant; 04080 break; 04081 } 04082 return weight; 04083 } 04084 04085 std::pair<unsigned, const TargetRegisterClass *> 04086 AArch64TargetLowering::getRegForInlineAsmConstraint( 04087 const std::string &Constraint, MVT VT) const { 04088 if (Constraint.size() == 1) { 04089 switch (Constraint[0]) { 04090 case 'r': 04091 if (VT.getSizeInBits() == 64) 04092 return std::make_pair(0U, &AArch64::GPR64commonRegClass); 04093 return std::make_pair(0U, &AArch64::GPR32commonRegClass); 04094 case 'w': 04095 if (VT == MVT::f32) 04096 return std::make_pair(0U, &AArch64::FPR32RegClass); 04097 if (VT.getSizeInBits() == 64) 04098 return std::make_pair(0U, &AArch64::FPR64RegClass); 04099 if (VT.getSizeInBits() == 128) 04100 return std::make_pair(0U, &AArch64::FPR128RegClass); 04101 break; 04102 // The instructions that this constraint is designed for can 04103 // only take 128-bit registers so just use that regclass. 04104 case 'x': 04105 if (VT.getSizeInBits() == 128) 04106 return std::make_pair(0U, &AArch64::FPR128_loRegClass); 04107 break; 04108 } 04109 } 04110 if (StringRef("{cc}").equals_lower(Constraint)) 04111 return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); 04112 04113 // Use the default implementation in TargetLowering to convert the register 04114 // constraint into a member of a register class. 04115 std::pair<unsigned, const TargetRegisterClass *> Res; 04116 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 04117 04118 // Not found as a standard register? 04119 if (!Res.second) { 04120 unsigned Size = Constraint.size(); 04121 if ((Size == 4 || Size == 5) && Constraint[0] == '{' && 04122 tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { 04123 const std::string Reg = 04124 std::string(&Constraint[2], &Constraint[Size - 1]); 04125 int RegNo = atoi(Reg.c_str()); 04126 if (RegNo >= 0 && RegNo <= 31) { 04127 // v0 - v31 are aliases of q0 - q31. 04128 // By default we'll emit v0-v31 for this unless there's a modifier where 04129 // we'll emit the correct register as well. 04130 Res.first = AArch64::FPR128RegClass.getRegister(RegNo); 04131 Res.second = &AArch64::FPR128RegClass; 04132 } 04133 } 04134 } 04135 04136 return Res; 04137 } 04138 04139 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 04140 /// vector. If it is invalid, don't add anything to Ops. 04141 void AArch64TargetLowering::LowerAsmOperandForConstraint( 04142 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, 04143 SelectionDAG &DAG) const { 04144 SDValue Result; 04145 04146 // Currently only support length 1 constraints. 04147 if (Constraint.length() != 1) 04148 return; 04149 04150 char ConstraintLetter = Constraint[0]; 04151 switch (ConstraintLetter) { 04152 default: 04153 break; 04154 04155 // This set of constraints deal with valid constants for various instructions. 04156 // Validate and return a target constant for them if we can. 04157 case 'z': { 04158 // 'z' maps to xzr or wzr so it needs an input of 0. 04159 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 04160 if (!C || C->getZExtValue() != 0) 04161 return; 04162 04163 if (Op.getValueType() == MVT::i64) 04164 Result = DAG.getRegister(AArch64::XZR, MVT::i64); 04165 else 04166 Result = DAG.getRegister(AArch64::WZR, MVT::i32); 04167 break; 04168 } 04169 04170 case 'I': 04171 case 'J': 04172 case 'K': 04173 case 'L': 04174 case 'M': 04175 case 'N': 04176 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 04177 if (!C) 04178 return; 04179 04180 // Grab the value and do some validation. 04181 uint64_t CVal = C->getZExtValue(); 04182 switch (ConstraintLetter) { 04183 // The I constraint applies only to simple ADD or SUB immediate operands: 04184 // i.e. 0 to 4095 with optional shift by 12 04185 // The J constraint applies only to ADD or SUB immediates that would be 04186 // valid when negated, i.e. if [an add pattern] were to be output as a SUB 04187 // instruction [or vice versa], in other words -1 to -4095 with optional 04188 // left shift by 12. 04189 case 'I': 04190 if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) 04191 break; 04192 return; 04193 case 'J': { 04194 uint64_t NVal = -C->getSExtValue(); 04195 if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { 04196 CVal = C->getSExtValue(); 04197 break; 04198 } 04199 return; 04200 } 04201 // The K and L constraints apply *only* to logical immediates, including 04202 // what used to be the MOVI alias for ORR (though the MOVI alias has now 04203 // been removed and MOV should be used). So these constraints have to 04204 // distinguish between bit patterns that are valid 32-bit or 64-bit 04205 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but 04206 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice 04207 // versa. 04208 case 'K': 04209 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 04210 break; 04211 return; 04212 case 'L': 04213 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 04214 break; 04215 return; 04216 // The M and N constraints are a superset of K and L respectively, for use 04217 // with the MOV (immediate) alias. As well as the logical immediates they 04218 // also match 32 or 64-bit immediates that can be loaded either using a 04219 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca 04220 // (M) or 64-bit 0x1234000000000000 (N) etc. 04221 // As a note some of this code is liberally stolen from the asm parser. 04222 case 'M': { 04223 if (!isUInt<32>(CVal)) 04224 return; 04225 if (AArch64_AM::isLogicalImmediate(CVal, 32)) 04226 break; 04227 if ((CVal & 0xFFFF) == CVal) 04228 break; 04229 if ((CVal & 0xFFFF0000ULL) == CVal) 04230 break; 04231 uint64_t NCVal = ~(uint32_t)CVal; 04232 if ((NCVal & 0xFFFFULL) == NCVal) 04233 break; 04234 if ((NCVal & 0xFFFF0000ULL) == NCVal) 04235 break; 04236 return; 04237 } 04238 case 'N': { 04239 if (AArch64_AM::isLogicalImmediate(CVal, 64)) 04240 break; 04241 if ((CVal & 0xFFFFULL) == CVal) 04242 break; 04243 if ((CVal & 0xFFFF0000ULL) == CVal) 04244 break; 04245 if ((CVal & 0xFFFF00000000ULL) == CVal) 04246 break; 04247 if ((CVal & 0xFFFF000000000000ULL) == CVal) 04248 break; 04249 uint64_t NCVal = ~CVal; 04250 if ((NCVal & 0xFFFFULL) == NCVal) 04251 break; 04252 if ((NCVal & 0xFFFF0000ULL) == NCVal) 04253 break; 04254 if ((NCVal & 0xFFFF00000000ULL) == NCVal) 04255 break; 04256 if ((NCVal & 0xFFFF000000000000ULL) == NCVal) 04257 break; 04258 return; 04259 } 04260 default: 04261 return; 04262 } 04263 04264 // All assembler immediates are 64-bit integers. 04265 Result = DAG.getTargetConstant(CVal, MVT::i64); 04266 break; 04267 } 04268 04269 if (Result.getNode()) { 04270 Ops.push_back(Result); 04271 return; 04272 } 04273 04274 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 04275 } 04276 04277 //===----------------------------------------------------------------------===// 04278 // AArch64 Advanced SIMD Support 04279 //===----------------------------------------------------------------------===// 04280 04281 /// WidenVector - Given a value in the V64 register class, produce the 04282 /// equivalent value in the V128 register class. 04283 static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { 04284 EVT VT = V64Reg.getValueType(); 04285 unsigned NarrowSize = VT.getVectorNumElements(); 04286 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 04287 MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); 04288 SDLoc DL(V64Reg); 04289 04290 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), 04291 V64Reg, DAG.getConstant(0, MVT::i32)); 04292 } 04293 04294 /// getExtFactor - Determine the adjustment factor for the position when 04295 /// generating an "extract from vector registers" instruction. 04296 static unsigned getExtFactor(SDValue &V) { 04297 EVT EltType = V.getValueType().getVectorElementType(); 04298 return EltType.getSizeInBits() / 8; 04299 } 04300 04301 /// NarrowVector - Given a value in the V128 register class, produce the 04302 /// equivalent value in the V64 register class. 04303 static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { 04304 EVT VT = V128Reg.getValueType(); 04305 unsigned WideSize = VT.getVectorNumElements(); 04306 MVT EltTy = VT.getVectorElementType().getSimpleVT(); 04307 MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); 04308 SDLoc DL(V128Reg); 04309 04310 return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); 04311 } 04312 04313 // Gather data to see if the operation can be modelled as a 04314 // shuffle in combination with VEXTs. 04315 SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, 04316 SelectionDAG &DAG) const { 04317 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 04318 SDLoc dl(Op); 04319 EVT VT = Op.getValueType(); 04320 unsigned NumElts = VT.getVectorNumElements(); 04321 04322 struct ShuffleSourceInfo { 04323 SDValue Vec; 04324 unsigned MinElt; 04325 unsigned MaxElt; 04326 04327 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 04328 // be compatible with the shuffle we intend to construct. As a result 04329 // ShuffleVec will be some sliding window into the original Vec. 04330 SDValue ShuffleVec; 04331 04332 // Code should guarantee that element i in Vec starts at element "WindowBase 04333 // + i * WindowScale in ShuffleVec". 04334 int WindowBase; 04335 int WindowScale; 04336 04337 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 04338 ShuffleSourceInfo(SDValue Vec) 04339 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0), 04340 WindowScale(1) {} 04341 }; 04342 04343 // First gather all vectors used as an immediate source for this BUILD_VECTOR 04344 // node. 04345 SmallVector<ShuffleSourceInfo, 2> Sources; 04346 for (unsigned i = 0; i < NumElts; ++i) { 04347 SDValue V = Op.getOperand(i); 04348 if (V.getOpcode() == ISD::UNDEF) 04349 continue; 04350 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 04351 // A shuffle can only come from building a vector from various 04352 // elements of other vectors. 04353 return SDValue(); 04354 } 04355 04356 // Add this element source to the list if it's not already there. 04357 SDValue SourceVec = V.getOperand(0); 04358 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec); 04359 if (Source == Sources.end()) 04360 Sources.push_back(ShuffleSourceInfo(SourceVec)); 04361 04362 // Update the minimum and maximum lane number seen. 04363 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 04364 Source->MinElt = std::min(Source->MinElt, EltNo); 04365 Source->MaxElt = std::max(Source->MaxElt, EltNo); 04366 } 04367 04368 // Currently only do something sane when at most two source vectors 04369 // are involved. 04370 if (Sources.size() > 2) 04371 return SDValue(); 04372 04373 // Find out the smallest element size among result and two sources, and use 04374 // it as element size to build the shuffle_vector. 04375 EVT SmallestEltTy = VT.getVectorElementType(); 04376 for (auto &Source : Sources) { 04377 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 04378 if (SrcEltTy.bitsLT(SmallestEltTy)) { 04379 SmallestEltTy = SrcEltTy; 04380 } 04381 } 04382 unsigned ResMultiplier = 04383 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits(); 04384 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 04385 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 04386 04387 // If the source vector is too wide or too narrow, we may nevertheless be able 04388 // to construct a compatible shuffle either by concatenating it with UNDEF or 04389 // extracting a suitable range of elements. 04390 for (auto &Src : Sources) { 04391 EVT SrcVT = Src.ShuffleVec.getValueType(); 04392 04393 if (SrcVT.getSizeInBits() == VT.getSizeInBits()) 04394 continue; 04395 04396 // This stage of the search produces a source with the same element type as 04397 // the original, but with a total width matching the BUILD_VECTOR output. 04398 EVT EltVT = SrcVT.getVectorElementType(); 04399 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, 04400 VT.getSizeInBits() / EltVT.getSizeInBits()); 04401 04402 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { 04403 assert(2 * SrcVT.getSizeInBits() == VT.getSizeInBits()); 04404 // We can pad out the smaller vector for free, so if it's part of a 04405 // shuffle... 04406 Src.ShuffleVec = 04407 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 04408 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 04409 continue; 04410 } 04411 04412 assert(SrcVT.getSizeInBits() == 2 * VT.getSizeInBits()); 04413 04414 if (Src.MaxElt - Src.MinElt >= NumElts) { 04415 // Span too large for a VEXT to cope 04416 return SDValue(); 04417 } 04418 04419 if (Src.MinElt >= NumElts) { 04420 // The extraction can just take the second half 04421 Src.ShuffleVec = 04422 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 04423 DAG.getIntPtrConstant(NumElts)); 04424 Src.WindowBase = -NumElts; 04425 } else if (Src.MaxElt < NumElts) { 04426 // The extraction can just take the first half 04427 Src.ShuffleVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 04428 Src.ShuffleVec, DAG.getIntPtrConstant(0)); 04429 } else { 04430 // An actual VEXT is needed 04431 SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 04432 Src.ShuffleVec, DAG.getIntPtrConstant(0)); 04433 SDValue VEXTSrc2 = 04434 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 04435 DAG.getIntPtrConstant(NumElts)); 04436 unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); 04437 04438 Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, 04439 VEXTSrc2, DAG.getConstant(Imm, MVT::i32)); 04440 Src.WindowBase = -Src.MinElt; 04441 } 04442 } 04443 04444 // Another possible incompatibility occurs from the vector element types. We 04445 // can fix this by bitcasting the source vectors to the same type we intend 04446 // for the shuffle. 04447 for (auto &Src : Sources) { 04448 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 04449 if (SrcEltTy == SmallestEltTy) 04450 continue; 04451 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 04452 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); 04453 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 04454 Src.WindowBase *= Src.WindowScale; 04455 } 04456 04457 // Final sanity check before we try to actually produce a shuffle. 04458 DEBUG( 04459 for (auto Src : Sources) 04460 assert(Src.ShuffleVec.getValueType() == ShuffleVT); 04461 ); 04462 04463 // The stars all align, our next step is to produce the mask for the shuffle. 04464 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 04465 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits(); 04466 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 04467 SDValue Entry = Op.getOperand(i); 04468 if (Entry.getOpcode() == ISD::UNDEF) 04469 continue; 04470 04471 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0)); 04472 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 04473 04474 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 04475 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 04476 // segment. 04477 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 04478 int BitsDefined = std::min(OrigEltTy.getSizeInBits(), 04479 VT.getVectorElementType().getSizeInBits()); 04480 int LanesDefined = BitsDefined / BitsPerShuffleLane; 04481 04482 // This source is expected to fill ResMultiplier lanes of the final shuffle, 04483 // starting at the appropriate offset. 04484 int *LaneMask = &Mask[i * ResMultiplier]; 04485 04486 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 04487 ExtractBase += NumElts * (Src - Sources.begin()); 04488 for (int j = 0; j < LanesDefined; ++j) 04489 LaneMask[j] = ExtractBase + j; 04490 } 04491 04492 // Final check before we try to produce nonsense... 04493 if (!isShuffleMaskLegal(Mask, ShuffleVT)) 04494 return SDValue(); 04495 04496 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 04497 for (unsigned i = 0; i < Sources.size(); ++i) 04498 ShuffleOps[i] = Sources[i].ShuffleVec; 04499 04500 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 04501 ShuffleOps[1], &Mask[0]); 04502 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); 04503 } 04504 04505 // check if an EXT instruction can handle the shuffle mask when the 04506 // vector sources of the shuffle are the same. 04507 static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 04508 unsigned NumElts = VT.getVectorNumElements(); 04509 04510 // Assume that the first shuffle index is not UNDEF. Fail if it is. 04511 if (M[0] < 0) 04512 return false; 04513 04514 Imm = M[0]; 04515 04516 // If this is a VEXT shuffle, the immediate value is the index of the first 04517 // element. The other shuffle indices must be the successive elements after 04518 // the first one. 04519 unsigned ExpectedElt = Imm; 04520 for (unsigned i = 1; i < NumElts; ++i) { 04521 // Increment the expected index. If it wraps around, just follow it 04522 // back to index zero and keep going. 04523 ++ExpectedElt; 04524 if (ExpectedElt == NumElts) 04525 ExpectedElt = 0; 04526 04527 if (M[i] < 0) 04528 continue; // ignore UNDEF indices 04529 if (ExpectedElt != static_cast<unsigned>(M[i])) 04530 return false; 04531 } 04532 04533 return true; 04534 } 04535 04536 // check if an EXT instruction can handle the shuffle mask when the 04537 // vector sources of the shuffle are different. 04538 static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, 04539 unsigned &Imm) { 04540 // Look for the first non-undef element. 04541 const int *FirstRealElt = std::find_if(M.begin(), M.end(), 04542 [](int Elt) {return Elt >= 0;}); 04543 04544 // Benefit form APInt to handle overflow when calculating expected element. 04545 unsigned NumElts = VT.getVectorNumElements(); 04546 unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); 04547 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); 04548 // The following shuffle indices must be the successive elements after the 04549 // first real element. 04550 const int *FirstWrongElt = std::find_if(FirstRealElt + 1, M.end(), 04551 [&](int Elt) {return Elt != ExpectedElt++ && Elt != -1;}); 04552 if (FirstWrongElt != M.end()) 04553 return false; 04554 04555 // The index of an EXT is the first element if it is not UNDEF. 04556 // Watch out for the beginning UNDEFs. The EXT index should be the expected 04557 // value of the first element. E.g. 04558 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. 04559 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. 04560 // ExpectedElt is the last mask index plus 1. 04561 Imm = ExpectedElt.getZExtValue(); 04562 04563 // There are two difference cases requiring to reverse input vectors. 04564 // For example, for vector <4 x i32> we have the following cases, 04565 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) 04566 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) 04567 // For both cases, we finally use mask <5, 6, 7, 0>, which requires 04568 // to reverse two input vectors. 04569 if (Imm < NumElts) 04570 ReverseEXT = true; 04571 else 04572 Imm -= NumElts; 04573 04574 return true; 04575 } 04576 04577 /// isREVMask - Check if a vector shuffle corresponds to a REV 04578 /// instruction with the specified blocksize. (The order of the elements 04579 /// within each block of the vector is reversed.) 04580 static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 04581 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && 04582 "Only possible block sizes for REV are: 16, 32, 64"); 04583 04584 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 04585 if (EltSz == 64) 04586 return false; 04587 04588 unsigned NumElts = VT.getVectorNumElements(); 04589 unsigned BlockElts = M[0] + 1; 04590 // If the first shuffle index is UNDEF, be optimistic. 04591 if (M[0] < 0) 04592 BlockElts = BlockSize / EltSz; 04593 04594 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 04595 return false; 04596 04597 for (unsigned i = 0; i < NumElts; ++i) { 04598 if (M[i] < 0) 04599 continue; // ignore UNDEF indices 04600 if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) 04601 return false; 04602 } 04603 04604 return true; 04605 } 04606 04607 static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04608 unsigned NumElts = VT.getVectorNumElements(); 04609 WhichResult = (M[0] == 0 ? 0 : 1); 04610 unsigned Idx = WhichResult * NumElts / 2; 04611 for (unsigned i = 0; i != NumElts; i += 2) { 04612 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 04613 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) 04614 return false; 04615 Idx += 1; 04616 } 04617 04618 return true; 04619 } 04620 04621 static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04622 unsigned NumElts = VT.getVectorNumElements(); 04623 WhichResult = (M[0] == 0 ? 0 : 1); 04624 for (unsigned i = 0; i != NumElts; ++i) { 04625 if (M[i] < 0) 04626 continue; // ignore UNDEF indices 04627 if ((unsigned)M[i] != 2 * i + WhichResult) 04628 return false; 04629 } 04630 04631 return true; 04632 } 04633 04634 static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04635 unsigned NumElts = VT.getVectorNumElements(); 04636 WhichResult = (M[0] == 0 ? 0 : 1); 04637 for (unsigned i = 0; i < NumElts; i += 2) { 04638 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 04639 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) 04640 return false; 04641 } 04642 return true; 04643 } 04644 04645 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of 04646 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 04647 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 04648 static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04649 unsigned NumElts = VT.getVectorNumElements(); 04650 WhichResult = (M[0] == 0 ? 0 : 1); 04651 unsigned Idx = WhichResult * NumElts / 2; 04652 for (unsigned i = 0; i != NumElts; i += 2) { 04653 if ((M[i] >= 0 && (unsigned)M[i] != Idx) || 04654 (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) 04655 return false; 04656 Idx += 1; 04657 } 04658 04659 return true; 04660 } 04661 04662 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of 04663 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 04664 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 04665 static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04666 unsigned Half = VT.getVectorNumElements() / 2; 04667 WhichResult = (M[0] == 0 ? 0 : 1); 04668 for (unsigned j = 0; j != 2; ++j) { 04669 unsigned Idx = WhichResult; 04670 for (unsigned i = 0; i != Half; ++i) { 04671 int MIdx = M[i + j * Half]; 04672 if (MIdx >= 0 && (unsigned)MIdx != Idx) 04673 return false; 04674 Idx += 2; 04675 } 04676 } 04677 04678 return true; 04679 } 04680 04681 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of 04682 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 04683 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 04684 static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 04685 unsigned NumElts = VT.getVectorNumElements(); 04686 WhichResult = (M[0] == 0 ? 0 : 1); 04687 for (unsigned i = 0; i < NumElts; i += 2) { 04688 if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || 04689 (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) 04690 return false; 04691 } 04692 return true; 04693 } 04694 04695 static bool isINSMask(ArrayRef<int> M, int NumInputElements, 04696 bool &DstIsLeft, int &Anomaly) { 04697 if (M.size() != static_cast<size_t>(NumInputElements)) 04698 return false; 04699 04700 int NumLHSMatch = 0, NumRHSMatch = 0; 04701 int LastLHSMismatch = -1, LastRHSMismatch = -1; 04702 04703 for (int i = 0; i < NumInputElements; ++i) { 04704 if (M[i] == -1) { 04705 ++NumLHSMatch; 04706 ++NumRHSMatch; 04707 continue; 04708 } 04709 04710 if (M[i] == i) 04711 ++NumLHSMatch; 04712 else 04713 LastLHSMismatch = i; 04714 04715 if (M[i] == i + NumInputElements) 04716 ++NumRHSMatch; 04717 else 04718 LastRHSMismatch = i; 04719 } 04720 04721 if (NumLHSMatch == NumInputElements - 1) { 04722 DstIsLeft = true; 04723 Anomaly = LastLHSMismatch; 04724 return true; 04725 } else if (NumRHSMatch == NumInputElements - 1) { 04726 DstIsLeft = false; 04727 Anomaly = LastRHSMismatch; 04728 return true; 04729 } 04730 04731 return false; 04732 } 04733 04734 static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { 04735 if (VT.getSizeInBits() != 128) 04736 return false; 04737 04738 unsigned NumElts = VT.getVectorNumElements(); 04739 04740 for (int I = 0, E = NumElts / 2; I != E; I++) { 04741 if (Mask[I] != I) 04742 return false; 04743 } 04744 04745 int Offset = NumElts / 2; 04746 for (int I = NumElts / 2, E = NumElts; I != E; I++) { 04747 if (Mask[I] != I + SplitLHS * Offset) 04748 return false; 04749 } 04750 04751 return true; 04752 } 04753 04754 static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { 04755 SDLoc DL(Op); 04756 EVT VT = Op.getValueType(); 04757 SDValue V0 = Op.getOperand(0); 04758 SDValue V1 = Op.getOperand(1); 04759 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); 04760 04761 if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || 04762 VT.getVectorElementType() != V1.getValueType().getVectorElementType()) 04763 return SDValue(); 04764 04765 bool SplitV0 = V0.getValueType().getSizeInBits() == 128; 04766 04767 if (!isConcatMask(Mask, VT, SplitV0)) 04768 return SDValue(); 04769 04770 EVT CastVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 04771 VT.getVectorNumElements() / 2); 04772 if (SplitV0) { 04773 V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, 04774 DAG.getConstant(0, MVT::i64)); 04775 } 04776 if (V1.getValueType().getSizeInBits() == 128) { 04777 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, 04778 DAG.getConstant(0, MVT::i64)); 04779 } 04780 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); 04781 } 04782 04783 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 04784 /// the specified operations to build the shuffle. 04785 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 04786 SDValue RHS, SelectionDAG &DAG, 04787 SDLoc dl) { 04788 unsigned OpNum = (PFEntry >> 26) & 0x0F; 04789 unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); 04790 unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); 04791 04792 enum { 04793 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 04794 OP_VREV, 04795 OP_VDUP0, 04796 OP_VDUP1, 04797 OP_VDUP2, 04798 OP_VDUP3, 04799 OP_VEXT1, 04800 OP_VEXT2, 04801 OP_VEXT3, 04802 OP_VUZPL, // VUZP, left result 04803 OP_VUZPR, // VUZP, right result 04804 OP_VZIPL, // VZIP, left result 04805 OP_VZIPR, // VZIP, right result 04806 OP_VTRNL, // VTRN, left result 04807 OP_VTRNR // VTRN, right result 04808 }; 04809 04810 if (OpNum == OP_COPY) { 04811 if (LHSID == (1 * 9 + 2) * 9 + 3) 04812 return LHS; 04813 assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!"); 04814 return RHS; 04815 } 04816 04817 SDValue OpLHS, OpRHS; 04818 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 04819 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 04820 EVT VT = OpLHS.getValueType(); 04821 04822 switch (OpNum) { 04823 default: 04824 llvm_unreachable("Unknown shuffle opcode!"); 04825 case OP_VREV: 04826 // VREV divides the vector in half and swaps within the half. 04827 if (VT.getVectorElementType() == MVT::i32 || 04828 VT.getVectorElementType() == MVT::f32) 04829 return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); 04830 // vrev <4 x i16> -> REV32 04831 if (VT.getVectorElementType() == MVT::i16 || 04832 VT.getVectorElementType() == MVT::f16) 04833 return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); 04834 // vrev <4 x i8> -> REV16 04835 assert(VT.getVectorElementType() == MVT::i8); 04836 return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); 04837 case OP_VDUP0: 04838 case OP_VDUP1: 04839 case OP_VDUP2: 04840 case OP_VDUP3: { 04841 EVT EltTy = VT.getVectorElementType(); 04842 unsigned Opcode; 04843 if (EltTy == MVT::i8) 04844 Opcode = AArch64ISD::DUPLANE8; 04845 else if (EltTy == MVT::i16) 04846 Opcode = AArch64ISD::DUPLANE16; 04847 else if (EltTy == MVT::i32 || EltTy == MVT::f32) 04848 Opcode = AArch64ISD::DUPLANE32; 04849 else if (EltTy == MVT::i64 || EltTy == MVT::f64) 04850 Opcode = AArch64ISD::DUPLANE64; 04851 else 04852 llvm_unreachable("Invalid vector element type?"); 04853 04854 if (VT.getSizeInBits() == 64) 04855 OpLHS = WidenVector(OpLHS, DAG); 04856 SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, MVT::i64); 04857 return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); 04858 } 04859 case OP_VEXT1: 04860 case OP_VEXT2: 04861 case OP_VEXT3: { 04862 unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); 04863 return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, 04864 DAG.getConstant(Imm, MVT::i32)); 04865 } 04866 case OP_VUZPL: 04867 return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, 04868 OpRHS); 04869 case OP_VUZPR: 04870 return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, 04871 OpRHS); 04872 case OP_VZIPL: 04873 return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, 04874 OpRHS); 04875 case OP_VZIPR: 04876 return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, 04877 OpRHS); 04878 case OP_VTRNL: 04879 return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, 04880 OpRHS); 04881 case OP_VTRNR: 04882 return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, 04883 OpRHS); 04884 } 04885 } 04886 04887 static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, 04888 SelectionDAG &DAG) { 04889 // Check to see if we can use the TBL instruction. 04890 SDValue V1 = Op.getOperand(0); 04891 SDValue V2 = Op.getOperand(1); 04892 SDLoc DL(Op); 04893 04894 EVT EltVT = Op.getValueType().getVectorElementType(); 04895 unsigned BytesPerElt = EltVT.getSizeInBits() / 8; 04896 04897 SmallVector<SDValue, 8> TBLMask; 04898 for (int Val : ShuffleMask) { 04899 for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { 04900 unsigned Offset = Byte + Val * BytesPerElt; 04901 TBLMask.push_back(DAG.getConstant(Offset, MVT::i32)); 04902 } 04903 } 04904 04905 MVT IndexVT = MVT::v8i8; 04906 unsigned IndexLen = 8; 04907 if (Op.getValueType().getSizeInBits() == 128) { 04908 IndexVT = MVT::v16i8; 04909 IndexLen = 16; 04910 } 04911 04912 SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); 04913 SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); 04914 04915 SDValue Shuffle; 04916 if (V2.getNode()->getOpcode() == ISD::UNDEF) { 04917 if (IndexLen == 8) 04918 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); 04919 Shuffle = DAG.getNode( 04920 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 04921 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, 04922 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, 04923 makeArrayRef(TBLMask.data(), IndexLen))); 04924 } else { 04925 if (IndexLen == 8) { 04926 V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); 04927 Shuffle = DAG.getNode( 04928 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 04929 DAG.getConstant(Intrinsic::aarch64_neon_tbl1, MVT::i32), V1Cst, 04930 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, 04931 makeArrayRef(TBLMask.data(), IndexLen))); 04932 } else { 04933 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we 04934 // cannot currently represent the register constraints on the input 04935 // table registers. 04936 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, 04937 // DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, 04938 // &TBLMask[0], IndexLen)); 04939 Shuffle = DAG.getNode( 04940 ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, 04941 DAG.getConstant(Intrinsic::aarch64_neon_tbl2, MVT::i32), V1Cst, V2Cst, 04942 DAG.getNode(ISD::BUILD_VECTOR, DL, IndexVT, 04943 makeArrayRef(TBLMask.data(), IndexLen))); 04944 } 04945 } 04946 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); 04947 } 04948 04949 static unsigned getDUPLANEOp(EVT EltType) { 04950 if (EltType == MVT::i8) 04951 return AArch64ISD::DUPLANE8; 04952 if (EltType == MVT::i16 || EltType == MVT::f16) 04953 return AArch64ISD::DUPLANE16; 04954 if (EltType == MVT::i32 || EltType == MVT::f32) 04955 return AArch64ISD::DUPLANE32; 04956 if (EltType == MVT::i64 || EltType == MVT::f64) 04957 return AArch64ISD::DUPLANE64; 04958 04959 llvm_unreachable("Invalid vector element type?"); 04960 } 04961 04962 SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, 04963 SelectionDAG &DAG) const { 04964 SDLoc dl(Op); 04965 EVT VT = Op.getValueType(); 04966 04967 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 04968 04969 // Convert shuffles that are directly supported on NEON to target-specific 04970 // DAG nodes, instead of keeping them as shuffles and matching them again 04971 // during code selection. This is more efficient and avoids the possibility 04972 // of inconsistencies between legalization and selection. 04973 ArrayRef<int> ShuffleMask = SVN->getMask(); 04974 04975 SDValue V1 = Op.getOperand(0); 04976 SDValue V2 = Op.getOperand(1); 04977 04978 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], 04979 V1.getValueType().getSimpleVT())) { 04980 int Lane = SVN->getSplatIndex(); 04981 // If this is undef splat, generate it via "just" vdup, if possible. 04982 if (Lane == -1) 04983 Lane = 0; 04984 04985 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) 04986 return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), 04987 V1.getOperand(0)); 04988 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- 04989 // constant. If so, we can just reference the lane's definition directly. 04990 if (V1.getOpcode() == ISD::BUILD_VECTOR && 04991 !isa<ConstantSDNode>(V1.getOperand(Lane))) 04992 return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); 04993 04994 // Otherwise, duplicate from the lane of the input vector. 04995 unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); 04996 04997 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated 04998 // to make a vector of the same size as this SHUFFLE. We can ignore the 04999 // extract entirely, and canonicalise the concat using WidenVector. 05000 if (V1.getOpcode() == ISD::EXTRACT_SUBVECTOR) { 05001 Lane += cast<ConstantSDNode>(V1.getOperand(1))->getZExtValue(); 05002 V1 = V1.getOperand(0); 05003 } else if (V1.getOpcode() == ISD::CONCAT_VECTORS) { 05004 unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; 05005 Lane -= Idx * VT.getVectorNumElements() / 2; 05006 V1 = WidenVector(V1.getOperand(Idx), DAG); 05007 } else if (VT.getSizeInBits() == 64) 05008 V1 = WidenVector(V1, DAG); 05009 05010 return DAG.getNode(Opcode, dl, VT, V1, DAG.getConstant(Lane, MVT::i64)); 05011 } 05012 05013 if (isREVMask(ShuffleMask, VT, 64)) 05014 return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); 05015 if (isREVMask(ShuffleMask, VT, 32)) 05016 return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); 05017 if (isREVMask(ShuffleMask, VT, 16)) 05018 return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); 05019 05020 bool ReverseEXT = false; 05021 unsigned Imm; 05022 if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { 05023 if (ReverseEXT) 05024 std::swap(V1, V2); 05025 Imm *= getExtFactor(V1); 05026 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, 05027 DAG.getConstant(Imm, MVT::i32)); 05028 } else if (V2->getOpcode() == ISD::UNDEF && 05029 isSingletonEXTMask(ShuffleMask, VT, Imm)) { 05030 Imm *= getExtFactor(V1); 05031 return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, 05032 DAG.getConstant(Imm, MVT::i32)); 05033 } 05034 05035 unsigned WhichResult; 05036 if (isZIPMask(ShuffleMask, VT, WhichResult)) { 05037 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 05038 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 05039 } 05040 if (isUZPMask(ShuffleMask, VT, WhichResult)) { 05041 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 05042 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 05043 } 05044 if (isTRNMask(ShuffleMask, VT, WhichResult)) { 05045 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 05046 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); 05047 } 05048 05049 if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 05050 unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; 05051 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 05052 } 05053 if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 05054 unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; 05055 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 05056 } 05057 if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { 05058 unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; 05059 return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); 05060 } 05061 05062 SDValue Concat = tryFormConcatFromShuffle(Op, DAG); 05063 if (Concat.getNode()) 05064 return Concat; 05065 05066 bool DstIsLeft; 05067 int Anomaly; 05068 int NumInputElements = V1.getValueType().getVectorNumElements(); 05069 if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { 05070 SDValue DstVec = DstIsLeft ? V1 : V2; 05071 SDValue DstLaneV = DAG.getConstant(Anomaly, MVT::i64); 05072 05073 SDValue SrcVec = V1; 05074 int SrcLane = ShuffleMask[Anomaly]; 05075 if (SrcLane >= NumInputElements) { 05076 SrcVec = V2; 05077 SrcLane -= VT.getVectorNumElements(); 05078 } 05079 SDValue SrcLaneV = DAG.getConstant(SrcLane, MVT::i64); 05080 05081 EVT ScalarVT = VT.getVectorElementType(); 05082 05083 if (ScalarVT.getSizeInBits() < 32 && ScalarVT.isInteger()) 05084 ScalarVT = MVT::i32; 05085 05086 return DAG.getNode( 05087 ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, 05088 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), 05089 DstLaneV); 05090 } 05091 05092 // If the shuffle is not directly supported and it has 4 elements, use 05093 // the PerfectShuffle-generated table to synthesize it from other shuffles. 05094 unsigned NumElts = VT.getVectorNumElements(); 05095 if (NumElts == 4) { 05096 unsigned PFIndexes[4]; 05097 for (unsigned i = 0; i != 4; ++i) { 05098 if (ShuffleMask[i] < 0) 05099 PFIndexes[i] = 8; 05100 else 05101 PFIndexes[i] = ShuffleMask[i]; 05102 } 05103 05104 // Compute the index in the perfect shuffle table. 05105 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 05106 PFIndexes[2] * 9 + PFIndexes[3]; 05107 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 05108 unsigned Cost = (PFEntry >> 30); 05109 05110 if (Cost <= 4) 05111 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 05112 } 05113 05114 return GenerateTBL(Op, ShuffleMask, DAG); 05115 } 05116 05117 static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, 05118 APInt &UndefBits) { 05119 EVT VT = BVN->getValueType(0); 05120 APInt SplatBits, SplatUndef; 05121 unsigned SplatBitSize; 05122 bool HasAnyUndefs; 05123 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 05124 unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; 05125 05126 for (unsigned i = 0; i < NumSplats; ++i) { 05127 CnstBits <<= SplatBitSize; 05128 UndefBits <<= SplatBitSize; 05129 CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); 05130 UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); 05131 } 05132 05133 return true; 05134 } 05135 05136 return false; 05137 } 05138 05139 SDValue AArch64TargetLowering::LowerVectorAND(SDValue Op, 05140 SelectionDAG &DAG) const { 05141 BuildVectorSDNode *BVN = 05142 dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); 05143 SDValue LHS = Op.getOperand(0); 05144 SDLoc dl(Op); 05145 EVT VT = Op.getValueType(); 05146 05147 if (!BVN) 05148 return Op; 05149 05150 APInt CnstBits(VT.getSizeInBits(), 0); 05151 APInt UndefBits(VT.getSizeInBits(), 0); 05152 if (resolveBuildVector(BVN, CnstBits, UndefBits)) { 05153 // We only have BIC vector immediate instruction, which is and-not. 05154 CnstBits = ~CnstBits; 05155 05156 // We make use of a little bit of goto ickiness in order to avoid having to 05157 // duplicate the immediate matching logic for the undef toggled case. 05158 bool SecondTry = false; 05159 AttemptModImm: 05160 05161 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { 05162 CnstBits = CnstBits.zextOrTrunc(64); 05163 uint64_t CnstVal = CnstBits.getZExtValue(); 05164 05165 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { 05166 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); 05167 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05168 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05169 DAG.getConstant(CnstVal, MVT::i32), 05170 DAG.getConstant(0, MVT::i32)); 05171 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05172 } 05173 05174 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { 05175 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); 05176 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05177 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05178 DAG.getConstant(CnstVal, MVT::i32), 05179 DAG.getConstant(8, MVT::i32)); 05180 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05181 } 05182 05183 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { 05184 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); 05185 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05186 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05187 DAG.getConstant(CnstVal, MVT::i32), 05188 DAG.getConstant(16, MVT::i32)); 05189 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05190 } 05191 05192 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { 05193 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); 05194 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05195 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05196 DAG.getConstant(CnstVal, MVT::i32), 05197 DAG.getConstant(24, MVT::i32)); 05198 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05199 } 05200 05201 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { 05202 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); 05203 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05204 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05205 DAG.getConstant(CnstVal, MVT::i32), 05206 DAG.getConstant(0, MVT::i32)); 05207 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05208 } 05209 05210 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { 05211 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); 05212 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05213 SDValue Mov = DAG.getNode(AArch64ISD::BICi, dl, MovTy, LHS, 05214 DAG.getConstant(CnstVal, MVT::i32), 05215 DAG.getConstant(8, MVT::i32)); 05216 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05217 } 05218 } 05219 05220 if (SecondTry) 05221 goto FailedModImm; 05222 SecondTry = true; 05223 CnstBits = ~UndefBits; 05224 goto AttemptModImm; 05225 } 05226 05227 // We can always fall back to a non-immediate AND. 05228 FailedModImm: 05229 return Op; 05230 } 05231 05232 // Specialized code to quickly find if PotentialBVec is a BuildVector that 05233 // consists of only the same constant int value, returned in reference arg 05234 // ConstVal 05235 static bool isAllConstantBuildVector(const SDValue &PotentialBVec, 05236 uint64_t &ConstVal) { 05237 BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); 05238 if (!Bvec) 05239 return false; 05240 ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); 05241 if (!FirstElt) 05242 return false; 05243 EVT VT = Bvec->getValueType(0); 05244 unsigned NumElts = VT.getVectorNumElements(); 05245 for (unsigned i = 1; i < NumElts; ++i) 05246 if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) 05247 return false; 05248 ConstVal = FirstElt->getZExtValue(); 05249 return true; 05250 } 05251 05252 static unsigned getIntrinsicID(const SDNode *N) { 05253 unsigned Opcode = N->getOpcode(); 05254 switch (Opcode) { 05255 default: 05256 return Intrinsic::not_intrinsic; 05257 case ISD::INTRINSIC_WO_CHAIN: { 05258 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 05259 if (IID < Intrinsic::num_intrinsics) 05260 return IID; 05261 return Intrinsic::not_intrinsic; 05262 } 05263 } 05264 } 05265 05266 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), 05267 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a 05268 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2. 05269 // Also, logical shift right -> sri, with the same structure. 05270 static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { 05271 EVT VT = N->getValueType(0); 05272 05273 if (!VT.isVector()) 05274 return SDValue(); 05275 05276 SDLoc DL(N); 05277 05278 // Is the first op an AND? 05279 const SDValue And = N->getOperand(0); 05280 if (And.getOpcode() != ISD::AND) 05281 return SDValue(); 05282 05283 // Is the second op an shl or lshr? 05284 SDValue Shift = N->getOperand(1); 05285 // This will have been turned into: AArch64ISD::VSHL vector, #shift 05286 // or AArch64ISD::VLSHR vector, #shift 05287 unsigned ShiftOpc = Shift.getOpcode(); 05288 if ((ShiftOpc != AArch64ISD::VSHL && ShiftOpc != AArch64ISD::VLSHR)) 05289 return SDValue(); 05290 bool IsShiftRight = ShiftOpc == AArch64ISD::VLSHR; 05291 05292 // Is the shift amount constant? 05293 ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); 05294 if (!C2node) 05295 return SDValue(); 05296 05297 // Is the and mask vector all constant? 05298 uint64_t C1; 05299 if (!isAllConstantBuildVector(And.getOperand(1), C1)) 05300 return SDValue(); 05301 05302 // Is C1 == ~C2, taking into account how much one can shift elements of a 05303 // particular size? 05304 uint64_t C2 = C2node->getZExtValue(); 05305 unsigned ElemSizeInBits = VT.getVectorElementType().getSizeInBits(); 05306 if (C2 > ElemSizeInBits) 05307 return SDValue(); 05308 unsigned ElemMask = (1 << ElemSizeInBits) - 1; 05309 if ((C1 & ElemMask) != (~C2 & ElemMask)) 05310 return SDValue(); 05311 05312 SDValue X = And.getOperand(0); 05313 SDValue Y = Shift.getOperand(0); 05314 05315 unsigned Intrin = 05316 IsShiftRight ? Intrinsic::aarch64_neon_vsri : Intrinsic::aarch64_neon_vsli; 05317 SDValue ResultSLI = 05318 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 05319 DAG.getConstant(Intrin, MVT::i32), X, Y, Shift.getOperand(1)); 05320 05321 DEBUG(dbgs() << "aarch64-lower: transformed: \n"); 05322 DEBUG(N->dump(&DAG)); 05323 DEBUG(dbgs() << "into: \n"); 05324 DEBUG(ResultSLI->dump(&DAG)); 05325 05326 ++NumShiftInserts; 05327 return ResultSLI; 05328 } 05329 05330 SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, 05331 SelectionDAG &DAG) const { 05332 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) 05333 if (EnableAArch64SlrGeneration) { 05334 SDValue Res = tryLowerToSLI(Op.getNode(), DAG); 05335 if (Res.getNode()) 05336 return Res; 05337 } 05338 05339 BuildVectorSDNode *BVN = 05340 dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); 05341 SDValue LHS = Op.getOperand(1); 05342 SDLoc dl(Op); 05343 EVT VT = Op.getValueType(); 05344 05345 // OR commutes, so try swapping the operands. 05346 if (!BVN) { 05347 LHS = Op.getOperand(0); 05348 BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); 05349 } 05350 if (!BVN) 05351 return Op; 05352 05353 APInt CnstBits(VT.getSizeInBits(), 0); 05354 APInt UndefBits(VT.getSizeInBits(), 0); 05355 if (resolveBuildVector(BVN, CnstBits, UndefBits)) { 05356 // We make use of a little bit of goto ickiness in order to avoid having to 05357 // duplicate the immediate matching logic for the undef toggled case. 05358 bool SecondTry = false; 05359 AttemptModImm: 05360 05361 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { 05362 CnstBits = CnstBits.zextOrTrunc(64); 05363 uint64_t CnstVal = CnstBits.getZExtValue(); 05364 05365 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { 05366 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); 05367 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05368 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05369 DAG.getConstant(CnstVal, MVT::i32), 05370 DAG.getConstant(0, MVT::i32)); 05371 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05372 } 05373 05374 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { 05375 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); 05376 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05377 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05378 DAG.getConstant(CnstVal, MVT::i32), 05379 DAG.getConstant(8, MVT::i32)); 05380 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05381 } 05382 05383 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { 05384 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); 05385 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05386 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05387 DAG.getConstant(CnstVal, MVT::i32), 05388 DAG.getConstant(16, MVT::i32)); 05389 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05390 } 05391 05392 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { 05393 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); 05394 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05395 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05396 DAG.getConstant(CnstVal, MVT::i32), 05397 DAG.getConstant(24, MVT::i32)); 05398 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05399 } 05400 05401 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { 05402 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); 05403 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05404 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05405 DAG.getConstant(CnstVal, MVT::i32), 05406 DAG.getConstant(0, MVT::i32)); 05407 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05408 } 05409 05410 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { 05411 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); 05412 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05413 SDValue Mov = DAG.getNode(AArch64ISD::ORRi, dl, MovTy, LHS, 05414 DAG.getConstant(CnstVal, MVT::i32), 05415 DAG.getConstant(8, MVT::i32)); 05416 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05417 } 05418 } 05419 05420 if (SecondTry) 05421 goto FailedModImm; 05422 SecondTry = true; 05423 CnstBits = UndefBits; 05424 goto AttemptModImm; 05425 } 05426 05427 // We can always fall back to a non-immediate OR. 05428 FailedModImm: 05429 return Op; 05430 } 05431 05432 // Normalize the operands of BUILD_VECTOR. The value of constant operands will 05433 // be truncated to fit element width. 05434 static SDValue NormalizeBuildVector(SDValue Op, 05435 SelectionDAG &DAG) { 05436 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 05437 SDLoc dl(Op); 05438 EVT VT = Op.getValueType(); 05439 EVT EltTy= VT.getVectorElementType(); 05440 05441 if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) 05442 return Op; 05443 05444 SmallVector<SDValue, 16> Ops; 05445 for (unsigned I = 0, E = VT.getVectorNumElements(); I != E; ++I) { 05446 SDValue Lane = Op.getOperand(I); 05447 if (Lane.getOpcode() == ISD::Constant) { 05448 APInt LowBits(EltTy.getSizeInBits(), 05449 cast<ConstantSDNode>(Lane)->getZExtValue()); 05450 Lane = DAG.getConstant(LowBits.getZExtValue(), MVT::i32); 05451 } 05452 Ops.push_back(Lane); 05453 } 05454 return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 05455 } 05456 05457 SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, 05458 SelectionDAG &DAG) const { 05459 SDLoc dl(Op); 05460 EVT VT = Op.getValueType(); 05461 Op = NormalizeBuildVector(Op, DAG); 05462 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 05463 05464 APInt CnstBits(VT.getSizeInBits(), 0); 05465 APInt UndefBits(VT.getSizeInBits(), 0); 05466 if (resolveBuildVector(BVN, CnstBits, UndefBits)) { 05467 // We make use of a little bit of goto ickiness in order to avoid having to 05468 // duplicate the immediate matching logic for the undef toggled case. 05469 bool SecondTry = false; 05470 AttemptModImm: 05471 05472 if (CnstBits.getHiBits(64) == CnstBits.getLoBits(64)) { 05473 CnstBits = CnstBits.zextOrTrunc(64); 05474 uint64_t CnstVal = CnstBits.getZExtValue(); 05475 05476 // Certain magic vector constants (used to express things like NOT 05477 // and NEG) are passed through unmodified. This allows codegen patterns 05478 // for these operations to match. Special-purpose patterns will lower 05479 // these immediates to MOVIs if it proves necessary. 05480 if (VT.isInteger() && (CnstVal == 0 || CnstVal == ~0ULL)) 05481 return Op; 05482 05483 // The many faces of MOVI... 05484 if (AArch64_AM::isAdvSIMDModImmType10(CnstVal)) { 05485 CnstVal = AArch64_AM::encodeAdvSIMDModImmType10(CnstVal); 05486 if (VT.getSizeInBits() == 128) { 05487 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::v2i64, 05488 DAG.getConstant(CnstVal, MVT::i32)); 05489 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05490 } 05491 05492 // Support the V64 version via subregister insertion. 05493 SDValue Mov = DAG.getNode(AArch64ISD::MOVIedit, dl, MVT::f64, 05494 DAG.getConstant(CnstVal, MVT::i32)); 05495 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05496 } 05497 05498 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { 05499 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); 05500 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05501 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05502 DAG.getConstant(CnstVal, MVT::i32), 05503 DAG.getConstant(0, MVT::i32)); 05504 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05505 } 05506 05507 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { 05508 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); 05509 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05510 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05511 DAG.getConstant(CnstVal, MVT::i32), 05512 DAG.getConstant(8, MVT::i32)); 05513 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05514 } 05515 05516 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { 05517 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); 05518 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05519 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05520 DAG.getConstant(CnstVal, MVT::i32), 05521 DAG.getConstant(16, MVT::i32)); 05522 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05523 } 05524 05525 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { 05526 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); 05527 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05528 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05529 DAG.getConstant(CnstVal, MVT::i32), 05530 DAG.getConstant(24, MVT::i32)); 05531 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05532 } 05533 05534 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { 05535 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); 05536 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05537 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05538 DAG.getConstant(CnstVal, MVT::i32), 05539 DAG.getConstant(0, MVT::i32)); 05540 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05541 } 05542 05543 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { 05544 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); 05545 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05546 SDValue Mov = DAG.getNode(AArch64ISD::MOVIshift, dl, MovTy, 05547 DAG.getConstant(CnstVal, MVT::i32), 05548 DAG.getConstant(8, MVT::i32)); 05549 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05550 } 05551 05552 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { 05553 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); 05554 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05555 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, 05556 DAG.getConstant(CnstVal, MVT::i32), 05557 DAG.getConstant(264, MVT::i32)); 05558 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05559 } 05560 05561 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { 05562 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); 05563 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05564 SDValue Mov = DAG.getNode(AArch64ISD::MOVImsl, dl, MovTy, 05565 DAG.getConstant(CnstVal, MVT::i32), 05566 DAG.getConstant(272, MVT::i32)); 05567 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05568 } 05569 05570 if (AArch64_AM::isAdvSIMDModImmType9(CnstVal)) { 05571 CnstVal = AArch64_AM::encodeAdvSIMDModImmType9(CnstVal); 05572 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; 05573 SDValue Mov = DAG.getNode(AArch64ISD::MOVI, dl, MovTy, 05574 DAG.getConstant(CnstVal, MVT::i32)); 05575 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05576 } 05577 05578 // The few faces of FMOV... 05579 if (AArch64_AM::isAdvSIMDModImmType11(CnstVal)) { 05580 CnstVal = AArch64_AM::encodeAdvSIMDModImmType11(CnstVal); 05581 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4f32 : MVT::v2f32; 05582 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MovTy, 05583 DAG.getConstant(CnstVal, MVT::i32)); 05584 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05585 } 05586 05587 if (AArch64_AM::isAdvSIMDModImmType12(CnstVal) && 05588 VT.getSizeInBits() == 128) { 05589 CnstVal = AArch64_AM::encodeAdvSIMDModImmType12(CnstVal); 05590 SDValue Mov = DAG.getNode(AArch64ISD::FMOV, dl, MVT::v2f64, 05591 DAG.getConstant(CnstVal, MVT::i32)); 05592 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05593 } 05594 05595 // The many faces of MVNI... 05596 CnstVal = ~CnstVal; 05597 if (AArch64_AM::isAdvSIMDModImmType1(CnstVal)) { 05598 CnstVal = AArch64_AM::encodeAdvSIMDModImmType1(CnstVal); 05599 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05600 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05601 DAG.getConstant(CnstVal, MVT::i32), 05602 DAG.getConstant(0, MVT::i32)); 05603 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05604 } 05605 05606 if (AArch64_AM::isAdvSIMDModImmType2(CnstVal)) { 05607 CnstVal = AArch64_AM::encodeAdvSIMDModImmType2(CnstVal); 05608 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05609 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05610 DAG.getConstant(CnstVal, MVT::i32), 05611 DAG.getConstant(8, MVT::i32)); 05612 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05613 } 05614 05615 if (AArch64_AM::isAdvSIMDModImmType3(CnstVal)) { 05616 CnstVal = AArch64_AM::encodeAdvSIMDModImmType3(CnstVal); 05617 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05618 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05619 DAG.getConstant(CnstVal, MVT::i32), 05620 DAG.getConstant(16, MVT::i32)); 05621 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05622 } 05623 05624 if (AArch64_AM::isAdvSIMDModImmType4(CnstVal)) { 05625 CnstVal = AArch64_AM::encodeAdvSIMDModImmType4(CnstVal); 05626 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05627 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05628 DAG.getConstant(CnstVal, MVT::i32), 05629 DAG.getConstant(24, MVT::i32)); 05630 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05631 } 05632 05633 if (AArch64_AM::isAdvSIMDModImmType5(CnstVal)) { 05634 CnstVal = AArch64_AM::encodeAdvSIMDModImmType5(CnstVal); 05635 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05636 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05637 DAG.getConstant(CnstVal, MVT::i32), 05638 DAG.getConstant(0, MVT::i32)); 05639 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05640 } 05641 05642 if (AArch64_AM::isAdvSIMDModImmType6(CnstVal)) { 05643 CnstVal = AArch64_AM::encodeAdvSIMDModImmType6(CnstVal); 05644 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; 05645 SDValue Mov = DAG.getNode(AArch64ISD::MVNIshift, dl, MovTy, 05646 DAG.getConstant(CnstVal, MVT::i32), 05647 DAG.getConstant(8, MVT::i32)); 05648 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05649 } 05650 05651 if (AArch64_AM::isAdvSIMDModImmType7(CnstVal)) { 05652 CnstVal = AArch64_AM::encodeAdvSIMDModImmType7(CnstVal); 05653 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05654 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, 05655 DAG.getConstant(CnstVal, MVT::i32), 05656 DAG.getConstant(264, MVT::i32)); 05657 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05658 } 05659 05660 if (AArch64_AM::isAdvSIMDModImmType8(CnstVal)) { 05661 CnstVal = AArch64_AM::encodeAdvSIMDModImmType8(CnstVal); 05662 MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; 05663 SDValue Mov = DAG.getNode(AArch64ISD::MVNImsl, dl, MovTy, 05664 DAG.getConstant(CnstVal, MVT::i32), 05665 DAG.getConstant(272, MVT::i32)); 05666 return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); 05667 } 05668 } 05669 05670 if (SecondTry) 05671 goto FailedModImm; 05672 SecondTry = true; 05673 CnstBits = UndefBits; 05674 goto AttemptModImm; 05675 } 05676 FailedModImm: 05677 05678 // Scan through the operands to find some interesting properties we can 05679 // exploit: 05680 // 1) If only one value is used, we can use a DUP, or 05681 // 2) if only the low element is not undef, we can just insert that, or 05682 // 3) if only one constant value is used (w/ some non-constant lanes), 05683 // we can splat the constant value into the whole vector then fill 05684 // in the non-constant lanes. 05685 // 4) FIXME: If different constant values are used, but we can intelligently 05686 // select the values we'll be overwriting for the non-constant 05687 // lanes such that we can directly materialize the vector 05688 // some other way (MOVI, e.g.), we can be sneaky. 05689 unsigned NumElts = VT.getVectorNumElements(); 05690 bool isOnlyLowElement = true; 05691 bool usesOnlyOneValue = true; 05692 bool usesOnlyOneConstantValue = true; 05693 bool isConstant = true; 05694 unsigned NumConstantLanes = 0; 05695 SDValue Value; 05696 SDValue ConstantValue; 05697 for (unsigned i = 0; i < NumElts; ++i) { 05698 SDValue V = Op.getOperand(i); 05699 if (V.getOpcode() == ISD::UNDEF) 05700 continue; 05701 if (i > 0) 05702 isOnlyLowElement = false; 05703 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 05704 isConstant = false; 05705 05706 if (isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V)) { 05707 ++NumConstantLanes; 05708 if (!ConstantValue.getNode()) 05709 ConstantValue = V; 05710 else if (ConstantValue != V) 05711 usesOnlyOneConstantValue = false; 05712 } 05713 05714 if (!Value.getNode()) 05715 Value = V; 05716 else if (V != Value) 05717 usesOnlyOneValue = false; 05718 } 05719 05720 if (!Value.getNode()) 05721 return DAG.getUNDEF(VT); 05722 05723 if (isOnlyLowElement) 05724 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 05725 05726 // Use DUP for non-constant splats. For f32 constant splats, reduce to 05727 // i32 and try again. 05728 if (usesOnlyOneValue) { 05729 if (!isConstant) { 05730 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 05731 Value.getValueType() != VT) 05732 return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); 05733 05734 // This is actually a DUPLANExx operation, which keeps everything vectory. 05735 05736 // DUPLANE works on 128-bit vectors, widen it if necessary. 05737 SDValue Lane = Value.getOperand(1); 05738 Value = Value.getOperand(0); 05739 if (Value.getValueType().getSizeInBits() == 64) 05740 Value = WidenVector(Value, DAG); 05741 05742 unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); 05743 return DAG.getNode(Opcode, dl, VT, Value, Lane); 05744 } 05745 05746 if (VT.getVectorElementType().isFloatingPoint()) { 05747 SmallVector<SDValue, 8> Ops; 05748 MVT NewType = 05749 (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64; 05750 for (unsigned i = 0; i < NumElts; ++i) 05751 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); 05752 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); 05753 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 05754 Val = LowerBUILD_VECTOR(Val, DAG); 05755 if (Val.getNode()) 05756 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 05757 } 05758 } 05759 05760 // If there was only one constant value used and for more than one lane, 05761 // start by splatting that value, then replace the non-constant lanes. This 05762 // is better than the default, which will perform a separate initialization 05763 // for each lane. 05764 if (NumConstantLanes > 0 && usesOnlyOneConstantValue) { 05765 SDValue Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); 05766 // Now insert the non-constant lanes. 05767 for (unsigned i = 0; i < NumElts; ++i) { 05768 SDValue V = Op.getOperand(i); 05769 SDValue LaneIdx = DAG.getConstant(i, MVT::i64); 05770 if (!isa<ConstantSDNode>(V) && !isa<ConstantFPSDNode>(V)) { 05771 // Note that type legalization likely mucked about with the VT of the 05772 // source operand, so we may have to convert it here before inserting. 05773 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); 05774 } 05775 } 05776 return Val; 05777 } 05778 05779 // If all elements are constants and the case above didn't get hit, fall back 05780 // to the default expansion, which will generate a load from the constant 05781 // pool. 05782 if (isConstant) 05783 return SDValue(); 05784 05785 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 05786 if (NumElts >= 4) { 05787 SDValue shuffle = ReconstructShuffle(Op, DAG); 05788 if (shuffle != SDValue()) 05789 return shuffle; 05790 } 05791 05792 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 05793 // know the default expansion would otherwise fall back on something even 05794 // worse. For a vector with one or two non-undef values, that's 05795 // scalar_to_vector for the elements followed by a shuffle (provided the 05796 // shuffle is valid for the target) and materialization element by element 05797 // on the stack followed by a load for everything else. 05798 if (!isConstant && !usesOnlyOneValue) { 05799 SDValue Vec = DAG.getUNDEF(VT); 05800 SDValue Op0 = Op.getOperand(0); 05801 unsigned ElemSize = VT.getVectorElementType().getSizeInBits(); 05802 unsigned i = 0; 05803 // For 32 and 64 bit types, use INSERT_SUBREG for lane zero to 05804 // a) Avoid a RMW dependency on the full vector register, and 05805 // b) Allow the register coalescer to fold away the copy if the 05806 // value is already in an S or D register. 05807 if (Op0.getOpcode() != ISD::UNDEF && (ElemSize == 32 || ElemSize == 64)) { 05808 unsigned SubIdx = ElemSize == 32 ? AArch64::ssub : AArch64::dsub; 05809 MachineSDNode *N = 05810 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, dl, VT, Vec, Op0, 05811 DAG.getTargetConstant(SubIdx, MVT::i32)); 05812 Vec = SDValue(N, 0); 05813 ++i; 05814 } 05815 for (; i < NumElts; ++i) { 05816 SDValue V = Op.getOperand(i); 05817 if (V.getOpcode() == ISD::UNDEF) 05818 continue; 05819 SDValue LaneIdx = DAG.getConstant(i, MVT::i64); 05820 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 05821 } 05822 return Vec; 05823 } 05824 05825 // Just use the default expansion. We failed to find a better alternative. 05826 return SDValue(); 05827 } 05828 05829 SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, 05830 SelectionDAG &DAG) const { 05831 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!"); 05832 05833 // Check for non-constant or out of range lane. 05834 EVT VT = Op.getOperand(0).getValueType(); 05835 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 05836 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 05837 return SDValue(); 05838 05839 05840 // Insertion/extraction are legal for V128 types. 05841 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 05842 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 05843 VT == MVT::v8f16) 05844 return Op; 05845 05846 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 05847 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 05848 return SDValue(); 05849 05850 // For V64 types, we perform insertion by expanding the value 05851 // to a V128 type and perform the insertion on that. 05852 SDLoc DL(Op); 05853 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 05854 EVT WideTy = WideVec.getValueType(); 05855 05856 SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, 05857 Op.getOperand(1), Op.getOperand(2)); 05858 // Re-narrow the resultant vector. 05859 return NarrowVector(Node, DAG); 05860 } 05861 05862 SDValue 05863 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, 05864 SelectionDAG &DAG) const { 05865 assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!"); 05866 05867 // Check for non-constant or out of range lane. 05868 EVT VT = Op.getOperand(0).getValueType(); 05869 ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 05870 if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) 05871 return SDValue(); 05872 05873 05874 // Insertion/extraction are legal for V128 types. 05875 if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || 05876 VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || 05877 VT == MVT::v8f16) 05878 return Op; 05879 05880 if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && 05881 VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16) 05882 return SDValue(); 05883 05884 // For V64 types, we perform extraction by expanding the value 05885 // to a V128 type and perform the extraction on that. 05886 SDLoc DL(Op); 05887 SDValue WideVec = WidenVector(Op.getOperand(0), DAG); 05888 EVT WideTy = WideVec.getValueType(); 05889 05890 EVT ExtrTy = WideTy.getVectorElementType(); 05891 if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) 05892 ExtrTy = MVT::i32; 05893 05894 // For extractions, we just return the result directly. 05895 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, 05896 Op.getOperand(1)); 05897 } 05898 05899 SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 05900 SelectionDAG &DAG) const { 05901 EVT VT = Op.getOperand(0).getValueType(); 05902 SDLoc dl(Op); 05903 // Just in case... 05904 if (!VT.isVector()) 05905 return SDValue(); 05906 05907 ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 05908 if (!Cst) 05909 return SDValue(); 05910 unsigned Val = Cst->getZExtValue(); 05911 05912 unsigned Size = Op.getValueType().getSizeInBits(); 05913 if (Val == 0) { 05914 switch (Size) { 05915 case 8: 05916 return DAG.getTargetExtractSubreg(AArch64::bsub, dl, Op.getValueType(), 05917 Op.getOperand(0)); 05918 case 16: 05919 return DAG.getTargetExtractSubreg(AArch64::hsub, dl, Op.getValueType(), 05920 Op.getOperand(0)); 05921 case 32: 05922 return DAG.getTargetExtractSubreg(AArch64::ssub, dl, Op.getValueType(), 05923 Op.getOperand(0)); 05924 case 64: 05925 return DAG.getTargetExtractSubreg(AArch64::dsub, dl, Op.getValueType(), 05926 Op.getOperand(0)); 05927 default: 05928 llvm_unreachable("Unexpected vector type in extract_subvector!"); 05929 } 05930 } 05931 // If this is extracting the upper 64-bits of a 128-bit vector, we match 05932 // that directly. 05933 if (Size == 64 && Val * VT.getVectorElementType().getSizeInBits() == 64) 05934 return Op; 05935 05936 return SDValue(); 05937 } 05938 05939 bool AArch64TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 05940 EVT VT) const { 05941 if (VT.getVectorNumElements() == 4 && 05942 (VT.is128BitVector() || VT.is64BitVector())) { 05943 unsigned PFIndexes[4]; 05944 for (unsigned i = 0; i != 4; ++i) { 05945 if (M[i] < 0) 05946 PFIndexes[i] = 8; 05947 else 05948 PFIndexes[i] = M[i]; 05949 } 05950 05951 // Compute the index in the perfect shuffle table. 05952 unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + 05953 PFIndexes[2] * 9 + PFIndexes[3]; 05954 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 05955 unsigned Cost = (PFEntry >> 30); 05956 05957 if (Cost <= 4) 05958 return true; 05959 } 05960 05961 bool DummyBool; 05962 int DummyInt; 05963 unsigned DummyUnsigned; 05964 05965 return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || 05966 isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || 05967 isEXTMask(M, VT, DummyBool, DummyUnsigned) || 05968 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. 05969 isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || 05970 isZIPMask(M, VT, DummyUnsigned) || 05971 isTRN_v_undef_Mask(M, VT, DummyUnsigned) || 05972 isUZP_v_undef_Mask(M, VT, DummyUnsigned) || 05973 isZIP_v_undef_Mask(M, VT, DummyUnsigned) || 05974 isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || 05975 isConcatMask(M, VT, VT.getSizeInBits() == 128)); 05976 } 05977 05978 /// getVShiftImm - Check if this is a valid build_vector for the immediate 05979 /// operand of a vector shift operation, where all the elements of the 05980 /// build_vector must have the same constant integer value. 05981 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 05982 // Ignore bit_converts. 05983 while (Op.getOpcode() == ISD::BITCAST) 05984 Op = Op.getOperand(0); 05985 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 05986 APInt SplatBits, SplatUndef; 05987 unsigned SplatBitSize; 05988 bool HasAnyUndefs; 05989 if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 05990 HasAnyUndefs, ElementBits) || 05991 SplatBitSize > ElementBits) 05992 return false; 05993 Cnt = SplatBits.getSExtValue(); 05994 return true; 05995 } 05996 05997 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 05998 /// operand of a vector shift left operation. That value must be in the range: 05999 /// 0 <= Value < ElementBits for a left shift; or 06000 /// 0 <= Value <= ElementBits for a long left shift. 06001 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 06002 assert(VT.isVector() && "vector shift count is not a vector type"); 06003 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 06004 if (!getVShiftImm(Op, ElementBits, Cnt)) 06005 return false; 06006 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); 06007 } 06008 06009 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 06010 /// operand of a vector shift right operation. For a shift opcode, the value 06011 /// is positive, but for an intrinsic the value count must be negative. The 06012 /// absolute value must be in the range: 06013 /// 1 <= |Value| <= ElementBits for a right shift; or 06014 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 06015 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 06016 int64_t &Cnt) { 06017 assert(VT.isVector() && "vector shift count is not a vector type"); 06018 unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); 06019 if (!getVShiftImm(Op, ElementBits, Cnt)) 06020 return false; 06021 if (isIntrinsic) 06022 Cnt = -Cnt; 06023 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); 06024 } 06025 06026 SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, 06027 SelectionDAG &DAG) const { 06028 EVT VT = Op.getValueType(); 06029 SDLoc DL(Op); 06030 int64_t Cnt; 06031 06032 if (!Op.getOperand(1).getValueType().isVector()) 06033 return Op; 06034 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 06035 06036 switch (Op.getOpcode()) { 06037 default: 06038 llvm_unreachable("unexpected shift opcode"); 06039 06040 case ISD::SHL: 06041 if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) 06042 return DAG.getNode(AArch64ISD::VSHL, SDLoc(Op), VT, Op.getOperand(0), 06043 DAG.getConstant(Cnt, MVT::i32)); 06044 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 06045 DAG.getConstant(Intrinsic::aarch64_neon_ushl, MVT::i32), 06046 Op.getOperand(0), Op.getOperand(1)); 06047 case ISD::SRA: 06048 case ISD::SRL: 06049 // Right shift immediate 06050 if (isVShiftRImm(Op.getOperand(1), VT, false, false, Cnt) && 06051 Cnt < EltSize) { 06052 unsigned Opc = 06053 (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; 06054 return DAG.getNode(Opc, SDLoc(Op), VT, Op.getOperand(0), 06055 DAG.getConstant(Cnt, MVT::i32)); 06056 } 06057 06058 // Right shift register. Note, there is not a shift right register 06059 // instruction, but the shift left register instruction takes a signed 06060 // value, where negative numbers specify a right shift. 06061 unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl 06062 : Intrinsic::aarch64_neon_ushl; 06063 // negate the shift amount 06064 SDValue NegShift = DAG.getNode(AArch64ISD::NEG, DL, VT, Op.getOperand(1)); 06065 SDValue NegShiftLeft = 06066 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, 06067 DAG.getConstant(Opc, MVT::i32), Op.getOperand(0), NegShift); 06068 return NegShiftLeft; 06069 } 06070 06071 return SDValue(); 06072 } 06073 06074 static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, 06075 AArch64CC::CondCode CC, bool NoNans, EVT VT, 06076 SDLoc dl, SelectionDAG &DAG) { 06077 EVT SrcVT = LHS.getValueType(); 06078 06079 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); 06080 APInt CnstBits(VT.getSizeInBits(), 0); 06081 APInt UndefBits(VT.getSizeInBits(), 0); 06082 bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); 06083 bool IsZero = IsCnst && (CnstBits == 0); 06084 06085 if (SrcVT.getVectorElementType().isFloatingPoint()) { 06086 switch (CC) { 06087 default: 06088 return SDValue(); 06089 case AArch64CC::NE: { 06090 SDValue Fcmeq; 06091 if (IsZero) 06092 Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 06093 else 06094 Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 06095 return DAG.getNode(AArch64ISD::NOT, dl, VT, Fcmeq); 06096 } 06097 case AArch64CC::EQ: 06098 if (IsZero) 06099 return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); 06100 return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); 06101 case AArch64CC::GE: 06102 if (IsZero) 06103 return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); 06104 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); 06105 case AArch64CC::GT: 06106 if (IsZero) 06107 return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); 06108 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); 06109 case AArch64CC::LS: 06110 if (IsZero) 06111 return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); 06112 return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); 06113 case AArch64CC::LT: 06114 if (!NoNans) 06115 return SDValue(); 06116 // If we ignore NaNs then we can use to the MI implementation. 06117 // Fallthrough. 06118 case AArch64CC::MI: 06119 if (IsZero) 06120 return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); 06121 return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); 06122 } 06123 } 06124 06125 switch (CC) { 06126 default: 06127 return SDValue(); 06128 case AArch64CC::NE: { 06129 SDValue Cmeq; 06130 if (IsZero) 06131 Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 06132 else 06133 Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 06134 return DAG.getNode(AArch64ISD::NOT, dl, VT, Cmeq); 06135 } 06136 case AArch64CC::EQ: 06137 if (IsZero) 06138 return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); 06139 return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); 06140 case AArch64CC::GE: 06141 if (IsZero) 06142 return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); 06143 return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); 06144 case AArch64CC::GT: 06145 if (IsZero) 06146 return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); 06147 return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); 06148 case AArch64CC::LE: 06149 if (IsZero) 06150 return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); 06151 return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); 06152 case AArch64CC::LS: 06153 return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); 06154 case AArch64CC::LO: 06155 return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); 06156 case AArch64CC::LT: 06157 if (IsZero) 06158 return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); 06159 return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); 06160 case AArch64CC::HI: 06161 return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); 06162 case AArch64CC::HS: 06163 return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); 06164 } 06165 } 06166 06167 SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, 06168 SelectionDAG &DAG) const { 06169 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 06170 SDValue LHS = Op.getOperand(0); 06171 SDValue RHS = Op.getOperand(1); 06172 SDLoc dl(Op); 06173 06174 if (LHS.getValueType().getVectorElementType().isInteger()) { 06175 assert(LHS.getValueType() == RHS.getValueType()); 06176 AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); 06177 return EmitVectorComparison(LHS, RHS, AArch64CC, false, Op.getValueType(), 06178 dl, DAG); 06179 } 06180 06181 assert(LHS.getValueType().getVectorElementType() == MVT::f32 || 06182 LHS.getValueType().getVectorElementType() == MVT::f64); 06183 06184 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally 06185 // clean. Some of them require two branches to implement. 06186 AArch64CC::CondCode CC1, CC2; 06187 bool ShouldInvert; 06188 changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); 06189 06190 bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath; 06191 SDValue Cmp = 06192 EmitVectorComparison(LHS, RHS, CC1, NoNaNs, Op.getValueType(), dl, DAG); 06193 if (!Cmp.getNode()) 06194 return SDValue(); 06195 06196 if (CC2 != AArch64CC::AL) { 06197 SDValue Cmp2 = 06198 EmitVectorComparison(LHS, RHS, CC2, NoNaNs, Op.getValueType(), dl, DAG); 06199 if (!Cmp2.getNode()) 06200 return SDValue(); 06201 06202 Cmp = DAG.getNode(ISD::OR, dl, Cmp.getValueType(), Cmp, Cmp2); 06203 } 06204 06205 if (ShouldInvert) 06206 return Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); 06207 06208 return Cmp; 06209 } 06210 06211 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 06212 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 06213 /// specified in the intrinsic calls. 06214 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 06215 const CallInst &I, 06216 unsigned Intrinsic) const { 06217 switch (Intrinsic) { 06218 case Intrinsic::aarch64_neon_ld2: 06219 case Intrinsic::aarch64_neon_ld3: 06220 case Intrinsic::aarch64_neon_ld4: 06221 case Intrinsic::aarch64_neon_ld1x2: 06222 case Intrinsic::aarch64_neon_ld1x3: 06223 case Intrinsic::aarch64_neon_ld1x4: 06224 case Intrinsic::aarch64_neon_ld2lane: 06225 case Intrinsic::aarch64_neon_ld3lane: 06226 case Intrinsic::aarch64_neon_ld4lane: 06227 case Intrinsic::aarch64_neon_ld2r: 06228 case Intrinsic::aarch64_neon_ld3r: 06229 case Intrinsic::aarch64_neon_ld4r: { 06230 Info.opc = ISD::INTRINSIC_W_CHAIN; 06231 // Conservatively set memVT to the entire set of vectors loaded. 06232 uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8; 06233 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 06234 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 06235 Info.offset = 0; 06236 Info.align = 0; 06237 Info.vol = false; // volatile loads with NEON intrinsics not supported 06238 Info.readMem = true; 06239 Info.writeMem = false; 06240 return true; 06241 } 06242 case Intrinsic::aarch64_neon_st2: 06243 case Intrinsic::aarch64_neon_st3: 06244 case Intrinsic::aarch64_neon_st4: 06245 case Intrinsic::aarch64_neon_st1x2: 06246 case Intrinsic::aarch64_neon_st1x3: 06247 case Intrinsic::aarch64_neon_st1x4: 06248 case Intrinsic::aarch64_neon_st2lane: 06249 case Intrinsic::aarch64_neon_st3lane: 06250 case Intrinsic::aarch64_neon_st4lane: { 06251 Info.opc = ISD::INTRINSIC_VOID; 06252 // Conservatively set memVT to the entire set of vectors stored. 06253 unsigned NumElts = 0; 06254 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 06255 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 06256 if (!ArgTy->isVectorTy()) 06257 break; 06258 NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8; 06259 } 06260 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 06261 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1); 06262 Info.offset = 0; 06263 Info.align = 0; 06264 Info.vol = false; // volatile stores with NEON intrinsics not supported 06265 Info.readMem = false; 06266 Info.writeMem = true; 06267 return true; 06268 } 06269 case Intrinsic::aarch64_ldaxr: 06270 case Intrinsic::aarch64_ldxr: { 06271 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 06272 Info.opc = ISD::INTRINSIC_W_CHAIN; 06273 Info.memVT = MVT::getVT(PtrTy->getElementType()); 06274 Info.ptrVal = I.getArgOperand(0); 06275 Info.offset = 0; 06276 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); 06277 Info.vol = true; 06278 Info.readMem = true; 06279 Info.writeMem = false; 06280 return true; 06281 } 06282 case Intrinsic::aarch64_stlxr: 06283 case Intrinsic::aarch64_stxr: { 06284 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 06285 Info.opc = ISD::INTRINSIC_W_CHAIN; 06286 Info.memVT = MVT::getVT(PtrTy->getElementType()); 06287 Info.ptrVal = I.getArgOperand(1); 06288 Info.offset = 0; 06289 Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType()); 06290 Info.vol = true; 06291 Info.readMem = false; 06292 Info.writeMem = true; 06293 return true; 06294 } 06295 case Intrinsic::aarch64_ldaxp: 06296 case Intrinsic::aarch64_ldxp: { 06297 Info.opc = ISD::INTRINSIC_W_CHAIN; 06298 Info.memVT = MVT::i128; 06299 Info.ptrVal = I.getArgOperand(0); 06300 Info.offset = 0; 06301 Info.align = 16; 06302 Info.vol = true; 06303 Info.readMem = true; 06304 Info.writeMem = false; 06305 return true; 06306 } 06307 case Intrinsic::aarch64_stlxp: 06308 case Intrinsic::aarch64_stxp: { 06309 Info.opc = ISD::INTRINSIC_W_CHAIN; 06310 Info.memVT = MVT::i128; 06311 Info.ptrVal = I.getArgOperand(2); 06312 Info.offset = 0; 06313 Info.align = 16; 06314 Info.vol = true; 06315 Info.readMem = false; 06316 Info.writeMem = true; 06317 return true; 06318 } 06319 default: 06320 break; 06321 } 06322 06323 return false; 06324 } 06325 06326 // Truncations from 64-bit GPR to 32-bit GPR is free. 06327 bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { 06328 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 06329 return false; 06330 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 06331 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 06332 return NumBits1 > NumBits2; 06333 } 06334 bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { 06335 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 06336 return false; 06337 unsigned NumBits1 = VT1.getSizeInBits(); 06338 unsigned NumBits2 = VT2.getSizeInBits(); 06339 return NumBits1 > NumBits2; 06340 } 06341 06342 // All 32-bit GPR operations implicitly zero the high-half of the corresponding 06343 // 64-bit GPR. 06344 bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { 06345 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 06346 return false; 06347 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); 06348 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); 06349 return NumBits1 == 32 && NumBits2 == 64; 06350 } 06351 bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { 06352 if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) 06353 return false; 06354 unsigned NumBits1 = VT1.getSizeInBits(); 06355 unsigned NumBits2 = VT2.getSizeInBits(); 06356 return NumBits1 == 32 && NumBits2 == 64; 06357 } 06358 06359 bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 06360 EVT VT1 = Val.getValueType(); 06361 if (isZExtFree(VT1, VT2)) { 06362 return true; 06363 } 06364 06365 if (Val.getOpcode() != ISD::LOAD) 06366 return false; 06367 06368 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. 06369 return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && 06370 VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && 06371 VT1.getSizeInBits() <= 32); 06372 } 06373 06374 bool AArch64TargetLowering::hasPairedLoad(Type *LoadedType, 06375 unsigned &RequiredAligment) const { 06376 if (!LoadedType->isIntegerTy() && !LoadedType->isFloatTy()) 06377 return false; 06378 // Cyclone supports unaligned accesses. 06379 RequiredAligment = 0; 06380 unsigned NumBits = LoadedType->getPrimitiveSizeInBits(); 06381 return NumBits == 32 || NumBits == 64; 06382 } 06383 06384 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, 06385 unsigned &RequiredAligment) const { 06386 if (!LoadedType.isSimple() || 06387 (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) 06388 return false; 06389 // Cyclone supports unaligned accesses. 06390 RequiredAligment = 0; 06391 unsigned NumBits = LoadedType.getSizeInBits(); 06392 return NumBits == 32 || NumBits == 64; 06393 } 06394 06395 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 06396 unsigned AlignCheck) { 06397 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 06398 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 06399 } 06400 06401 EVT AArch64TargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, 06402 unsigned SrcAlign, bool IsMemset, 06403 bool ZeroMemset, 06404 bool MemcpyStrSrc, 06405 MachineFunction &MF) const { 06406 // Don't use AdvSIMD to implement 16-byte memset. It would have taken one 06407 // instruction to materialize the v2i64 zero and one store (with restrictive 06408 // addressing mode). Just do two i64 store of zero-registers. 06409 bool Fast; 06410 const Function *F = MF.getFunction(); 06411 if (Subtarget->hasFPARMv8() && !IsMemset && Size >= 16 && 06412 !F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 06413 Attribute::NoImplicitFloat) && 06414 (memOpAlign(SrcAlign, DstAlign, 16) || 06415 (allowsMisalignedMemoryAccesses(MVT::f128, 0, 1, &Fast) && Fast))) 06416 return MVT::f128; 06417 06418 return Size >= 8 ? MVT::i64 : MVT::i32; 06419 } 06420 06421 // 12-bit optionally shifted immediates are legal for adds. 06422 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { 06423 if ((Immed >> 12) == 0 || ((Immed & 0xfff) == 0 && Immed >> 24 == 0)) 06424 return true; 06425 return false; 06426 } 06427 06428 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid 06429 // immediates is the same as for an add or a sub. 06430 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { 06431 if (Immed < 0) 06432 Immed *= -1; 06433 return isLegalAddImmediate(Immed); 06434 } 06435 06436 /// isLegalAddressingMode - Return true if the addressing mode represented 06437 /// by AM is legal for this target, for a load/store of the specified type. 06438 bool AArch64TargetLowering::isLegalAddressingMode(const AddrMode &AM, 06439 Type *Ty) const { 06440 // AArch64 has five basic addressing modes: 06441 // reg 06442 // reg + 9-bit signed offset 06443 // reg + SIZE_IN_BYTES * 12-bit unsigned offset 06444 // reg1 + reg2 06445 // reg + SIZE_IN_BYTES * reg 06446 06447 // No global is ever allowed as a base. 06448 if (AM.BaseGV) 06449 return false; 06450 06451 // No reg+reg+imm addressing. 06452 if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) 06453 return false; 06454 06455 // check reg + imm case: 06456 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 06457 uint64_t NumBytes = 0; 06458 if (Ty->isSized()) { 06459 uint64_t NumBits = getDataLayout()->getTypeSizeInBits(Ty); 06460 NumBytes = NumBits / 8; 06461 if (!isPowerOf2_64(NumBits)) 06462 NumBytes = 0; 06463 } 06464 06465 if (!AM.Scale) { 06466 int64_t Offset = AM.BaseOffs; 06467 06468 // 9-bit signed offset 06469 if (Offset >= -(1LL << 9) && Offset <= (1LL << 9) - 1) 06470 return true; 06471 06472 // 12-bit unsigned offset 06473 unsigned shift = Log2_64(NumBytes); 06474 if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && 06475 // Must be a multiple of NumBytes (NumBytes is a power of 2) 06476 (Offset >> shift) << shift == Offset) 06477 return true; 06478 return false; 06479 } 06480 06481 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 06482 06483 if (!AM.Scale || AM.Scale == 1 || 06484 (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes)) 06485 return true; 06486 return false; 06487 } 06488 06489 int AArch64TargetLowering::getScalingFactorCost(const AddrMode &AM, 06490 Type *Ty) const { 06491 // Scaling factors are not free at all. 06492 // Operands | Rt Latency 06493 // ------------------------------------------- 06494 // Rt, [Xn, Xm] | 4 06495 // ------------------------------------------- 06496 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5 06497 // Rt, [Xn, Wm, <extend> #imm] | 06498 if (isLegalAddressingMode(AM, Ty)) 06499 // Scale represents reg2 * scale, thus account for 1 if 06500 // it is not equal to 0 or 1. 06501 return AM.Scale != 0 && AM.Scale != 1; 06502 return -1; 06503 } 06504 06505 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 06506 VT = VT.getScalarType(); 06507 06508 if (!VT.isSimple()) 06509 return false; 06510 06511 switch (VT.getSimpleVT().SimpleTy) { 06512 case MVT::f32: 06513 case MVT::f64: 06514 return true; 06515 default: 06516 break; 06517 } 06518 06519 return false; 06520 } 06521 06522 const MCPhysReg * 06523 AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { 06524 // LR is a callee-save register, but we must treat it as clobbered by any call 06525 // site. Hence we include LR in the scratch registers, which are in turn added 06526 // as implicit-defs for stackmaps and patchpoints. 06527 static const MCPhysReg ScratchRegs[] = { 06528 AArch64::X16, AArch64::X17, AArch64::LR, 0 06529 }; 06530 return ScratchRegs; 06531 } 06532 06533 bool 06534 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N) const { 06535 EVT VT = N->getValueType(0); 06536 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine 06537 // it with shift to let it be lowered to UBFX. 06538 if (N->getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && 06539 isa<ConstantSDNode>(N->getOperand(1))) { 06540 uint64_t TruncMask = N->getConstantOperandVal(1); 06541 if (isMask_64(TruncMask) && 06542 N->getOperand(0).getOpcode() == ISD::SRL && 06543 isa<ConstantSDNode>(N->getOperand(0)->getOperand(1))) 06544 return false; 06545 } 06546 return true; 06547 } 06548 06549 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 06550 Type *Ty) const { 06551 assert(Ty->isIntegerTy()); 06552 06553 unsigned BitSize = Ty->getPrimitiveSizeInBits(); 06554 if (BitSize == 0) 06555 return false; 06556 06557 int64_t Val = Imm.getSExtValue(); 06558 if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) 06559 return true; 06560 06561 if ((int64_t)Val < 0) 06562 Val = ~Val; 06563 if (BitSize == 32) 06564 Val &= (1LL << 32) - 1; 06565 06566 unsigned LZ = countLeadingZeros((uint64_t)Val); 06567 unsigned Shift = (63 - LZ) / 16; 06568 // MOVZ is free so return true for one or fewer MOVK. 06569 return (Shift < 3) ? true : false; 06570 } 06571 06572 // Generate SUBS and CSEL for integer abs. 06573 static SDValue performIntegerAbsCombine(SDNode *N, SelectionDAG &DAG) { 06574 EVT VT = N->getValueType(0); 06575 06576 SDValue N0 = N->getOperand(0); 06577 SDValue N1 = N->getOperand(1); 06578 SDLoc DL(N); 06579 06580 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1) 06581 // and change it to SUB and CSEL. 06582 if (VT.isInteger() && N->getOpcode() == ISD::XOR && 06583 N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1 && 06584 N1.getOpcode() == ISD::SRA && N1.getOperand(0) == N0.getOperand(0)) 06585 if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1))) 06586 if (Y1C->getAPIntValue() == VT.getSizeInBits() - 1) { 06587 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), 06588 N0.getOperand(0)); 06589 // Generate SUBS & CSEL. 06590 SDValue Cmp = 06591 DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), 06592 N0.getOperand(0), DAG.getConstant(0, VT)); 06593 return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0.getOperand(0), Neg, 06594 DAG.getConstant(AArch64CC::PL, MVT::i32), 06595 SDValue(Cmp.getNode(), 1)); 06596 } 06597 return SDValue(); 06598 } 06599 06600 // performXorCombine - Attempts to handle integer ABS. 06601 static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, 06602 TargetLowering::DAGCombinerInfo &DCI, 06603 const AArch64Subtarget *Subtarget) { 06604 if (DCI.isBeforeLegalizeOps()) 06605 return SDValue(); 06606 06607 return performIntegerAbsCombine(N, DAG); 06608 } 06609 06610 SDValue 06611 AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 06612 SelectionDAG &DAG, 06613 std::vector<SDNode *> *Created) const { 06614 // fold (sdiv X, pow2) 06615 EVT VT = N->getValueType(0); 06616 if ((VT != MVT::i32 && VT != MVT::i64) || 06617 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2())) 06618 return SDValue(); 06619 06620 SDLoc DL(N); 06621 SDValue N0 = N->getOperand(0); 06622 unsigned Lg2 = Divisor.countTrailingZeros(); 06623 SDValue Zero = DAG.getConstant(0, VT); 06624 SDValue Pow2MinusOne = DAG.getConstant((1 << Lg2) - 1, VT); 06625 06626 // Add (N0 < 0) ? Pow2 - 1 : 0; 06627 SDValue CCVal; 06628 SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); 06629 SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); 06630 SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); 06631 06632 if (Created) { 06633 Created->push_back(Cmp.getNode()); 06634 Created->push_back(Add.getNode()); 06635 Created->push_back(CSel.getNode()); 06636 } 06637 06638 // Divide by pow2. 06639 SDValue SRA = 06640 DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, MVT::i64)); 06641 06642 // If we're dividing by a positive value, we're done. Otherwise, we must 06643 // negate the result. 06644 if (Divisor.isNonNegative()) 06645 return SRA; 06646 06647 if (Created) 06648 Created->push_back(SRA.getNode()); 06649 return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT), SRA); 06650 } 06651 06652 static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, 06653 TargetLowering::DAGCombinerInfo &DCI, 06654 const AArch64Subtarget *Subtarget) { 06655 if (DCI.isBeforeLegalizeOps()) 06656 return SDValue(); 06657 06658 // Multiplication of a power of two plus/minus one can be done more 06659 // cheaply as as shift+add/sub. For now, this is true unilaterally. If 06660 // future CPUs have a cheaper MADD instruction, this may need to be 06661 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and 06662 // 64-bit is 5 cycles, so this is always a win. 06663 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 06664 APInt Value = C->getAPIntValue(); 06665 EVT VT = N->getValueType(0); 06666 if (Value.isNonNegative()) { 06667 // (mul x, 2^N + 1) => (add (shl x, N), x) 06668 APInt VM1 = Value - 1; 06669 if (VM1.isPowerOf2()) { 06670 SDValue ShiftedVal = 06671 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), 06672 DAG.getConstant(VM1.logBase2(), MVT::i64)); 06673 return DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, 06674 N->getOperand(0)); 06675 } 06676 // (mul x, 2^N - 1) => (sub (shl x, N), x) 06677 APInt VP1 = Value + 1; 06678 if (VP1.isPowerOf2()) { 06679 SDValue ShiftedVal = 06680 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), 06681 DAG.getConstant(VP1.logBase2(), MVT::i64)); 06682 return DAG.getNode(ISD::SUB, SDLoc(N), VT, ShiftedVal, 06683 N->getOperand(0)); 06684 } 06685 } else { 06686 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 06687 APInt VNM1 = -Value - 1; 06688 if (VNM1.isPowerOf2()) { 06689 SDValue ShiftedVal = 06690 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), 06691 DAG.getConstant(VNM1.logBase2(), MVT::i64)); 06692 SDValue Add = 06693 DAG.getNode(ISD::ADD, SDLoc(N), VT, ShiftedVal, N->getOperand(0)); 06694 return DAG.getNode(ISD::SUB, SDLoc(N), VT, DAG.getConstant(0, VT), Add); 06695 } 06696 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 06697 APInt VNP1 = -Value + 1; 06698 if (VNP1.isPowerOf2()) { 06699 SDValue ShiftedVal = 06700 DAG.getNode(ISD::SHL, SDLoc(N), VT, N->getOperand(0), 06701 DAG.getConstant(VNP1.logBase2(), MVT::i64)); 06702 return DAG.getNode(ISD::SUB, SDLoc(N), VT, N->getOperand(0), 06703 ShiftedVal); 06704 } 06705 } 06706 } 06707 return SDValue(); 06708 } 06709 06710 static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, 06711 SelectionDAG &DAG) { 06712 // Take advantage of vector comparisons producing 0 or -1 in each lane to 06713 // optimize away operation when it's from a constant. 06714 // 06715 // The general transformation is: 06716 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> 06717 // AND(VECTOR_CMP(x,y), constant2) 06718 // constant2 = UNARYOP(constant) 06719 06720 // Early exit if this isn't a vector operation, the operand of the 06721 // unary operation isn't a bitwise AND, or if the sizes of the operations 06722 // aren't the same. 06723 EVT VT = N->getValueType(0); 06724 if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || 06725 N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || 06726 VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) 06727 return SDValue(); 06728 06729 // Now check that the other operand of the AND is a constant. We could 06730 // make the transformation for non-constant splats as well, but it's unclear 06731 // that would be a benefit as it would not eliminate any operations, just 06732 // perform one more step in scalar code before moving to the vector unit. 06733 if (BuildVectorSDNode *BV = 06734 dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { 06735 // Bail out if the vector isn't a constant. 06736 if (!BV->isConstant()) 06737 return SDValue(); 06738 06739 // Everything checks out. Build up the new and improved node. 06740 SDLoc DL(N); 06741 EVT IntVT = BV->getValueType(0); 06742 // Create a new constant of the appropriate type for the transformed 06743 // DAG. 06744 SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); 06745 // The AND node needs bitcasts to/from an integer vector type around it. 06746 SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); 06747 SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, 06748 N->getOperand(0)->getOperand(0), MaskConst); 06749 SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); 06750 return Res; 06751 } 06752 06753 return SDValue(); 06754 } 06755 06756 static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG) { 06757 // First try to optimize away the conversion when it's conditionally from 06758 // a constant. Vectors only. 06759 SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG); 06760 if (Res != SDValue()) 06761 return Res; 06762 06763 EVT VT = N->getValueType(0); 06764 if (VT != MVT::f32 && VT != MVT::f64) 06765 return SDValue(); 06766 06767 // Only optimize when the source and destination types have the same width. 06768 if (VT.getSizeInBits() != N->getOperand(0).getValueType().getSizeInBits()) 06769 return SDValue(); 06770 06771 // If the result of an integer load is only used by an integer-to-float 06772 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. 06773 // This eliminates an "integer-to-vector-move UOP and improve throughput. 06774 SDValue N0 = N->getOperand(0); 06775 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && 06776 // Do not change the width of a volatile load. 06777 !cast<LoadSDNode>(N0)->isVolatile()) { 06778 LoadSDNode *LN0 = cast<LoadSDNode>(N0); 06779 SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), 06780 LN0->getPointerInfo(), LN0->isVolatile(), 06781 LN0->isNonTemporal(), LN0->isInvariant(), 06782 LN0->getAlignment()); 06783 06784 // Make sure successors of the original load stay after it by updating them 06785 // to use the new Chain. 06786 DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); 06787 06788 unsigned Opcode = 06789 (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; 06790 return DAG.getNode(Opcode, SDLoc(N), VT, Load); 06791 } 06792 06793 return SDValue(); 06794 } 06795 06796 /// An EXTR instruction is made up of two shifts, ORed together. This helper 06797 /// searches for and classifies those shifts. 06798 static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, 06799 bool &FromHi) { 06800 if (N.getOpcode() == ISD::SHL) 06801 FromHi = false; 06802 else if (N.getOpcode() == ISD::SRL) 06803 FromHi = true; 06804 else 06805 return false; 06806 06807 if (!isa<ConstantSDNode>(N.getOperand(1))) 06808 return false; 06809 06810 ShiftAmount = N->getConstantOperandVal(1); 06811 Src = N->getOperand(0); 06812 return true; 06813 } 06814 06815 /// EXTR instruction extracts a contiguous chunk of bits from two existing 06816 /// registers viewed as a high/low pair. This function looks for the pattern: 06817 /// (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) and replaces it with an 06818 /// EXTR. Can't quite be done in TableGen because the two immediates aren't 06819 /// independent. 06820 static SDValue tryCombineToEXTR(SDNode *N, 06821 TargetLowering::DAGCombinerInfo &DCI) { 06822 SelectionDAG &DAG = DCI.DAG; 06823 SDLoc DL(N); 06824 EVT VT = N->getValueType(0); 06825 06826 assert(N->getOpcode() == ISD::OR && "Unexpected root"); 06827 06828 if (VT != MVT::i32 && VT != MVT::i64) 06829 return SDValue(); 06830 06831 SDValue LHS; 06832 uint32_t ShiftLHS = 0; 06833 bool LHSFromHi = 0; 06834 if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) 06835 return SDValue(); 06836 06837 SDValue RHS; 06838 uint32_t ShiftRHS = 0; 06839 bool RHSFromHi = 0; 06840 if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) 06841 return SDValue(); 06842 06843 // If they're both trying to come from the high part of the register, they're 06844 // not really an EXTR. 06845 if (LHSFromHi == RHSFromHi) 06846 return SDValue(); 06847 06848 if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) 06849 return SDValue(); 06850 06851 if (LHSFromHi) { 06852 std::swap(LHS, RHS); 06853 std::swap(ShiftLHS, ShiftRHS); 06854 } 06855 06856 return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, 06857 DAG.getConstant(ShiftRHS, MVT::i64)); 06858 } 06859 06860 static SDValue tryCombineToBSL(SDNode *N, 06861 TargetLowering::DAGCombinerInfo &DCI) { 06862 EVT VT = N->getValueType(0); 06863 SelectionDAG &DAG = DCI.DAG; 06864 SDLoc DL(N); 06865 06866 if (!VT.isVector()) 06867 return SDValue(); 06868 06869 SDValue N0 = N->getOperand(0); 06870 if (N0.getOpcode() != ISD::AND) 06871 return SDValue(); 06872 06873 SDValue N1 = N->getOperand(1); 06874 if (N1.getOpcode() != ISD::AND) 06875 return SDValue(); 06876 06877 // We only have to look for constant vectors here since the general, variable 06878 // case can be handled in TableGen. 06879 unsigned Bits = VT.getVectorElementType().getSizeInBits(); 06880 uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); 06881 for (int i = 1; i >= 0; --i) 06882 for (int j = 1; j >= 0; --j) { 06883 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); 06884 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); 06885 if (!BVN0 || !BVN1) 06886 continue; 06887 06888 bool FoundMatch = true; 06889 for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { 06890 ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); 06891 ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); 06892 if (!CN0 || !CN1 || 06893 CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { 06894 FoundMatch = false; 06895 break; 06896 } 06897 } 06898 06899 if (FoundMatch) 06900 return DAG.getNode(AArch64ISD::BSL, DL, VT, SDValue(BVN0, 0), 06901 N0->getOperand(1 - i), N1->getOperand(1 - j)); 06902 } 06903 06904 return SDValue(); 06905 } 06906 06907 static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, 06908 const AArch64Subtarget *Subtarget) { 06909 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) 06910 if (!EnableAArch64ExtrGeneration) 06911 return SDValue(); 06912 SelectionDAG &DAG = DCI.DAG; 06913 EVT VT = N->getValueType(0); 06914 06915 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 06916 return SDValue(); 06917 06918 SDValue Res = tryCombineToEXTR(N, DCI); 06919 if (Res.getNode()) 06920 return Res; 06921 06922 Res = tryCombineToBSL(N, DCI); 06923 if (Res.getNode()) 06924 return Res; 06925 06926 return SDValue(); 06927 } 06928 06929 static SDValue performBitcastCombine(SDNode *N, 06930 TargetLowering::DAGCombinerInfo &DCI, 06931 SelectionDAG &DAG) { 06932 // Wait 'til after everything is legalized to try this. That way we have 06933 // legal vector types and such. 06934 if (DCI.isBeforeLegalizeOps()) 06935 return SDValue(); 06936 06937 // Remove extraneous bitcasts around an extract_subvector. 06938 // For example, 06939 // (v4i16 (bitconvert 06940 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1))))) 06941 // becomes 06942 // (extract_subvector ((v8i16 ...), (i64 4))) 06943 06944 // Only interested in 64-bit vectors as the ultimate result. 06945 EVT VT = N->getValueType(0); 06946 if (!VT.isVector()) 06947 return SDValue(); 06948 if (VT.getSimpleVT().getSizeInBits() != 64) 06949 return SDValue(); 06950 // Is the operand an extract_subvector starting at the beginning or halfway 06951 // point of the vector? A low half may also come through as an 06952 // EXTRACT_SUBREG, so look for that, too. 06953 SDValue Op0 = N->getOperand(0); 06954 if (Op0->getOpcode() != ISD::EXTRACT_SUBVECTOR && 06955 !(Op0->isMachineOpcode() && 06956 Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG)) 06957 return SDValue(); 06958 uint64_t idx = cast<ConstantSDNode>(Op0->getOperand(1))->getZExtValue(); 06959 if (Op0->getOpcode() == ISD::EXTRACT_SUBVECTOR) { 06960 if (Op0->getValueType(0).getVectorNumElements() != idx && idx != 0) 06961 return SDValue(); 06962 } else if (Op0->getMachineOpcode() == AArch64::EXTRACT_SUBREG) { 06963 if (idx != AArch64::dsub) 06964 return SDValue(); 06965 // The dsub reference is equivalent to a lane zero subvector reference. 06966 idx = 0; 06967 } 06968 // Look through the bitcast of the input to the extract. 06969 if (Op0->getOperand(0)->getOpcode() != ISD::BITCAST) 06970 return SDValue(); 06971 SDValue Source = Op0->getOperand(0)->getOperand(0); 06972 // If the source type has twice the number of elements as our destination 06973 // type, we know this is an extract of the high or low half of the vector. 06974 EVT SVT = Source->getValueType(0); 06975 if (SVT.getVectorNumElements() != VT.getVectorNumElements() * 2) 06976 return SDValue(); 06977 06978 DEBUG(dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n"); 06979 06980 // Create the simplified form to just extract the low or high half of the 06981 // vector directly rather than bothering with the bitcasts. 06982 SDLoc dl(N); 06983 unsigned NumElements = VT.getVectorNumElements(); 06984 if (idx) { 06985 SDValue HalfIdx = DAG.getConstant(NumElements, MVT::i64); 06986 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, Source, HalfIdx); 06987 } else { 06988 SDValue SubReg = DAG.getTargetConstant(AArch64::dsub, MVT::i32); 06989 return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl, VT, 06990 Source, SubReg), 06991 0); 06992 } 06993 } 06994 06995 static SDValue performConcatVectorsCombine(SDNode *N, 06996 TargetLowering::DAGCombinerInfo &DCI, 06997 SelectionDAG &DAG) { 06998 // Wait 'til after everything is legalized to try this. That way we have 06999 // legal vector types and such. 07000 if (DCI.isBeforeLegalizeOps()) 07001 return SDValue(); 07002 07003 SDLoc dl(N); 07004 EVT VT = N->getValueType(0); 07005 07006 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector 07007 // splat. The indexed instructions are going to be expecting a DUPLANE64, so 07008 // canonicalise to that. 07009 if (N->getOperand(0) == N->getOperand(1) && VT.getVectorNumElements() == 2) { 07010 assert(VT.getVectorElementType().getSizeInBits() == 64); 07011 return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, 07012 WidenVector(N->getOperand(0), DAG), 07013 DAG.getConstant(0, MVT::i64)); 07014 } 07015 07016 // Canonicalise concat_vectors so that the right-hand vector has as few 07017 // bit-casts as possible before its real operation. The primary matching 07018 // destination for these operations will be the narrowing "2" instructions, 07019 // which depend on the operation being performed on this right-hand vector. 07020 // For example, 07021 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) 07022 // becomes 07023 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) 07024 07025 SDValue Op1 = N->getOperand(1); 07026 if (Op1->getOpcode() != ISD::BITCAST) 07027 return SDValue(); 07028 SDValue RHS = Op1->getOperand(0); 07029 MVT RHSTy = RHS.getValueType().getSimpleVT(); 07030 // If the RHS is not a vector, this is not the pattern we're looking for. 07031 if (!RHSTy.isVector()) 07032 return SDValue(); 07033 07034 DEBUG(dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n"); 07035 07036 MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), 07037 RHSTy.getVectorNumElements() * 2); 07038 return DAG.getNode( 07039 ISD::BITCAST, dl, VT, 07040 DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, 07041 DAG.getNode(ISD::BITCAST, dl, RHSTy, N->getOperand(0)), RHS)); 07042 } 07043 07044 static SDValue tryCombineFixedPointConvert(SDNode *N, 07045 TargetLowering::DAGCombinerInfo &DCI, 07046 SelectionDAG &DAG) { 07047 // Wait 'til after everything is legalized to try this. That way we have 07048 // legal vector types and such. 07049 if (DCI.isBeforeLegalizeOps()) 07050 return SDValue(); 07051 // Transform a scalar conversion of a value from a lane extract into a 07052 // lane extract of a vector conversion. E.g., from foo1 to foo2: 07053 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } 07054 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } 07055 // 07056 // The second form interacts better with instruction selection and the 07057 // register allocator to avoid cross-class register copies that aren't 07058 // coalescable due to a lane reference. 07059 07060 // Check the operand and see if it originates from a lane extract. 07061 SDValue Op1 = N->getOperand(1); 07062 if (Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 07063 // Yep, no additional predication needed. Perform the transform. 07064 SDValue IID = N->getOperand(0); 07065 SDValue Shift = N->getOperand(2); 07066 SDValue Vec = Op1.getOperand(0); 07067 SDValue Lane = Op1.getOperand(1); 07068 EVT ResTy = N->getValueType(0); 07069 EVT VecResTy; 07070 SDLoc DL(N); 07071 07072 // The vector width should be 128 bits by the time we get here, even 07073 // if it started as 64 bits (the extract_vector handling will have 07074 // done so). 07075 assert(Vec.getValueType().getSizeInBits() == 128 && 07076 "unexpected vector size on extract_vector_elt!"); 07077 if (Vec.getValueType() == MVT::v4i32) 07078 VecResTy = MVT::v4f32; 07079 else if (Vec.getValueType() == MVT::v2i64) 07080 VecResTy = MVT::v2f64; 07081 else 07082 llvm_unreachable("unexpected vector type!"); 07083 07084 SDValue Convert = 07085 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); 07086 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); 07087 } 07088 return SDValue(); 07089 } 07090 07091 // AArch64 high-vector "long" operations are formed by performing the non-high 07092 // version on an extract_subvector of each operand which gets the high half: 07093 // 07094 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) 07095 // 07096 // However, there are cases which don't have an extract_high explicitly, but 07097 // have another operation that can be made compatible with one for free. For 07098 // example: 07099 // 07100 // (dupv64 scalar) --> (extract_high (dup128 scalar)) 07101 // 07102 // This routine does the actual conversion of such DUPs, once outer routines 07103 // have determined that everything else is in order. 07104 static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { 07105 // We can handle most types of duplicate, but the lane ones have an extra 07106 // operand saying *which* lane, so we need to know. 07107 bool IsDUPLANE; 07108 switch (N.getOpcode()) { 07109 case AArch64ISD::DUP: 07110 IsDUPLANE = false; 07111 break; 07112 case AArch64ISD::DUPLANE8: 07113 case AArch64ISD::DUPLANE16: 07114 case AArch64ISD::DUPLANE32: 07115 case AArch64ISD::DUPLANE64: 07116 IsDUPLANE = true; 07117 break; 07118 default: 07119 return SDValue(); 07120 } 07121 07122 MVT NarrowTy = N.getSimpleValueType(); 07123 if (!NarrowTy.is64BitVector()) 07124 return SDValue(); 07125 07126 MVT ElementTy = NarrowTy.getVectorElementType(); 07127 unsigned NumElems = NarrowTy.getVectorNumElements(); 07128 MVT NewDUPVT = MVT::getVectorVT(ElementTy, NumElems * 2); 07129 07130 SDValue NewDUP; 07131 if (IsDUPLANE) 07132 NewDUP = DAG.getNode(N.getOpcode(), SDLoc(N), NewDUPVT, N.getOperand(0), 07133 N.getOperand(1)); 07134 else 07135 NewDUP = DAG.getNode(AArch64ISD::DUP, SDLoc(N), NewDUPVT, N.getOperand(0)); 07136 07137 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N.getNode()), NarrowTy, 07138 NewDUP, DAG.getConstant(NumElems, MVT::i64)); 07139 } 07140 07141 static bool isEssentiallyExtractSubvector(SDValue N) { 07142 if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR) 07143 return true; 07144 07145 return N.getOpcode() == ISD::BITCAST && 07146 N.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR; 07147 } 07148 07149 /// \brief Helper structure to keep track of ISD::SET_CC operands. 07150 struct GenericSetCCInfo { 07151 const SDValue *Opnd0; 07152 const SDValue *Opnd1; 07153 ISD::CondCode CC; 07154 }; 07155 07156 /// \brief Helper structure to keep track of a SET_CC lowered into AArch64 code. 07157 struct AArch64SetCCInfo { 07158 const SDValue *Cmp; 07159 AArch64CC::CondCode CC; 07160 }; 07161 07162 /// \brief Helper structure to keep track of SetCC information. 07163 union SetCCInfo { 07164 GenericSetCCInfo Generic; 07165 AArch64SetCCInfo AArch64; 07166 }; 07167 07168 /// \brief Helper structure to be able to read SetCC information. If set to 07169 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a 07170 /// GenericSetCCInfo. 07171 struct SetCCInfoAndKind { 07172 SetCCInfo Info; 07173 bool IsAArch64; 07174 }; 07175 07176 /// \brief Check whether or not \p Op is a SET_CC operation, either a generic or 07177 /// an 07178 /// AArch64 lowered one. 07179 /// \p SetCCInfo is filled accordingly. 07180 /// \post SetCCInfo is meanginfull only when this function returns true. 07181 /// \return True when Op is a kind of SET_CC operation. 07182 static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { 07183 // If this is a setcc, this is straight forward. 07184 if (Op.getOpcode() == ISD::SETCC) { 07185 SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); 07186 SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); 07187 SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 07188 SetCCInfo.IsAArch64 = false; 07189 return true; 07190 } 07191 // Otherwise, check if this is a matching csel instruction. 07192 // In other words: 07193 // - csel 1, 0, cc 07194 // - csel 0, 1, !cc 07195 if (Op.getOpcode() != AArch64ISD::CSEL) 07196 return false; 07197 // Set the information about the operands. 07198 // TODO: we want the operands of the Cmp not the csel 07199 SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); 07200 SetCCInfo.IsAArch64 = true; 07201 SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( 07202 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 07203 07204 // Check that the operands matches the constraints: 07205 // (1) Both operands must be constants. 07206 // (2) One must be 1 and the other must be 0. 07207 ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 07208 ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 07209 07210 // Check (1). 07211 if (!TValue || !FValue) 07212 return false; 07213 07214 // Check (2). 07215 if (!TValue->isOne()) { 07216 // Update the comparison when we are interested in !cc. 07217 std::swap(TValue, FValue); 07218 SetCCInfo.Info.AArch64.CC = 07219 AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); 07220 } 07221 return TValue->isOne() && FValue->isNullValue(); 07222 } 07223 07224 // Returns true if Op is setcc or zext of setcc. 07225 static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { 07226 if (isSetCC(Op, Info)) 07227 return true; 07228 return ((Op.getOpcode() == ISD::ZERO_EXTEND) && 07229 isSetCC(Op->getOperand(0), Info)); 07230 } 07231 07232 // The folding we want to perform is: 07233 // (add x, [zext] (setcc cc ...) ) 07234 // --> 07235 // (csel x, (add x, 1), !cc ...) 07236 // 07237 // The latter will get matched to a CSINC instruction. 07238 static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { 07239 assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!"); 07240 SDValue LHS = Op->getOperand(0); 07241 SDValue RHS = Op->getOperand(1); 07242 SetCCInfoAndKind InfoAndKind; 07243 07244 // If neither operand is a SET_CC, give up. 07245 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { 07246 std::swap(LHS, RHS); 07247 if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) 07248 return SDValue(); 07249 } 07250 07251 // FIXME: This could be generatized to work for FP comparisons. 07252 EVT CmpVT = InfoAndKind.IsAArch64 07253 ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() 07254 : InfoAndKind.Info.Generic.Opnd0->getValueType(); 07255 if (CmpVT != MVT::i32 && CmpVT != MVT::i64) 07256 return SDValue(); 07257 07258 SDValue CCVal; 07259 SDValue Cmp; 07260 SDLoc dl(Op); 07261 if (InfoAndKind.IsAArch64) { 07262 CCVal = DAG.getConstant( 07263 AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), MVT::i32); 07264 Cmp = *InfoAndKind.Info.AArch64.Cmp; 07265 } else 07266 Cmp = getAArch64Cmp(*InfoAndKind.Info.Generic.Opnd0, 07267 *InfoAndKind.Info.Generic.Opnd1, 07268 ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, true), 07269 CCVal, DAG, dl); 07270 07271 EVT VT = Op->getValueType(0); 07272 LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, VT)); 07273 return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); 07274 } 07275 07276 // The basic add/sub long vector instructions have variants with "2" on the end 07277 // which act on the high-half of their inputs. They are normally matched by 07278 // patterns like: 07279 // 07280 // (add (zeroext (extract_high LHS)), 07281 // (zeroext (extract_high RHS))) 07282 // -> uaddl2 vD, vN, vM 07283 // 07284 // However, if one of the extracts is something like a duplicate, this 07285 // instruction can still be used profitably. This function puts the DAG into a 07286 // more appropriate form for those patterns to trigger. 07287 static SDValue performAddSubLongCombine(SDNode *N, 07288 TargetLowering::DAGCombinerInfo &DCI, 07289 SelectionDAG &DAG) { 07290 if (DCI.isBeforeLegalizeOps()) 07291 return SDValue(); 07292 07293 MVT VT = N->getSimpleValueType(0); 07294 if (!VT.is128BitVector()) { 07295 if (N->getOpcode() == ISD::ADD) 07296 return performSetccAddFolding(N, DAG); 07297 return SDValue(); 07298 } 07299 07300 // Make sure both branches are extended in the same way. 07301 SDValue LHS = N->getOperand(0); 07302 SDValue RHS = N->getOperand(1); 07303 if ((LHS.getOpcode() != ISD::ZERO_EXTEND && 07304 LHS.getOpcode() != ISD::SIGN_EXTEND) || 07305 LHS.getOpcode() != RHS.getOpcode()) 07306 return SDValue(); 07307 07308 unsigned ExtType = LHS.getOpcode(); 07309 07310 // It's not worth doing if at least one of the inputs isn't already an 07311 // extract, but we don't know which it'll be so we have to try both. 07312 if (isEssentiallyExtractSubvector(LHS.getOperand(0))) { 07313 RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); 07314 if (!RHS.getNode()) 07315 return SDValue(); 07316 07317 RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); 07318 } else if (isEssentiallyExtractSubvector(RHS.getOperand(0))) { 07319 LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); 07320 if (!LHS.getNode()) 07321 return SDValue(); 07322 07323 LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); 07324 } 07325 07326 return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); 07327 } 07328 07329 // Massage DAGs which we can use the high-half "long" operations on into 07330 // something isel will recognize better. E.g. 07331 // 07332 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> 07333 // (aarch64_neon_umull (extract_high (v2i64 vec))) 07334 // (extract_high (v2i64 (dup128 scalar))))) 07335 // 07336 static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, 07337 TargetLowering::DAGCombinerInfo &DCI, 07338 SelectionDAG &DAG) { 07339 if (DCI.isBeforeLegalizeOps()) 07340 return SDValue(); 07341 07342 SDValue LHS = N->getOperand(1); 07343 SDValue RHS = N->getOperand(2); 07344 assert(LHS.getValueType().is64BitVector() && 07345 RHS.getValueType().is64BitVector() && 07346 "unexpected shape for long operation"); 07347 07348 // Either node could be a DUP, but it's not worth doing both of them (you'd 07349 // just as well use the non-high version) so look for a corresponding extract 07350 // operation on the other "wing". 07351 if (isEssentiallyExtractSubvector(LHS)) { 07352 RHS = tryExtendDUPToExtractHigh(RHS, DAG); 07353 if (!RHS.getNode()) 07354 return SDValue(); 07355 } else if (isEssentiallyExtractSubvector(RHS)) { 07356 LHS = tryExtendDUPToExtractHigh(LHS, DAG); 07357 if (!LHS.getNode()) 07358 return SDValue(); 07359 } 07360 07361 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), 07362 N->getOperand(0), LHS, RHS); 07363 } 07364 07365 static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { 07366 MVT ElemTy = N->getSimpleValueType(0).getScalarType(); 07367 unsigned ElemBits = ElemTy.getSizeInBits(); 07368 07369 int64_t ShiftAmount; 07370 if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { 07371 APInt SplatValue, SplatUndef; 07372 unsigned SplatBitSize; 07373 bool HasAnyUndefs; 07374 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, 07375 HasAnyUndefs, ElemBits) || 07376 SplatBitSize != ElemBits) 07377 return SDValue(); 07378 07379 ShiftAmount = SplatValue.getSExtValue(); 07380 } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { 07381 ShiftAmount = CVN->getSExtValue(); 07382 } else 07383 return SDValue(); 07384 07385 unsigned Opcode; 07386 bool IsRightShift; 07387 switch (IID) { 07388 default: 07389 llvm_unreachable("Unknown shift intrinsic"); 07390 case Intrinsic::aarch64_neon_sqshl: 07391 Opcode = AArch64ISD::SQSHL_I; 07392 IsRightShift = false; 07393 break; 07394 case Intrinsic::aarch64_neon_uqshl: 07395 Opcode = AArch64ISD::UQSHL_I; 07396 IsRightShift = false; 07397 break; 07398 case Intrinsic::aarch64_neon_srshl: 07399 Opcode = AArch64ISD::SRSHR_I; 07400 IsRightShift = true; 07401 break; 07402 case Intrinsic::aarch64_neon_urshl: 07403 Opcode = AArch64ISD::URSHR_I; 07404 IsRightShift = true; 07405 break; 07406 case Intrinsic::aarch64_neon_sqshlu: 07407 Opcode = AArch64ISD::SQSHLU_I; 07408 IsRightShift = false; 07409 break; 07410 } 07411 07412 if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) 07413 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), 07414 DAG.getConstant(-ShiftAmount, MVT::i32)); 07415 else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) 07416 return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), N->getOperand(1), 07417 DAG.getConstant(ShiftAmount, MVT::i32)); 07418 07419 return SDValue(); 07420 } 07421 07422 // The CRC32[BH] instructions ignore the high bits of their data operand. Since 07423 // the intrinsics must be legal and take an i32, this means there's almost 07424 // certainly going to be a zext in the DAG which we can eliminate. 07425 static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { 07426 SDValue AndN = N->getOperand(2); 07427 if (AndN.getOpcode() != ISD::AND) 07428 return SDValue(); 07429 07430 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); 07431 if (!CMask || CMask->getZExtValue() != Mask) 07432 return SDValue(); 07433 07434 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, 07435 N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); 07436 } 07437 07438 static SDValue performIntrinsicCombine(SDNode *N, 07439 TargetLowering::DAGCombinerInfo &DCI, 07440 const AArch64Subtarget *Subtarget) { 07441 SelectionDAG &DAG = DCI.DAG; 07442 unsigned IID = getIntrinsicID(N); 07443 switch (IID) { 07444 default: 07445 break; 07446 case Intrinsic::aarch64_neon_vcvtfxs2fp: 07447 case Intrinsic::aarch64_neon_vcvtfxu2fp: 07448 return tryCombineFixedPointConvert(N, DCI, DAG); 07449 break; 07450 case Intrinsic::aarch64_neon_fmax: 07451 return DAG.getNode(AArch64ISD::FMAX, SDLoc(N), N->getValueType(0), 07452 N->getOperand(1), N->getOperand(2)); 07453 case Intrinsic::aarch64_neon_fmin: 07454 return DAG.getNode(AArch64ISD::FMIN, SDLoc(N), N->getValueType(0), 07455 N->getOperand(1), N->getOperand(2)); 07456 case Intrinsic::aarch64_neon_smull: 07457 case Intrinsic::aarch64_neon_umull: 07458 case Intrinsic::aarch64_neon_pmull: 07459 case Intrinsic::aarch64_neon_sqdmull: 07460 return tryCombineLongOpWithDup(IID, N, DCI, DAG); 07461 case Intrinsic::aarch64_neon_sqshl: 07462 case Intrinsic::aarch64_neon_uqshl: 07463 case Intrinsic::aarch64_neon_sqshlu: 07464 case Intrinsic::aarch64_neon_srshl: 07465 case Intrinsic::aarch64_neon_urshl: 07466 return tryCombineShiftImm(IID, N, DAG); 07467 case Intrinsic::aarch64_crc32b: 07468 case Intrinsic::aarch64_crc32cb: 07469 return tryCombineCRC32(0xff, N, DAG); 07470 case Intrinsic::aarch64_crc32h: 07471 case Intrinsic::aarch64_crc32ch: 07472 return tryCombineCRC32(0xffff, N, DAG); 07473 } 07474 return SDValue(); 07475 } 07476 07477 static SDValue performExtendCombine(SDNode *N, 07478 TargetLowering::DAGCombinerInfo &DCI, 07479 SelectionDAG &DAG) { 07480 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then 07481 // we can convert that DUP into another extract_high (of a bigger DUP), which 07482 // helps the backend to decide that an sabdl2 would be useful, saving a real 07483 // extract_high operation. 07484 if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && 07485 N->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN) { 07486 SDNode *ABDNode = N->getOperand(0).getNode(); 07487 unsigned IID = getIntrinsicID(ABDNode); 07488 if (IID == Intrinsic::aarch64_neon_sabd || 07489 IID == Intrinsic::aarch64_neon_uabd) { 07490 SDValue NewABD = tryCombineLongOpWithDup(IID, ABDNode, DCI, DAG); 07491 if (!NewABD.getNode()) 07492 return SDValue(); 07493 07494 return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), 07495 NewABD); 07496 } 07497 } 07498 07499 // This is effectively a custom type legalization for AArch64. 07500 // 07501 // Type legalization will split an extend of a small, legal, type to a larger 07502 // illegal type by first splitting the destination type, often creating 07503 // illegal source types, which then get legalized in isel-confusing ways, 07504 // leading to really terrible codegen. E.g., 07505 // %result = v8i32 sext v8i8 %value 07506 // becomes 07507 // %losrc = extract_subreg %value, ... 07508 // %hisrc = extract_subreg %value, ... 07509 // %lo = v4i32 sext v4i8 %losrc 07510 // %hi = v4i32 sext v4i8 %hisrc 07511 // Things go rapidly downhill from there. 07512 // 07513 // For AArch64, the [sz]ext vector instructions can only go up one element 07514 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32 07515 // take two instructions. 07516 // 07517 // This implies that the most efficient way to do the extend from v8i8 07518 // to two v4i32 values is to first extend the v8i8 to v8i16, then do 07519 // the normal splitting to happen for the v8i16->v8i32. 07520 07521 // This is pre-legalization to catch some cases where the default 07522 // type legalization will create ill-tempered code. 07523 if (!DCI.isBeforeLegalizeOps()) 07524 return SDValue(); 07525 07526 // We're only interested in cleaning things up for non-legal vector types 07527 // here. If both the source and destination are legal, things will just 07528 // work naturally without any fiddling. 07529 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 07530 EVT ResVT = N->getValueType(0); 07531 if (!ResVT.isVector() || TLI.isTypeLegal(ResVT)) 07532 return SDValue(); 07533 // If the vector type isn't a simple VT, it's beyond the scope of what 07534 // we're worried about here. Let legalization do its thing and hope for 07535 // the best. 07536 SDValue Src = N->getOperand(0); 07537 EVT SrcVT = Src->getValueType(0); 07538 if (!ResVT.isSimple() || !SrcVT.isSimple()) 07539 return SDValue(); 07540 07541 // If the source VT is a 64-bit vector, we can play games and get the 07542 // better results we want. 07543 if (SrcVT.getSizeInBits() != 64) 07544 return SDValue(); 07545 07546 unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits(); 07547 unsigned ElementCount = SrcVT.getVectorNumElements(); 07548 SrcVT = MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize * 2), ElementCount); 07549 SDLoc DL(N); 07550 Src = DAG.getNode(N->getOpcode(), DL, SrcVT, Src); 07551 07552 // Now split the rest of the operation into two halves, each with a 64 07553 // bit source. 07554 EVT LoVT, HiVT; 07555 SDValue Lo, Hi; 07556 unsigned NumElements = ResVT.getVectorNumElements(); 07557 assert(!(NumElements & 1) && "Splitting vector, but not in half!"); 07558 LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(), 07559 ResVT.getVectorElementType(), NumElements / 2); 07560 07561 EVT InNVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getVectorElementType(), 07562 LoVT.getVectorNumElements()); 07563 Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 07564 DAG.getIntPtrConstant(0)); 07565 Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InNVT, Src, 07566 DAG.getIntPtrConstant(InNVT.getVectorNumElements())); 07567 Lo = DAG.getNode(N->getOpcode(), DL, LoVT, Lo); 07568 Hi = DAG.getNode(N->getOpcode(), DL, HiVT, Hi); 07569 07570 // Now combine the parts back together so we still have a single result 07571 // like the combiner expects. 07572 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Lo, Hi); 07573 } 07574 07575 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar 07576 /// value. The load store optimizer pass will merge them to store pair stores. 07577 /// This has better performance than a splat of the scalar followed by a split 07578 /// vector store. Even if the stores are not merged it is four stores vs a dup, 07579 /// followed by an ext.b and two stores. 07580 static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode *St) { 07581 SDValue StVal = St->getValue(); 07582 EVT VT = StVal.getValueType(); 07583 07584 // Don't replace floating point stores, they possibly won't be transformed to 07585 // stp because of the store pair suppress pass. 07586 if (VT.isFloatingPoint()) 07587 return SDValue(); 07588 07589 // Check for insert vector elements. 07590 if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) 07591 return SDValue(); 07592 07593 // We can express a splat as store pair(s) for 2 or 4 elements. 07594 unsigned NumVecElts = VT.getVectorNumElements(); 07595 if (NumVecElts != 4 && NumVecElts != 2) 07596 return SDValue(); 07597 SDValue SplatVal = StVal.getOperand(1); 07598 unsigned RemainInsertElts = NumVecElts - 1; 07599 07600 // Check that this is a splat. 07601 while (--RemainInsertElts) { 07602 SDValue NextInsertElt = StVal.getOperand(0); 07603 if (NextInsertElt.getOpcode() != ISD::INSERT_VECTOR_ELT) 07604 return SDValue(); 07605 if (NextInsertElt.getOperand(1) != SplatVal) 07606 return SDValue(); 07607 StVal = NextInsertElt; 07608 } 07609 unsigned OrigAlignment = St->getAlignment(); 07610 unsigned EltOffset = NumVecElts == 4 ? 4 : 8; 07611 unsigned Alignment = std::min(OrigAlignment, EltOffset); 07612 07613 // Create scalar stores. This is at least as good as the code sequence for a 07614 // split unaligned store wich is a dup.s, ext.b, and two stores. 07615 // Most of the time the three stores should be replaced by store pair 07616 // instructions (stp). 07617 SDLoc DL(St); 07618 SDValue BasePtr = St->getBasePtr(); 07619 SDValue NewST1 = 07620 DAG.getStore(St->getChain(), DL, SplatVal, BasePtr, St->getPointerInfo(), 07621 St->isVolatile(), St->isNonTemporal(), St->getAlignment()); 07622 07623 unsigned Offset = EltOffset; 07624 while (--NumVecElts) { 07625 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 07626 DAG.getConstant(Offset, MVT::i64)); 07627 NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, 07628 St->getPointerInfo(), St->isVolatile(), 07629 St->isNonTemporal(), Alignment); 07630 Offset += EltOffset; 07631 } 07632 return NewST1; 07633 } 07634 07635 static SDValue performSTORECombine(SDNode *N, 07636 TargetLowering::DAGCombinerInfo &DCI, 07637 SelectionDAG &DAG, 07638 const AArch64Subtarget *Subtarget) { 07639 if (!DCI.isBeforeLegalize()) 07640 return SDValue(); 07641 07642 StoreSDNode *S = cast<StoreSDNode>(N); 07643 if (S->isVolatile()) 07644 return SDValue(); 07645 07646 // Cyclone has bad performance on unaligned 16B stores when crossing line and 07647 // page boundries. We want to split such stores. 07648 if (!Subtarget->isCyclone()) 07649 return SDValue(); 07650 07651 // Don't split at Oz. 07652 MachineFunction &MF = DAG.getMachineFunction(); 07653 bool IsMinSize = MF.getFunction()->getAttributes().hasAttribute( 07654 AttributeSet::FunctionIndex, Attribute::MinSize); 07655 if (IsMinSize) 07656 return SDValue(); 07657 07658 SDValue StVal = S->getValue(); 07659 EVT VT = StVal.getValueType(); 07660 07661 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting 07662 // those up regresses performance on micro-benchmarks and olden/bh. 07663 if (!VT.isVector() || VT.getVectorNumElements() < 2 || VT == MVT::v2i64) 07664 return SDValue(); 07665 07666 // Split unaligned 16B stores. They are terrible for performance. 07667 // Don't split stores with alignment of 1 or 2. Code that uses clang vector 07668 // extensions can use this to mark that it does not want splitting to happen 07669 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of 07670 // eliminating alignment hazards is only 1 in 8 for alignment of 2. 07671 if (VT.getSizeInBits() != 128 || S->getAlignment() >= 16 || 07672 S->getAlignment() <= 2) 07673 return SDValue(); 07674 07675 // If we get a splat of a scalar convert this vector store to a store of 07676 // scalars. They will be merged into store pairs thereby removing two 07677 // instructions. 07678 SDValue ReplacedSplat = replaceSplatVectorStore(DAG, S); 07679 if (ReplacedSplat != SDValue()) 07680 return ReplacedSplat; 07681 07682 SDLoc DL(S); 07683 unsigned NumElts = VT.getVectorNumElements() / 2; 07684 // Split VT into two. 07685 EVT HalfVT = 07686 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), NumElts); 07687 SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 07688 DAG.getIntPtrConstant(0)); 07689 SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, 07690 DAG.getIntPtrConstant(NumElts)); 07691 SDValue BasePtr = S->getBasePtr(); 07692 SDValue NewST1 = 07693 DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), 07694 S->isVolatile(), S->isNonTemporal(), S->getAlignment()); 07695 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, 07696 DAG.getConstant(8, MVT::i64)); 07697 return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, 07698 S->getPointerInfo(), S->isVolatile(), S->isNonTemporal(), 07699 S->getAlignment()); 07700 } 07701 07702 /// Target-specific DAG combine function for post-increment LD1 (lane) and 07703 /// post-increment LD1R. 07704 static SDValue performPostLD1Combine(SDNode *N, 07705 TargetLowering::DAGCombinerInfo &DCI, 07706 bool IsLaneOp) { 07707 if (DCI.isBeforeLegalizeOps()) 07708 return SDValue(); 07709 07710 SelectionDAG &DAG = DCI.DAG; 07711 EVT VT = N->getValueType(0); 07712 07713 unsigned LoadIdx = IsLaneOp ? 1 : 0; 07714 SDNode *LD = N->getOperand(LoadIdx).getNode(); 07715 // If it is not LOAD, can not do such combine. 07716 if (LD->getOpcode() != ISD::LOAD) 07717 return SDValue(); 07718 07719 LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); 07720 EVT MemVT = LoadSDN->getMemoryVT(); 07721 // Check if memory operand is the same type as the vector element. 07722 if (MemVT != VT.getVectorElementType()) 07723 return SDValue(); 07724 07725 // Check if there are other uses. If so, do not combine as it will introduce 07726 // an extra load. 07727 for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; 07728 ++UI) { 07729 if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. 07730 continue; 07731 if (*UI != N) 07732 return SDValue(); 07733 } 07734 07735 SDValue Addr = LD->getOperand(1); 07736 SDValue Vector = N->getOperand(0); 07737 // Search for a use of the address operand that is an increment. 07738 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = 07739 Addr.getNode()->use_end(); UI != UE; ++UI) { 07740 SDNode *User = *UI; 07741 if (User->getOpcode() != ISD::ADD 07742 || UI.getUse().getResNo() != Addr.getResNo()) 07743 continue; 07744 07745 // Check that the add is independent of the load. Otherwise, folding it 07746 // would create a cycle. 07747 if (User->isPredecessorOf(LD) || LD->isPredecessorOf(User)) 07748 continue; 07749 // Also check that add is not used in the vector operand. This would also 07750 // create a cycle. 07751 if (User->isPredecessorOf(Vector.getNode())) 07752 continue; 07753 07754 // If the increment is a constant, it must match the memory ref size. 07755 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 07756 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 07757 uint32_t IncVal = CInc->getZExtValue(); 07758 unsigned NumBytes = VT.getScalarSizeInBits() / 8; 07759 if (IncVal != NumBytes) 07760 continue; 07761 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 07762 } 07763 07764 SmallVector<SDValue, 8> Ops; 07765 Ops.push_back(LD->getOperand(0)); // Chain 07766 if (IsLaneOp) { 07767 Ops.push_back(Vector); // The vector to be inserted 07768 Ops.push_back(N->getOperand(2)); // The lane to be inserted in the vector 07769 } 07770 Ops.push_back(Addr); 07771 Ops.push_back(Inc); 07772 07773 EVT Tys[3] = { VT, MVT::i64, MVT::Other }; 07774 SDVTList SDTys = DAG.getVTList(Tys); 07775 unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; 07776 SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, 07777 MemVT, 07778 LoadSDN->getMemOperand()); 07779 07780 // Update the uses. 07781 std::vector<SDValue> NewResults; 07782 NewResults.push_back(SDValue(LD, 0)); // The result of load 07783 NewResults.push_back(SDValue(UpdN.getNode(), 2)); // Chain 07784 DCI.CombineTo(LD, NewResults); 07785 DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result 07786 DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register 07787 07788 break; 07789 } 07790 return SDValue(); 07791 } 07792 07793 /// Target-specific DAG combine function for NEON load/store intrinsics 07794 /// to merge base address updates. 07795 static SDValue performNEONPostLDSTCombine(SDNode *N, 07796 TargetLowering::DAGCombinerInfo &DCI, 07797 SelectionDAG &DAG) { 07798 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 07799 return SDValue(); 07800 07801 unsigned AddrOpIdx = N->getNumOperands() - 1; 07802 SDValue Addr = N->getOperand(AddrOpIdx); 07803 07804 // Search for a use of the address operand that is an increment. 07805 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 07806 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 07807 SDNode *User = *UI; 07808 if (User->getOpcode() != ISD::ADD || 07809 UI.getUse().getResNo() != Addr.getResNo()) 07810 continue; 07811 07812 // Check that the add is independent of the load/store. Otherwise, folding 07813 // it would create a cycle. 07814 if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) 07815 continue; 07816 07817 // Find the new opcode for the updating load/store. 07818 bool IsStore = false; 07819 bool IsLaneOp = false; 07820 bool IsDupOp = false; 07821 unsigned NewOpc = 0; 07822 unsigned NumVecs = 0; 07823 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 07824 switch (IntNo) { 07825 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 07826 case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; 07827 NumVecs = 2; break; 07828 case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; 07829 NumVecs = 3; break; 07830 case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; 07831 NumVecs = 4; break; 07832 case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; 07833 NumVecs = 2; IsStore = true; break; 07834 case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; 07835 NumVecs = 3; IsStore = true; break; 07836 case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; 07837 NumVecs = 4; IsStore = true; break; 07838 case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; 07839 NumVecs = 2; break; 07840 case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; 07841 NumVecs = 3; break; 07842 case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; 07843 NumVecs = 4; break; 07844 case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; 07845 NumVecs = 2; IsStore = true; break; 07846 case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; 07847 NumVecs = 3; IsStore = true; break; 07848 case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; 07849 NumVecs = 4; IsStore = true; break; 07850 case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; 07851 NumVecs = 2; IsDupOp = true; break; 07852 case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; 07853 NumVecs = 3; IsDupOp = true; break; 07854 case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; 07855 NumVecs = 4; IsDupOp = true; break; 07856 case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; 07857 NumVecs = 2; IsLaneOp = true; break; 07858 case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; 07859 NumVecs = 3; IsLaneOp = true; break; 07860 case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; 07861 NumVecs = 4; IsLaneOp = true; break; 07862 case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; 07863 NumVecs = 2; IsStore = true; IsLaneOp = true; break; 07864 case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; 07865 NumVecs = 3; IsStore = true; IsLaneOp = true; break; 07866 case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; 07867 NumVecs = 4; IsStore = true; IsLaneOp = true; break; 07868 } 07869 07870 EVT VecTy; 07871 if (IsStore) 07872 VecTy = N->getOperand(2).getValueType(); 07873 else 07874 VecTy = N->getValueType(0); 07875 07876 // If the increment is a constant, it must match the memory ref size. 07877 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 07878 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 07879 uint32_t IncVal = CInc->getZExtValue(); 07880 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 07881 if (IsLaneOp || IsDupOp) 07882 NumBytes /= VecTy.getVectorNumElements(); 07883 if (IncVal != NumBytes) 07884 continue; 07885 Inc = DAG.getRegister(AArch64::XZR, MVT::i64); 07886 } 07887 SmallVector<SDValue, 8> Ops; 07888 Ops.push_back(N->getOperand(0)); // Incoming chain 07889 // Load lane and store have vector list as input. 07890 if (IsLaneOp || IsStore) 07891 for (unsigned i = 2; i < AddrOpIdx; ++i) 07892 Ops.push_back(N->getOperand(i)); 07893 Ops.push_back(Addr); // Base register 07894 Ops.push_back(Inc); 07895 07896 // Return Types. 07897 EVT Tys[6]; 07898 unsigned NumResultVecs = (IsStore ? 0 : NumVecs); 07899 unsigned n; 07900 for (n = 0; n < NumResultVecs; ++n) 07901 Tys[n] = VecTy; 07902 Tys[n++] = MVT::i64; // Type of write back register 07903 Tys[n] = MVT::Other; // Type of the chain 07904 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); 07905 07906 MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); 07907 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, 07908 MemInt->getMemoryVT(), 07909 MemInt->getMemOperand()); 07910 07911 // Update the uses. 07912 std::vector<SDValue> NewResults; 07913 for (unsigned i = 0; i < NumResultVecs; ++i) { 07914 NewResults.push_back(SDValue(UpdN.getNode(), i)); 07915 } 07916 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); 07917 DCI.CombineTo(N, NewResults); 07918 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 07919 07920 break; 07921 } 07922 return SDValue(); 07923 } 07924 07925 // Checks to see if the value is the prescribed width and returns information 07926 // about its extension mode. 07927 static 07928 bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { 07929 ExtType = ISD::NON_EXTLOAD; 07930 switch(V.getNode()->getOpcode()) { 07931 default: 07932 return false; 07933 case ISD::LOAD: { 07934 LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); 07935 if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) 07936 || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { 07937 ExtType = LoadNode->getExtensionType(); 07938 return true; 07939 } 07940 return false; 07941 } 07942 case ISD::AssertSext: { 07943 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 07944 if ((TypeNode->getVT() == MVT::i8 && width == 8) 07945 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 07946 ExtType = ISD::SEXTLOAD; 07947 return true; 07948 } 07949 return false; 07950 } 07951 case ISD::AssertZext: { 07952 VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); 07953 if ((TypeNode->getVT() == MVT::i8 && width == 8) 07954 || (TypeNode->getVT() == MVT::i16 && width == 16)) { 07955 ExtType = ISD::ZEXTLOAD; 07956 return true; 07957 } 07958 return false; 07959 } 07960 case ISD::Constant: 07961 case ISD::TargetConstant: { 07962 if (std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < 07963 1LL << (width - 1)) 07964 return true; 07965 return false; 07966 } 07967 } 07968 07969 return true; 07970 } 07971 07972 // This function does a whole lot of voodoo to determine if the tests are 07973 // equivalent without and with a mask. Essentially what happens is that given a 07974 // DAG resembling: 07975 // 07976 // +-------------+ +-------------+ +-------------+ +-------------+ 07977 // | Input | | AddConstant | | CompConstant| | CC | 07978 // +-------------+ +-------------+ +-------------+ +-------------+ 07979 // | | | | 07980 // V V | +----------+ 07981 // +-------------+ +----+ | | 07982 // | ADD | |0xff| | | 07983 // +-------------+ +----+ | | 07984 // | | | | 07985 // V V | | 07986 // +-------------+ | | 07987 // | AND | | | 07988 // +-------------+ | | 07989 // | | | 07990 // +-----+ | | 07991 // | | | 07992 // V V V 07993 // +-------------+ 07994 // | CMP | 07995 // +-------------+ 07996 // 07997 // The AND node may be safely removed for some combinations of inputs. In 07998 // particular we need to take into account the extension type of the Input, 07999 // the exact values of AddConstant, CompConstant, and CC, along with the nominal 08000 // width of the input (this can work for any width inputs, the above graph is 08001 // specific to 8 bits. 08002 // 08003 // The specific equations were worked out by generating output tables for each 08004 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The 08005 // problem was simplified by working with 4 bit inputs, which means we only 08006 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero 08007 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 08008 // patterns present in both extensions (0,7). For every distinct set of 08009 // AddConstant and CompConstants bit patterns we can consider the masked and 08010 // unmasked versions to be equivalent if the result of this function is true for 08011 // all 16 distinct bit patterns of for the current extension type of Input (w0). 08012 // 08013 // sub w8, w0, w1 08014 // and w10, w8, #0x0f 08015 // cmp w8, w2 08016 // cset w9, AArch64CC 08017 // cmp w10, w2 08018 // cset w11, AArch64CC 08019 // cmp w9, w11 08020 // cset w0, eq 08021 // ret 08022 // 08023 // Since the above function shows when the outputs are equivalent it defines 08024 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and 08025 // would be expensive to run during compiles. The equations below were written 08026 // in a test harness that confirmed they gave equivalent outputs to the above 08027 // for all inputs function, so they can be used determine if the removal is 08028 // legal instead. 08029 // 08030 // isEquivalentMaskless() is the code for testing if the AND can be removed 08031 // factored out of the DAG recognition as the DAG can take several forms. 08032 08033 static 08034 bool isEquivalentMaskless(unsigned CC, unsigned width, 08035 ISD::LoadExtType ExtType, signed AddConstant, 08036 signed CompConstant) { 08037 // By being careful about our equations and only writing the in term 08038 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can 08039 // make them generally applicable to all bit widths. 08040 signed MaxUInt = (1 << width); 08041 08042 // For the purposes of these comparisons sign extending the type is 08043 // equivalent to zero extending the add and displacing it by half the integer 08044 // width. Provided we are careful and make sure our equations are valid over 08045 // the whole range we can just adjust the input and avoid writing equations 08046 // for sign extended inputs. 08047 if (ExtType == ISD::SEXTLOAD) 08048 AddConstant -= (1 << (width-1)); 08049 08050 switch(CC) { 08051 case AArch64CC::LE: 08052 case AArch64CC::GT: { 08053 if ((AddConstant == 0) || 08054 (CompConstant == MaxUInt - 1 && AddConstant < 0) || 08055 (AddConstant >= 0 && CompConstant < 0) || 08056 (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) 08057 return true; 08058 } break; 08059 case AArch64CC::LT: 08060 case AArch64CC::GE: { 08061 if ((AddConstant == 0) || 08062 (AddConstant >= 0 && CompConstant <= 0) || 08063 (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) 08064 return true; 08065 } break; 08066 case AArch64CC::HI: 08067 case AArch64CC::LS: { 08068 if ((AddConstant >= 0 && CompConstant < 0) || 08069 (AddConstant <= 0 && CompConstant >= -1 && 08070 CompConstant < AddConstant + MaxUInt)) 08071 return true; 08072 } break; 08073 case AArch64CC::PL: 08074 case AArch64CC::MI: { 08075 if ((AddConstant == 0) || 08076 (AddConstant > 0 && CompConstant <= 0) || 08077 (AddConstant < 0 && CompConstant <= AddConstant)) 08078 return true; 08079 } break; 08080 case AArch64CC::LO: 08081 case AArch64CC::HS: { 08082 if ((AddConstant >= 0 && CompConstant <= 0) || 08083 (AddConstant <= 0 && CompConstant >= 0 && 08084 CompConstant <= AddConstant + MaxUInt)) 08085 return true; 08086 } break; 08087 case AArch64CC::EQ: 08088 case AArch64CC::NE: { 08089 if ((AddConstant > 0 && CompConstant < 0) || 08090 (AddConstant < 0 && CompConstant >= 0 && 08091 CompConstant < AddConstant + MaxUInt) || 08092 (AddConstant >= 0 && CompConstant >= 0 && 08093 CompConstant >= AddConstant) || 08094 (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) 08095 08096 return true; 08097 } break; 08098 case AArch64CC::VS: 08099 case AArch64CC::VC: 08100 case AArch64CC::AL: 08101 case AArch64CC::NV: 08102 return true; 08103 case AArch64CC::Invalid: 08104 break; 08105 } 08106 08107 return false; 08108 } 08109 08110 static 08111 SDValue performCONDCombine(SDNode *N, 08112 TargetLowering::DAGCombinerInfo &DCI, 08113 SelectionDAG &DAG, unsigned CCIndex, 08114 unsigned CmpIndex) { 08115 unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); 08116 SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); 08117 unsigned CondOpcode = SubsNode->getOpcode(); 08118 08119 if (CondOpcode != AArch64ISD::SUBS) 08120 return SDValue(); 08121 08122 // There is a SUBS feeding this condition. Is it fed by a mask we can 08123 // use? 08124 08125 SDNode *AndNode = SubsNode->getOperand(0).getNode(); 08126 unsigned MaskBits = 0; 08127 08128 if (AndNode->getOpcode() != ISD::AND) 08129 return SDValue(); 08130 08131 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { 08132 uint32_t CNV = CN->getZExtValue(); 08133 if (CNV == 255) 08134 MaskBits = 8; 08135 else if (CNV == 65535) 08136 MaskBits = 16; 08137 } 08138 08139 if (!MaskBits) 08140 return SDValue(); 08141 08142 SDValue AddValue = AndNode->getOperand(0); 08143 08144 if (AddValue.getOpcode() != ISD::ADD) 08145 return SDValue(); 08146 08147 // The basic dag structure is correct, grab the inputs and validate them. 08148 08149 SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); 08150 SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); 08151 SDValue SubsInputValue = SubsNode->getOperand(1); 08152 08153 // The mask is present and the provenance of all the values is a smaller type, 08154 // lets see if the mask is superfluous. 08155 08156 if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || 08157 !isa<ConstantSDNode>(SubsInputValue.getNode())) 08158 return SDValue(); 08159 08160 ISD::LoadExtType ExtType; 08161 08162 if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || 08163 !checkValueWidth(AddInputValue2, MaskBits, ExtType) || 08164 !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) 08165 return SDValue(); 08166 08167 if(!isEquivalentMaskless(CC, MaskBits, ExtType, 08168 cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), 08169 cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) 08170 return SDValue(); 08171 08172 // The AND is not necessary, remove it. 08173 08174 SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), 08175 SubsNode->getValueType(1)); 08176 SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; 08177 08178 SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); 08179 DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); 08180 08181 return SDValue(N, 0); 08182 } 08183 08184 // Optimize compare with zero and branch. 08185 static SDValue performBRCONDCombine(SDNode *N, 08186 TargetLowering::DAGCombinerInfo &DCI, 08187 SelectionDAG &DAG) { 08188 SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3); 08189 if (NV.getNode()) 08190 N = NV.getNode(); 08191 SDValue Chain = N->getOperand(0); 08192 SDValue Dest = N->getOperand(1); 08193 SDValue CCVal = N->getOperand(2); 08194 SDValue Cmp = N->getOperand(3); 08195 08196 assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!"); 08197 unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); 08198 if (CC != AArch64CC::EQ && CC != AArch64CC::NE) 08199 return SDValue(); 08200 08201 unsigned CmpOpc = Cmp.getOpcode(); 08202 if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) 08203 return SDValue(); 08204 08205 // Only attempt folding if there is only one use of the flag and no use of the 08206 // value. 08207 if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) 08208 return SDValue(); 08209 08210 SDValue LHS = Cmp.getOperand(0); 08211 SDValue RHS = Cmp.getOperand(1); 08212 08213 assert(LHS.getValueType() == RHS.getValueType() && 08214 "Expected the value type to be the same for both operands!"); 08215 if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) 08216 return SDValue(); 08217 08218 if (isa<ConstantSDNode>(LHS) && cast<ConstantSDNode>(LHS)->isNullValue()) 08219 std::swap(LHS, RHS); 08220 08221 if (!isa<ConstantSDNode>(RHS) || !cast<ConstantSDNode>(RHS)->isNullValue()) 08222 return SDValue(); 08223 08224 if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || 08225 LHS.getOpcode() == ISD::SRL) 08226 return SDValue(); 08227 08228 // Fold the compare into the branch instruction. 08229 SDValue BR; 08230 if (CC == AArch64CC::EQ) 08231 BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 08232 else 08233 BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); 08234 08235 // Do not add new nodes to DAG combiner worklist. 08236 DCI.CombineTo(N, BR, false); 08237 08238 return SDValue(); 08239 } 08240 08241 // vselect (v1i1 setcc) -> 08242 // vselect (v1iXX setcc) (XX is the size of the compared operand type) 08243 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as 08244 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine 08245 // such VSELECT. 08246 static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { 08247 SDValue N0 = N->getOperand(0); 08248 EVT CCVT = N0.getValueType(); 08249 08250 if (N0.getOpcode() != ISD::SETCC || CCVT.getVectorNumElements() != 1 || 08251 CCVT.getVectorElementType() != MVT::i1) 08252 return SDValue(); 08253 08254 EVT ResVT = N->getValueType(0); 08255 EVT CmpVT = N0.getOperand(0).getValueType(); 08256 // Only combine when the result type is of the same size as the compared 08257 // operands. 08258 if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) 08259 return SDValue(); 08260 08261 SDValue IfTrue = N->getOperand(1); 08262 SDValue IfFalse = N->getOperand(2); 08263 SDValue SetCC = 08264 DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), 08265 N0.getOperand(0), N0.getOperand(1), 08266 cast<CondCodeSDNode>(N0.getOperand(2))->get()); 08267 return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, 08268 IfTrue, IfFalse); 08269 } 08270 08271 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with 08272 /// the compare-mask instructions rather than going via NZCV, even if LHS and 08273 /// RHS are really scalar. This replaces any scalar setcc in the above pattern 08274 /// with a vector one followed by a DUP shuffle on the result. 08275 static SDValue performSelectCombine(SDNode *N, SelectionDAG &DAG) { 08276 SDValue N0 = N->getOperand(0); 08277 EVT ResVT = N->getValueType(0); 08278 08279 if (N0.getOpcode() != ISD::SETCC || N0.getValueType() != MVT::i1) 08280 return SDValue(); 08281 08282 // If NumMaskElts == 0, the comparison is larger than select result. The 08283 // largest real NEON comparison is 64-bits per lane, which means the result is 08284 // at most 32-bits and an illegal vector. Just bail out for now. 08285 EVT SrcVT = N0.getOperand(0).getValueType(); 08286 int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); 08287 if (!ResVT.isVector() || NumMaskElts == 0) 08288 return SDValue(); 08289 08290 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); 08291 EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); 08292 08293 // First perform a vector comparison, where lane 0 is the one we're interested 08294 // in. 08295 SDLoc DL(N0); 08296 SDValue LHS = 08297 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); 08298 SDValue RHS = 08299 DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); 08300 SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); 08301 08302 // Now duplicate the comparison mask we want across all other lanes. 08303 SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); 08304 SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask.data()); 08305 Mask = DAG.getNode(ISD::BITCAST, DL, 08306 ResVT.changeVectorElementTypeToInteger(), Mask); 08307 08308 return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); 08309 } 08310 08311 SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, 08312 DAGCombinerInfo &DCI) const { 08313 SelectionDAG &DAG = DCI.DAG; 08314 switch (N->getOpcode()) { 08315 default: 08316 break; 08317 case ISD::ADD: 08318 case ISD::SUB: 08319 return performAddSubLongCombine(N, DCI, DAG); 08320 case ISD::XOR: 08321 return performXorCombine(N, DAG, DCI, Subtarget); 08322 case ISD::MUL: 08323 return performMulCombine(N, DAG, DCI, Subtarget); 08324 case ISD::SINT_TO_FP: 08325 case ISD::UINT_TO_FP: 08326 return performIntToFpCombine(N, DAG); 08327 case ISD::OR: 08328 return performORCombine(N, DCI, Subtarget); 08329 case ISD::INTRINSIC_WO_CHAIN: 08330 return performIntrinsicCombine(N, DCI, Subtarget); 08331 case ISD::ANY_EXTEND: 08332 case ISD::ZERO_EXTEND: 08333 case ISD::SIGN_EXTEND: 08334 return performExtendCombine(N, DCI, DAG); 08335 case ISD::BITCAST: 08336 return performBitcastCombine(N, DCI, DAG); 08337 case ISD::CONCAT_VECTORS: 08338 return performConcatVectorsCombine(N, DCI, DAG); 08339 case ISD::SELECT: 08340 return performSelectCombine(N, DAG); 08341 case ISD::VSELECT: 08342 return performVSelectCombine(N, DCI.DAG); 08343 case ISD::STORE: 08344 return performSTORECombine(N, DCI, DAG, Subtarget); 08345 case AArch64ISD::BRCOND: 08346 return performBRCONDCombine(N, DCI, DAG); 08347 case AArch64ISD::CSEL: 08348 return performCONDCombine(N, DCI, DAG, 2, 3); 08349 case AArch64ISD::DUP: 08350 return performPostLD1Combine(N, DCI, false); 08351 case ISD::INSERT_VECTOR_ELT: 08352 return performPostLD1Combine(N, DCI, true); 08353 case ISD::INTRINSIC_VOID: 08354 case ISD::INTRINSIC_W_CHAIN: 08355 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 08356 case Intrinsic::aarch64_neon_ld2: 08357 case Intrinsic::aarch64_neon_ld3: 08358 case Intrinsic::aarch64_neon_ld4: 08359 case Intrinsic::aarch64_neon_ld1x2: 08360 case Intrinsic::aarch64_neon_ld1x3: 08361 case Intrinsic::aarch64_neon_ld1x4: 08362 case Intrinsic::aarch64_neon_ld2lane: 08363 case Intrinsic::aarch64_neon_ld3lane: 08364 case Intrinsic::aarch64_neon_ld4lane: 08365 case Intrinsic::aarch64_neon_ld2r: 08366 case Intrinsic::aarch64_neon_ld3r: 08367 case Intrinsic::aarch64_neon_ld4r: 08368 case Intrinsic::aarch64_neon_st2: 08369 case Intrinsic::aarch64_neon_st3: 08370 case Intrinsic::aarch64_neon_st4: 08371 case Intrinsic::aarch64_neon_st1x2: 08372 case Intrinsic::aarch64_neon_st1x3: 08373 case Intrinsic::aarch64_neon_st1x4: 08374 case Intrinsic::aarch64_neon_st2lane: 08375 case Intrinsic::aarch64_neon_st3lane: 08376 case Intrinsic::aarch64_neon_st4lane: 08377 return performNEONPostLDSTCombine(N, DCI, DAG); 08378 default: 08379 break; 08380 } 08381 } 08382 return SDValue(); 08383 } 08384 08385 // Check if the return value is used as only a return value, as otherwise 08386 // we can't perform a tail-call. In particular, we need to check for 08387 // target ISD nodes that are returns and any other "odd" constructs 08388 // that the generic analysis code won't necessarily catch. 08389 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, 08390 SDValue &Chain) const { 08391 if (N->getNumValues() != 1) 08392 return false; 08393 if (!N->hasNUsesOfValue(1, 0)) 08394 return false; 08395 08396 SDValue TCChain = Chain; 08397 SDNode *Copy = *N->use_begin(); 08398 if (Copy->getOpcode() == ISD::CopyToReg) { 08399 // If the copy has a glue operand, we conservatively assume it isn't safe to 08400 // perform a tail call. 08401 if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == 08402 MVT::Glue) 08403 return false; 08404 TCChain = Copy->getOperand(0); 08405 } else if (Copy->getOpcode() != ISD::FP_EXTEND) 08406 return false; 08407 08408 bool HasRet = false; 08409 for (SDNode *Node : Copy->uses()) { 08410 if (Node->getOpcode() != AArch64ISD::RET_FLAG) 08411 return false; 08412 HasRet = true; 08413 } 08414 08415 if (!HasRet) 08416 return false; 08417 08418 Chain = TCChain; 08419 return true; 08420 } 08421 08422 // Return whether the an instruction can potentially be optimized to a tail 08423 // call. This will cause the optimizers to attempt to move, or duplicate, 08424 // return instructions to help enable tail call optimizations for this 08425 // instruction. 08426 bool AArch64TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 08427 if (!CI->isTailCall()) 08428 return false; 08429 08430 return true; 08431 } 08432 08433 bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, 08434 SDValue &Offset, 08435 ISD::MemIndexedMode &AM, 08436 bool &IsInc, 08437 SelectionDAG &DAG) const { 08438 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) 08439 return false; 08440 08441 Base = Op->getOperand(0); 08442 // All of the indexed addressing mode instructions take a signed 08443 // 9 bit immediate offset. 08444 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { 08445 int64_t RHSC = (int64_t)RHS->getZExtValue(); 08446 if (RHSC >= 256 || RHSC <= -256) 08447 return false; 08448 IsInc = (Op->getOpcode() == ISD::ADD); 08449 Offset = Op->getOperand(1); 08450 return true; 08451 } 08452 return false; 08453 } 08454 08455 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 08456 SDValue &Offset, 08457 ISD::MemIndexedMode &AM, 08458 SelectionDAG &DAG) const { 08459 EVT VT; 08460 SDValue Ptr; 08461 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 08462 VT = LD->getMemoryVT(); 08463 Ptr = LD->getBasePtr(); 08464 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 08465 VT = ST->getMemoryVT(); 08466 Ptr = ST->getBasePtr(); 08467 } else 08468 return false; 08469 08470 bool IsInc; 08471 if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) 08472 return false; 08473 AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; 08474 return true; 08475 } 08476 08477 bool AArch64TargetLowering::getPostIndexedAddressParts( 08478 SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, 08479 ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { 08480 EVT VT; 08481 SDValue Ptr; 08482 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 08483 VT = LD->getMemoryVT(); 08484 Ptr = LD->getBasePtr(); 08485 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 08486 VT = ST->getMemoryVT(); 08487 Ptr = ST->getBasePtr(); 08488 } else 08489 return false; 08490 08491 bool IsInc; 08492 if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) 08493 return false; 08494 // Post-indexing updates the base, so it's not a valid transform 08495 // if that's not the same as the load's pointer. 08496 if (Ptr != Base) 08497 return false; 08498 AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; 08499 return true; 08500 } 08501 08502 static void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results, 08503 SelectionDAG &DAG) { 08504 if (N->getValueType(0) != MVT::i16) 08505 return; 08506 08507 SDLoc DL(N); 08508 SDValue Op = N->getOperand(0); 08509 assert(Op.getValueType() == MVT::f16 && 08510 "Inconsistent bitcast? Only 16-bit types should be i16 or f16"); 08511 Op = SDValue( 08512 DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, 08513 DAG.getUNDEF(MVT::i32), Op, 08514 DAG.getTargetConstant(AArch64::hsub, MVT::i32)), 08515 0); 08516 Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); 08517 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); 08518 } 08519 08520 void AArch64TargetLowering::ReplaceNodeResults( 08521 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { 08522 switch (N->getOpcode()) { 08523 default: 08524 llvm_unreachable("Don't know how to custom expand this"); 08525 case ISD::BITCAST: 08526 ReplaceBITCASTResults(N, Results, DAG); 08527 return; 08528 case ISD::FP_TO_UINT: 08529 case ISD::FP_TO_SINT: 08530 assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion"); 08531 // Let normal code take care of it by not adding anything to Results. 08532 return; 08533 } 08534 } 08535 08536 bool AArch64TargetLowering::useLoadStackGuardNode() const { 08537 return true; 08538 } 08539 08540 TargetLoweringBase::LegalizeTypeAction 08541 AArch64TargetLowering::getPreferredVectorAction(EVT VT) const { 08542 MVT SVT = VT.getSimpleVT(); 08543 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, 08544 // v4i16, v2i32 instead of to promote. 08545 if (SVT == MVT::v1i8 || SVT == MVT::v1i16 || SVT == MVT::v1i32 08546 || SVT == MVT::v1f32) 08547 return TypeWidenVector; 08548 08549 return TargetLoweringBase::getPreferredVectorAction(VT); 08550 } 08551 08552 // Loads and stores less than 128-bits are already atomic; ones above that 08553 // are doomed anyway, so defer to the default libcall and blame the OS when 08554 // things go wrong. 08555 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 08556 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 08557 return Size == 128; 08558 } 08559 08560 // Loads and stores less than 128-bits are already atomic; ones above that 08561 // are doomed anyway, so defer to the default libcall and blame the OS when 08562 // things go wrong. 08563 bool AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 08564 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 08565 return Size == 128; 08566 } 08567 08568 // For the real atomic operations, we have ldxr/stxr up to 128 bits, 08569 bool AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 08570 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 08571 return Size <= 128; 08572 } 08573 08574 bool AArch64TargetLowering::hasLoadLinkedStoreConditional() const { 08575 return true; 08576 } 08577 08578 Value *AArch64TargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 08579 AtomicOrdering Ord) const { 08580 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 08581 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 08582 bool IsAcquire = isAtLeastAcquire(Ord); 08583 08584 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd 08585 // intrinsic must return {i64, i64} and we have to recombine them into a 08586 // single i128 here. 08587 if (ValTy->getPrimitiveSizeInBits() == 128) { 08588 Intrinsic::ID Int = 08589 IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; 08590 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int); 08591 08592 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 08593 Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); 08594 08595 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 08596 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 08597 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 08598 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 08599 return Builder.CreateOr( 08600 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); 08601 } 08602 08603 Type *Tys[] = { Addr->getType() }; 08604 Intrinsic::ID Int = 08605 IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; 08606 Function *Ldxr = llvm::Intrinsic::getDeclaration(M, Int, Tys); 08607 08608 return Builder.CreateTruncOrBitCast( 08609 Builder.CreateCall(Ldxr, Addr), 08610 cast<PointerType>(Addr->getType())->getElementType()); 08611 } 08612 08613 Value *AArch64TargetLowering::emitStoreConditional(IRBuilder<> &Builder, 08614 Value *Val, Value *Addr, 08615 AtomicOrdering Ord) const { 08616 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 08617 bool IsRelease = isAtLeastRelease(Ord); 08618 08619 // Since the intrinsics must have legal type, the i128 intrinsics take two 08620 // parameters: "i64, i64". We must marshal Val into the appropriate form 08621 // before the call. 08622 if (Val->getType()->getPrimitiveSizeInBits() == 128) { 08623 Intrinsic::ID Int = 08624 IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; 08625 Function *Stxr = Intrinsic::getDeclaration(M, Int); 08626 Type *Int64Ty = Type::getInt64Ty(M->getContext()); 08627 08628 Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); 08629 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); 08630 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 08631 return Builder.CreateCall3(Stxr, Lo, Hi, Addr); 08632 } 08633 08634 Intrinsic::ID Int = 08635 IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; 08636 Type *Tys[] = { Addr->getType() }; 08637 Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); 08638 08639 return Builder.CreateCall2( 08640 Stxr, Builder.CreateZExtOrBitCast( 08641 Val, Stxr->getFunctionType()->getParamType(0)), 08642 Addr); 08643 }