LLVM API Documentation
00001 //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines the ARM-specific support for the FastISel class. Some 00011 // of the target-specific code is generated by tablegen in the file 00012 // ARMGenFastISel.inc, which is #included here. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #include "ARM.h" 00017 #include "ARMBaseRegisterInfo.h" 00018 #include "ARMCallingConv.h" 00019 #include "ARMConstantPoolValue.h" 00020 #include "ARMISelLowering.h" 00021 #include "ARMMachineFunctionInfo.h" 00022 #include "ARMSubtarget.h" 00023 #include "MCTargetDesc/ARMAddressingModes.h" 00024 #include "llvm/ADT/STLExtras.h" 00025 #include "llvm/CodeGen/Analysis.h" 00026 #include "llvm/CodeGen/FastISel.h" 00027 #include "llvm/CodeGen/FunctionLoweringInfo.h" 00028 #include "llvm/CodeGen/MachineConstantPool.h" 00029 #include "llvm/CodeGen/MachineFrameInfo.h" 00030 #include "llvm/CodeGen/MachineInstrBuilder.h" 00031 #include "llvm/CodeGen/MachineMemOperand.h" 00032 #include "llvm/CodeGen/MachineModuleInfo.h" 00033 #include "llvm/CodeGen/MachineRegisterInfo.h" 00034 #include "llvm/IR/CallSite.h" 00035 #include "llvm/IR/CallingConv.h" 00036 #include "llvm/IR/DataLayout.h" 00037 #include "llvm/IR/DerivedTypes.h" 00038 #include "llvm/IR/GetElementPtrTypeIterator.h" 00039 #include "llvm/IR/GlobalVariable.h" 00040 #include "llvm/IR/Instructions.h" 00041 #include "llvm/IR/IntrinsicInst.h" 00042 #include "llvm/IR/Module.h" 00043 #include "llvm/IR/Operator.h" 00044 #include "llvm/Support/CommandLine.h" 00045 #include "llvm/Support/ErrorHandling.h" 00046 #include "llvm/Target/TargetInstrInfo.h" 00047 #include "llvm/Target/TargetLowering.h" 00048 #include "llvm/Target/TargetMachine.h" 00049 #include "llvm/Target/TargetOptions.h" 00050 using namespace llvm; 00051 00052 extern cl::opt<bool> EnableARMLongCalls; 00053 00054 namespace { 00055 00056 // All possible address modes, plus some. 00057 typedef struct Address { 00058 enum { 00059 RegBase, 00060 FrameIndexBase 00061 } BaseType; 00062 00063 union { 00064 unsigned Reg; 00065 int FI; 00066 } Base; 00067 00068 int Offset; 00069 00070 // Innocuous defaults for our address. 00071 Address() 00072 : BaseType(RegBase), Offset(0) { 00073 Base.Reg = 0; 00074 } 00075 } Address; 00076 00077 class ARMFastISel final : public FastISel { 00078 00079 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 00080 /// make the right decision when generating code for different targets. 00081 const ARMSubtarget *Subtarget; 00082 Module &M; 00083 const TargetMachine &TM; 00084 const TargetInstrInfo &TII; 00085 const TargetLowering &TLI; 00086 ARMFunctionInfo *AFI; 00087 00088 // Convenience variables to avoid some queries. 00089 bool isThumb2; 00090 LLVMContext *Context; 00091 00092 public: 00093 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 00094 const TargetLibraryInfo *libInfo) 00095 : FastISel(funcInfo, libInfo), 00096 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 00097 TM(funcInfo.MF->getTarget()), 00098 TII(*TM.getSubtargetImpl()->getInstrInfo()), 00099 TLI(*TM.getSubtargetImpl()->getTargetLowering()) { 00100 Subtarget = &TM.getSubtarget<ARMSubtarget>(); 00101 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 00102 isThumb2 = AFI->isThumbFunction(); 00103 Context = &funcInfo.Fn->getContext(); 00104 } 00105 00106 // Code from FastISel.cpp. 00107 private: 00108 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 00109 const TargetRegisterClass *RC, 00110 unsigned Op0, bool Op0IsKill); 00111 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 00112 const TargetRegisterClass *RC, 00113 unsigned Op0, bool Op0IsKill, 00114 unsigned Op1, bool Op1IsKill); 00115 unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, 00116 const TargetRegisterClass *RC, 00117 unsigned Op0, bool Op0IsKill, 00118 unsigned Op1, bool Op1IsKill, 00119 unsigned Op2, bool Op2IsKill); 00120 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 00121 const TargetRegisterClass *RC, 00122 unsigned Op0, bool Op0IsKill, 00123 uint64_t Imm); 00124 unsigned fastEmitInst_rri(unsigned MachineInstOpcode, 00125 const TargetRegisterClass *RC, 00126 unsigned Op0, bool Op0IsKill, 00127 unsigned Op1, bool Op1IsKill, 00128 uint64_t Imm); 00129 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 00130 const TargetRegisterClass *RC, 00131 uint64_t Imm); 00132 00133 // Backend specific FastISel code. 00134 private: 00135 bool fastSelectInstruction(const Instruction *I) override; 00136 unsigned fastMaterializeConstant(const Constant *C) override; 00137 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 00138 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 00139 const LoadInst *LI) override; 00140 bool fastLowerArguments() override; 00141 private: 00142 #include "ARMGenFastISel.inc" 00143 00144 // Instruction selection routines. 00145 private: 00146 bool SelectLoad(const Instruction *I); 00147 bool SelectStore(const Instruction *I); 00148 bool SelectBranch(const Instruction *I); 00149 bool SelectIndirectBr(const Instruction *I); 00150 bool SelectCmp(const Instruction *I); 00151 bool SelectFPExt(const Instruction *I); 00152 bool SelectFPTrunc(const Instruction *I); 00153 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 00154 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 00155 bool SelectIToFP(const Instruction *I, bool isSigned); 00156 bool SelectFPToI(const Instruction *I, bool isSigned); 00157 bool SelectDiv(const Instruction *I, bool isSigned); 00158 bool SelectRem(const Instruction *I, bool isSigned); 00159 bool SelectCall(const Instruction *I, const char *IntrMemName); 00160 bool SelectIntrinsicCall(const IntrinsicInst &I); 00161 bool SelectSelect(const Instruction *I); 00162 bool SelectRet(const Instruction *I); 00163 bool SelectTrunc(const Instruction *I); 00164 bool SelectIntExt(const Instruction *I); 00165 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 00166 00167 // Utility routines. 00168 private: 00169 bool isTypeLegal(Type *Ty, MVT &VT); 00170 bool isLoadTypeLegal(Type *Ty, MVT &VT); 00171 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 00172 bool isZExt); 00173 bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 00174 unsigned Alignment = 0, bool isZExt = true, 00175 bool allocReg = true); 00176 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 00177 unsigned Alignment = 0); 00178 bool ARMComputeAddress(const Value *Obj, Address &Addr); 00179 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 00180 bool ARMIsMemCpySmall(uint64_t Len); 00181 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 00182 unsigned Alignment); 00183 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 00184 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 00185 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 00186 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 00187 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 00188 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 00189 unsigned ARMSelectCallOp(bool UseReg); 00190 unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); 00191 00192 const TargetLowering *getTargetLowering() { 00193 return TM.getSubtargetImpl()->getTargetLowering(); 00194 } 00195 00196 // Call handling routines. 00197 private: 00198 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 00199 bool Return, 00200 bool isVarArg); 00201 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 00202 SmallVectorImpl<unsigned> &ArgRegs, 00203 SmallVectorImpl<MVT> &ArgVTs, 00204 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 00205 SmallVectorImpl<unsigned> &RegArgs, 00206 CallingConv::ID CC, 00207 unsigned &NumBytes, 00208 bool isVarArg); 00209 unsigned getLibcallReg(const Twine &Name); 00210 bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 00211 const Instruction *I, CallingConv::ID CC, 00212 unsigned &NumBytes, bool isVarArg); 00213 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 00214 00215 // OptionalDef handling routines. 00216 private: 00217 bool isARMNEONPred(const MachineInstr *MI); 00218 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 00219 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 00220 void AddLoadStoreOperands(MVT VT, Address &Addr, 00221 const MachineInstrBuilder &MIB, 00222 unsigned Flags, bool useAM3); 00223 }; 00224 00225 } // end anonymous namespace 00226 00227 #include "ARMGenCallingConv.inc" 00228 00229 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 00230 // we don't care about implicit defs here, just places we'll need to add a 00231 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 00232 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 00233 if (!MI->hasOptionalDef()) 00234 return false; 00235 00236 // Look to see if our OptionalDef is defining CPSR or CCR. 00237 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00238 const MachineOperand &MO = MI->getOperand(i); 00239 if (!MO.isReg() || !MO.isDef()) continue; 00240 if (MO.getReg() == ARM::CPSR) 00241 *CPSR = true; 00242 } 00243 return true; 00244 } 00245 00246 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 00247 const MCInstrDesc &MCID = MI->getDesc(); 00248 00249 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 00250 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 00251 AFI->isThumb2Function()) 00252 return MI->isPredicable(); 00253 00254 for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) 00255 if (MCID.OpInfo[i].isPredicate()) 00256 return true; 00257 00258 return false; 00259 } 00260 00261 // If the machine is predicable go ahead and add the predicate operands, if 00262 // it needs default CC operands add those. 00263 // TODO: If we want to support thumb1 then we'll need to deal with optional 00264 // CPSR defs that need to be added before the remaining operands. See s_cc_out 00265 // for descriptions why. 00266 const MachineInstrBuilder & 00267 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 00268 MachineInstr *MI = &*MIB; 00269 00270 // Do we use a predicate? or... 00271 // Are we NEON in ARM mode and have a predicate operand? If so, I know 00272 // we're not predicable but add it anyways. 00273 if (isARMNEONPred(MI)) 00274 AddDefaultPred(MIB); 00275 00276 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 00277 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 00278 bool CPSR = false; 00279 if (DefinesOptionalPredicate(MI, &CPSR)) { 00280 if (CPSR) 00281 AddDefaultT1CC(MIB); 00282 else 00283 AddDefaultCC(MIB); 00284 } 00285 return MIB; 00286 } 00287 00288 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 00289 const TargetRegisterClass *RC, 00290 unsigned Op0, bool Op0IsKill) { 00291 unsigned ResultReg = createResultReg(RC); 00292 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00293 00294 // Make sure the input operand is sufficiently constrained to be legal 00295 // for this instruction. 00296 Op0 = constrainOperandRegClass(II, Op0, 1); 00297 if (II.getNumDefs() >= 1) { 00298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 00299 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 00300 } else { 00301 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00302 .addReg(Op0, Op0IsKill * RegState::Kill)); 00303 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00304 TII.get(TargetOpcode::COPY), ResultReg) 00305 .addReg(II.ImplicitDefs[0])); 00306 } 00307 return ResultReg; 00308 } 00309 00310 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 00311 const TargetRegisterClass *RC, 00312 unsigned Op0, bool Op0IsKill, 00313 unsigned Op1, bool Op1IsKill) { 00314 unsigned ResultReg = createResultReg(RC); 00315 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00316 00317 // Make sure the input operands are sufficiently constrained to be legal 00318 // for this instruction. 00319 Op0 = constrainOperandRegClass(II, Op0, 1); 00320 Op1 = constrainOperandRegClass(II, Op1, 2); 00321 00322 if (II.getNumDefs() >= 1) { 00323 AddOptionalDefs( 00324 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 00325 .addReg(Op0, Op0IsKill * RegState::Kill) 00326 .addReg(Op1, Op1IsKill * RegState::Kill)); 00327 } else { 00328 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00329 .addReg(Op0, Op0IsKill * RegState::Kill) 00330 .addReg(Op1, Op1IsKill * RegState::Kill)); 00331 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00332 TII.get(TargetOpcode::COPY), ResultReg) 00333 .addReg(II.ImplicitDefs[0])); 00334 } 00335 return ResultReg; 00336 } 00337 00338 unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, 00339 const TargetRegisterClass *RC, 00340 unsigned Op0, bool Op0IsKill, 00341 unsigned Op1, bool Op1IsKill, 00342 unsigned Op2, bool Op2IsKill) { 00343 unsigned ResultReg = createResultReg(RC); 00344 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00345 00346 // Make sure the input operands are sufficiently constrained to be legal 00347 // for this instruction. 00348 Op0 = constrainOperandRegClass(II, Op0, 1); 00349 Op1 = constrainOperandRegClass(II, Op1, 2); 00350 Op2 = constrainOperandRegClass(II, Op1, 3); 00351 00352 if (II.getNumDefs() >= 1) { 00353 AddOptionalDefs( 00354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 00355 .addReg(Op0, Op0IsKill * RegState::Kill) 00356 .addReg(Op1, Op1IsKill * RegState::Kill) 00357 .addReg(Op2, Op2IsKill * RegState::Kill)); 00358 } else { 00359 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00360 .addReg(Op0, Op0IsKill * RegState::Kill) 00361 .addReg(Op1, Op1IsKill * RegState::Kill) 00362 .addReg(Op2, Op2IsKill * RegState::Kill)); 00363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00364 TII.get(TargetOpcode::COPY), ResultReg) 00365 .addReg(II.ImplicitDefs[0])); 00366 } 00367 return ResultReg; 00368 } 00369 00370 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 00371 const TargetRegisterClass *RC, 00372 unsigned Op0, bool Op0IsKill, 00373 uint64_t Imm) { 00374 unsigned ResultReg = createResultReg(RC); 00375 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00376 00377 // Make sure the input operand is sufficiently constrained to be legal 00378 // for this instruction. 00379 Op0 = constrainOperandRegClass(II, Op0, 1); 00380 if (II.getNumDefs() >= 1) { 00381 AddOptionalDefs( 00382 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 00383 .addReg(Op0, Op0IsKill * RegState::Kill) 00384 .addImm(Imm)); 00385 } else { 00386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00387 .addReg(Op0, Op0IsKill * RegState::Kill) 00388 .addImm(Imm)); 00389 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00390 TII.get(TargetOpcode::COPY), ResultReg) 00391 .addReg(II.ImplicitDefs[0])); 00392 } 00393 return ResultReg; 00394 } 00395 00396 unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, 00397 const TargetRegisterClass *RC, 00398 unsigned Op0, bool Op0IsKill, 00399 unsigned Op1, bool Op1IsKill, 00400 uint64_t Imm) { 00401 unsigned ResultReg = createResultReg(RC); 00402 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00403 00404 // Make sure the input operands are sufficiently constrained to be legal 00405 // for this instruction. 00406 Op0 = constrainOperandRegClass(II, Op0, 1); 00407 Op1 = constrainOperandRegClass(II, Op1, 2); 00408 if (II.getNumDefs() >= 1) { 00409 AddOptionalDefs( 00410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 00411 .addReg(Op0, Op0IsKill * RegState::Kill) 00412 .addReg(Op1, Op1IsKill * RegState::Kill) 00413 .addImm(Imm)); 00414 } else { 00415 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00416 .addReg(Op0, Op0IsKill * RegState::Kill) 00417 .addReg(Op1, Op1IsKill * RegState::Kill) 00418 .addImm(Imm)); 00419 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00420 TII.get(TargetOpcode::COPY), ResultReg) 00421 .addReg(II.ImplicitDefs[0])); 00422 } 00423 return ResultReg; 00424 } 00425 00426 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 00427 const TargetRegisterClass *RC, 00428 uint64_t Imm) { 00429 unsigned ResultReg = createResultReg(RC); 00430 const MCInstrDesc &II = TII.get(MachineInstOpcode); 00431 00432 if (II.getNumDefs() >= 1) { 00433 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 00434 ResultReg).addImm(Imm)); 00435 } else { 00436 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 00437 .addImm(Imm)); 00438 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00439 TII.get(TargetOpcode::COPY), ResultReg) 00440 .addReg(II.ImplicitDefs[0])); 00441 } 00442 return ResultReg; 00443 } 00444 00445 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 00446 // checks from the various callers. 00447 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 00448 if (VT == MVT::f64) return 0; 00449 00450 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 00451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00452 TII.get(ARM::VMOVSR), MoveReg) 00453 .addReg(SrcReg)); 00454 return MoveReg; 00455 } 00456 00457 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 00458 if (VT == MVT::i64) return 0; 00459 00460 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 00461 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00462 TII.get(ARM::VMOVRS), MoveReg) 00463 .addReg(SrcReg)); 00464 return MoveReg; 00465 } 00466 00467 // For double width floating point we need to materialize two constants 00468 // (the high and the low) into integer registers then use a move to get 00469 // the combined constant into an FP reg. 00470 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 00471 const APFloat Val = CFP->getValueAPF(); 00472 bool is64bit = VT == MVT::f64; 00473 00474 // This checks to see if we can use VFP3 instructions to materialize 00475 // a constant, otherwise we have to go through the constant pool. 00476 if (TLI.isFPImmLegal(Val, VT)) { 00477 int Imm; 00478 unsigned Opc; 00479 if (is64bit) { 00480 Imm = ARM_AM::getFP64Imm(Val); 00481 Opc = ARM::FCONSTD; 00482 } else { 00483 Imm = ARM_AM::getFP32Imm(Val); 00484 Opc = ARM::FCONSTS; 00485 } 00486 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 00487 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00488 TII.get(Opc), DestReg).addImm(Imm)); 00489 return DestReg; 00490 } 00491 00492 // Require VFP2 for loading fp constants. 00493 if (!Subtarget->hasVFP2()) return false; 00494 00495 // MachineConstantPool wants an explicit alignment. 00496 unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); 00497 if (Align == 0) { 00498 // TODO: Figure out if this is correct. 00499 Align = DL.getTypeAllocSize(CFP->getType()); 00500 } 00501 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); 00502 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 00503 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 00504 00505 // The extra reg is for addrmode5. 00506 AddOptionalDefs( 00507 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 00508 .addConstantPoolIndex(Idx) 00509 .addReg(0)); 00510 return DestReg; 00511 } 00512 00513 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 00514 00515 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 00516 return 0; 00517 00518 // If we can do this in a single instruction without a constant pool entry 00519 // do so now. 00520 const ConstantInt *CI = cast<ConstantInt>(C); 00521 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 00522 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 00523 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 00524 &ARM::GPRRegClass; 00525 unsigned ImmReg = createResultReg(RC); 00526 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00527 TII.get(Opc), ImmReg) 00528 .addImm(CI->getZExtValue())); 00529 return ImmReg; 00530 } 00531 00532 // Use MVN to emit negative constants. 00533 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 00534 unsigned Imm = (unsigned)~(CI->getSExtValue()); 00535 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 00536 (ARM_AM::getSOImmVal(Imm) != -1); 00537 if (UseImm) { 00538 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 00539 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 00540 &ARM::GPRRegClass; 00541 unsigned ImmReg = createResultReg(RC); 00542 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00543 TII.get(Opc), ImmReg) 00544 .addImm(Imm)); 00545 return ImmReg; 00546 } 00547 } 00548 00549 unsigned ResultReg = 0; 00550 if (Subtarget->useMovt(*FuncInfo.MF)) 00551 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 00552 00553 if (ResultReg) 00554 return ResultReg; 00555 00556 // Load from constant pool. For now 32-bit only. 00557 if (VT != MVT::i32) 00558 return 0; 00559 00560 // MachineConstantPool wants an explicit alignment. 00561 unsigned Align = DL.getPrefTypeAlignment(C->getType()); 00562 if (Align == 0) { 00563 // TODO: Figure out if this is correct. 00564 Align = DL.getTypeAllocSize(C->getType()); 00565 } 00566 unsigned Idx = MCP.getConstantPoolIndex(C, Align); 00567 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 00568 if (isThumb2) 00569 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00570 TII.get(ARM::t2LDRpci), ResultReg) 00571 .addConstantPoolIndex(Idx)); 00572 else { 00573 // The extra immediate is for addrmode2. 00574 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 00575 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00576 TII.get(ARM::LDRcp), ResultReg) 00577 .addConstantPoolIndex(Idx) 00578 .addImm(0)); 00579 } 00580 return ResultReg; 00581 } 00582 00583 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 00584 // For now 32-bit only. 00585 if (VT != MVT::i32) return 0; 00586 00587 Reloc::Model RelocM = TM.getRelocationModel(); 00588 bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); 00589 const TargetRegisterClass *RC = isThumb2 ? 00590 (const TargetRegisterClass*)&ARM::rGPRRegClass : 00591 (const TargetRegisterClass*)&ARM::GPRRegClass; 00592 unsigned DestReg = createResultReg(RC); 00593 00594 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 00595 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 00596 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 00597 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 00598 00599 // Use movw+movt when possible, it avoids constant pool entries. 00600 // Non-darwin targets only support static movt relocations in FastISel. 00601 if (Subtarget->useMovt(*FuncInfo.MF) && 00602 (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { 00603 unsigned Opc; 00604 unsigned char TF = 0; 00605 if (Subtarget->isTargetMachO()) 00606 TF = ARMII::MO_NONLAZY; 00607 00608 switch (RelocM) { 00609 case Reloc::PIC_: 00610 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 00611 break; 00612 default: 00613 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 00614 break; 00615 } 00616 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00617 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 00618 } else { 00619 // MachineConstantPool wants an explicit alignment. 00620 unsigned Align = DL.getPrefTypeAlignment(GV->getType()); 00621 if (Align == 0) { 00622 // TODO: Figure out if this is correct. 00623 Align = DL.getTypeAllocSize(GV->getType()); 00624 } 00625 00626 if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) 00627 return ARMLowerPICELF(GV, Align, VT); 00628 00629 // Grab index. 00630 unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : 00631 (Subtarget->isThumb() ? 4 : 8); 00632 unsigned Id = AFI->createPICLabelUId(); 00633 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 00634 ARMCP::CPValue, 00635 PCAdj); 00636 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 00637 00638 // Load value. 00639 MachineInstrBuilder MIB; 00640 if (isThumb2) { 00641 unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; 00642 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 00643 DestReg).addConstantPoolIndex(Idx); 00644 if (RelocM == Reloc::PIC_) 00645 MIB.addImm(Id); 00646 AddOptionalDefs(MIB); 00647 } else { 00648 // The extra immediate is for addrmode2. 00649 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 00650 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00651 TII.get(ARM::LDRcp), DestReg) 00652 .addConstantPoolIndex(Idx) 00653 .addImm(0); 00654 AddOptionalDefs(MIB); 00655 00656 if (RelocM == Reloc::PIC_) { 00657 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 00658 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 00659 00660 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 00661 DbgLoc, TII.get(Opc), NewDestReg) 00662 .addReg(DestReg) 00663 .addImm(Id); 00664 AddOptionalDefs(MIB); 00665 return NewDestReg; 00666 } 00667 } 00668 } 00669 00670 if (IsIndirect) { 00671 MachineInstrBuilder MIB; 00672 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 00673 if (isThumb2) 00674 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00675 TII.get(ARM::t2LDRi12), NewDestReg) 00676 .addReg(DestReg) 00677 .addImm(0); 00678 else 00679 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00680 TII.get(ARM::LDRi12), NewDestReg) 00681 .addReg(DestReg) 00682 .addImm(0); 00683 DestReg = NewDestReg; 00684 AddOptionalDefs(MIB); 00685 } 00686 00687 return DestReg; 00688 } 00689 00690 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 00691 EVT CEVT = TLI.getValueType(C->getType(), true); 00692 00693 // Only handle simple types. 00694 if (!CEVT.isSimple()) return 0; 00695 MVT VT = CEVT.getSimpleVT(); 00696 00697 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 00698 return ARMMaterializeFP(CFP, VT); 00699 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 00700 return ARMMaterializeGV(GV, VT); 00701 else if (isa<ConstantInt>(C)) 00702 return ARMMaterializeInt(C, VT); 00703 00704 return 0; 00705 } 00706 00707 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 00708 00709 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 00710 // Don't handle dynamic allocas. 00711 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 00712 00713 MVT VT; 00714 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 00715 00716 DenseMap<const AllocaInst*, int>::iterator SI = 00717 FuncInfo.StaticAllocaMap.find(AI); 00718 00719 // This will get lowered later into the correct offsets and registers 00720 // via rewriteXFrameIndex. 00721 if (SI != FuncInfo.StaticAllocaMap.end()) { 00722 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 00723 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 00724 unsigned ResultReg = createResultReg(RC); 00725 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 00726 00727 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00728 TII.get(Opc), ResultReg) 00729 .addFrameIndex(SI->second) 00730 .addImm(0)); 00731 return ResultReg; 00732 } 00733 00734 return 0; 00735 } 00736 00737 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 00738 EVT evt = TLI.getValueType(Ty, true); 00739 00740 // Only handle simple types. 00741 if (evt == MVT::Other || !evt.isSimple()) return false; 00742 VT = evt.getSimpleVT(); 00743 00744 // Handle all legal types, i.e. a register that will directly hold this 00745 // value. 00746 return TLI.isTypeLegal(VT); 00747 } 00748 00749 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 00750 if (isTypeLegal(Ty, VT)) return true; 00751 00752 // If this is a type than can be sign or zero-extended to a basic operation 00753 // go ahead and accept it now. 00754 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 00755 return true; 00756 00757 return false; 00758 } 00759 00760 // Computes the address to get to an object. 00761 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 00762 // Some boilerplate from the X86 FastISel. 00763 const User *U = nullptr; 00764 unsigned Opcode = Instruction::UserOp1; 00765 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 00766 // Don't walk into other basic blocks unless the object is an alloca from 00767 // another block, otherwise it may not have a virtual register assigned. 00768 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 00769 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 00770 Opcode = I->getOpcode(); 00771 U = I; 00772 } 00773 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 00774 Opcode = C->getOpcode(); 00775 U = C; 00776 } 00777 00778 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 00779 if (Ty->getAddressSpace() > 255) 00780 // Fast instruction selection doesn't support the special 00781 // address spaces. 00782 return false; 00783 00784 switch (Opcode) { 00785 default: 00786 break; 00787 case Instruction::BitCast: 00788 // Look through bitcasts. 00789 return ARMComputeAddress(U->getOperand(0), Addr); 00790 case Instruction::IntToPtr: 00791 // Look past no-op inttoptrs. 00792 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) 00793 return ARMComputeAddress(U->getOperand(0), Addr); 00794 break; 00795 case Instruction::PtrToInt: 00796 // Look past no-op ptrtoints. 00797 if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) 00798 return ARMComputeAddress(U->getOperand(0), Addr); 00799 break; 00800 case Instruction::GetElementPtr: { 00801 Address SavedAddr = Addr; 00802 int TmpOffset = Addr.Offset; 00803 00804 // Iterate through the GEP folding the constants into offsets where 00805 // we can. 00806 gep_type_iterator GTI = gep_type_begin(U); 00807 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 00808 i != e; ++i, ++GTI) { 00809 const Value *Op = *i; 00810 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 00811 const StructLayout *SL = DL.getStructLayout(STy); 00812 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 00813 TmpOffset += SL->getElementOffset(Idx); 00814 } else { 00815 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 00816 for (;;) { 00817 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 00818 // Constant-offset addressing. 00819 TmpOffset += CI->getSExtValue() * S; 00820 break; 00821 } 00822 if (canFoldAddIntoGEP(U, Op)) { 00823 // A compatible add with a constant operand. Fold the constant. 00824 ConstantInt *CI = 00825 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 00826 TmpOffset += CI->getSExtValue() * S; 00827 // Iterate on the other operand. 00828 Op = cast<AddOperator>(Op)->getOperand(0); 00829 continue; 00830 } 00831 // Unsupported 00832 goto unsupported_gep; 00833 } 00834 } 00835 } 00836 00837 // Try to grab the base operand now. 00838 Addr.Offset = TmpOffset; 00839 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 00840 00841 // We failed, restore everything and try the other options. 00842 Addr = SavedAddr; 00843 00844 unsupported_gep: 00845 break; 00846 } 00847 case Instruction::Alloca: { 00848 const AllocaInst *AI = cast<AllocaInst>(Obj); 00849 DenseMap<const AllocaInst*, int>::iterator SI = 00850 FuncInfo.StaticAllocaMap.find(AI); 00851 if (SI != FuncInfo.StaticAllocaMap.end()) { 00852 Addr.BaseType = Address::FrameIndexBase; 00853 Addr.Base.FI = SI->second; 00854 return true; 00855 } 00856 break; 00857 } 00858 } 00859 00860 // Try to get this in a register if nothing else has worked. 00861 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 00862 return Addr.Base.Reg != 0; 00863 } 00864 00865 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 00866 bool needsLowering = false; 00867 switch (VT.SimpleTy) { 00868 default: llvm_unreachable("Unhandled load/store type!"); 00869 case MVT::i1: 00870 case MVT::i8: 00871 case MVT::i16: 00872 case MVT::i32: 00873 if (!useAM3) { 00874 // Integer loads/stores handle 12-bit offsets. 00875 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 00876 // Handle negative offsets. 00877 if (needsLowering && isThumb2) 00878 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 00879 Addr.Offset > -256); 00880 } else { 00881 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 00882 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 00883 } 00884 break; 00885 case MVT::f32: 00886 case MVT::f64: 00887 // Floating point operands handle 8-bit offsets. 00888 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 00889 break; 00890 } 00891 00892 // If this is a stack pointer and the offset needs to be simplified then 00893 // put the alloca address into a register, set the base type back to 00894 // register and continue. This should almost never happen. 00895 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 00896 const TargetRegisterClass *RC = isThumb2 ? 00897 (const TargetRegisterClass*)&ARM::tGPRRegClass : 00898 (const TargetRegisterClass*)&ARM::GPRRegClass; 00899 unsigned ResultReg = createResultReg(RC); 00900 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 00901 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 00902 TII.get(Opc), ResultReg) 00903 .addFrameIndex(Addr.Base.FI) 00904 .addImm(0)); 00905 Addr.Base.Reg = ResultReg; 00906 Addr.BaseType = Address::RegBase; 00907 } 00908 00909 // Since the offset is too large for the load/store instruction 00910 // get the reg+offset into a register. 00911 if (needsLowering) { 00912 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 00913 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 00914 Addr.Offset = 0; 00915 } 00916 } 00917 00918 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 00919 const MachineInstrBuilder &MIB, 00920 unsigned Flags, bool useAM3) { 00921 // addrmode5 output depends on the selection dag addressing dividing the 00922 // offset by 4 that it then later multiplies. Do this here as well. 00923 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 00924 Addr.Offset /= 4; 00925 00926 // Frame base works a bit differently. Handle it separately. 00927 if (Addr.BaseType == Address::FrameIndexBase) { 00928 int FI = Addr.Base.FI; 00929 int Offset = Addr.Offset; 00930 MachineMemOperand *MMO = 00931 FuncInfo.MF->getMachineMemOperand( 00932 MachinePointerInfo::getFixedStack(FI, Offset), 00933 Flags, 00934 MFI.getObjectSize(FI), 00935 MFI.getObjectAlignment(FI)); 00936 // Now add the rest of the operands. 00937 MIB.addFrameIndex(FI); 00938 00939 // ARM halfword load/stores and signed byte loads need an additional 00940 // operand. 00941 if (useAM3) { 00942 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 00943 MIB.addReg(0); 00944 MIB.addImm(Imm); 00945 } else { 00946 MIB.addImm(Addr.Offset); 00947 } 00948 MIB.addMemOperand(MMO); 00949 } else { 00950 // Now add the rest of the operands. 00951 MIB.addReg(Addr.Base.Reg); 00952 00953 // ARM halfword load/stores and signed byte loads need an additional 00954 // operand. 00955 if (useAM3) { 00956 signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 00957 MIB.addReg(0); 00958 MIB.addImm(Imm); 00959 } else { 00960 MIB.addImm(Addr.Offset); 00961 } 00962 } 00963 AddOptionalDefs(MIB); 00964 } 00965 00966 bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, 00967 unsigned Alignment, bool isZExt, bool allocReg) { 00968 unsigned Opc; 00969 bool useAM3 = false; 00970 bool needVMOV = false; 00971 const TargetRegisterClass *RC; 00972 switch (VT.SimpleTy) { 00973 // This is mostly going to be Neon/vector support. 00974 default: return false; 00975 case MVT::i1: 00976 case MVT::i8: 00977 if (isThumb2) { 00978 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 00979 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 00980 else 00981 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 00982 } else { 00983 if (isZExt) { 00984 Opc = ARM::LDRBi12; 00985 } else { 00986 Opc = ARM::LDRSB; 00987 useAM3 = true; 00988 } 00989 } 00990 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 00991 break; 00992 case MVT::i16: 00993 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 00994 return false; 00995 00996 if (isThumb2) { 00997 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 00998 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 00999 else 01000 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 01001 } else { 01002 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 01003 useAM3 = true; 01004 } 01005 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 01006 break; 01007 case MVT::i32: 01008 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 01009 return false; 01010 01011 if (isThumb2) { 01012 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 01013 Opc = ARM::t2LDRi8; 01014 else 01015 Opc = ARM::t2LDRi12; 01016 } else { 01017 Opc = ARM::LDRi12; 01018 } 01019 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 01020 break; 01021 case MVT::f32: 01022 if (!Subtarget->hasVFP2()) return false; 01023 // Unaligned loads need special handling. Floats require word-alignment. 01024 if (Alignment && Alignment < 4) { 01025 needVMOV = true; 01026 VT = MVT::i32; 01027 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 01028 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 01029 } else { 01030 Opc = ARM::VLDRS; 01031 RC = TLI.getRegClassFor(VT); 01032 } 01033 break; 01034 case MVT::f64: 01035 if (!Subtarget->hasVFP2()) return false; 01036 // FIXME: Unaligned loads need special handling. Doublewords require 01037 // word-alignment. 01038 if (Alignment && Alignment < 4) 01039 return false; 01040 01041 Opc = ARM::VLDRD; 01042 RC = TLI.getRegClassFor(VT); 01043 break; 01044 } 01045 // Simplify this down to something we can handle. 01046 ARMSimplifyAddress(Addr, VT, useAM3); 01047 01048 // Create the base instruction, then add the operands. 01049 if (allocReg) 01050 ResultReg = createResultReg(RC); 01051 assert (ResultReg > 255 && "Expected an allocated virtual register."); 01052 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01053 TII.get(Opc), ResultReg); 01054 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 01055 01056 // If we had an unaligned load of a float we've converted it to an regular 01057 // load. Now we must move from the GRP to the FP register. 01058 if (needVMOV) { 01059 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 01060 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01061 TII.get(ARM::VMOVSR), MoveReg) 01062 .addReg(ResultReg)); 01063 ResultReg = MoveReg; 01064 } 01065 return true; 01066 } 01067 01068 bool ARMFastISel::SelectLoad(const Instruction *I) { 01069 // Atomic loads need special handling. 01070 if (cast<LoadInst>(I)->isAtomic()) 01071 return false; 01072 01073 // Verify we have a legal type before going any further. 01074 MVT VT; 01075 if (!isLoadTypeLegal(I->getType(), VT)) 01076 return false; 01077 01078 // See if we can handle this address. 01079 Address Addr; 01080 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 01081 01082 unsigned ResultReg; 01083 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 01084 return false; 01085 updateValueMap(I, ResultReg); 01086 return true; 01087 } 01088 01089 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 01090 unsigned Alignment) { 01091 unsigned StrOpc; 01092 bool useAM3 = false; 01093 switch (VT.SimpleTy) { 01094 // This is mostly going to be Neon/vector support. 01095 default: return false; 01096 case MVT::i1: { 01097 unsigned Res = createResultReg(isThumb2 ? 01098 (const TargetRegisterClass*)&ARM::tGPRRegClass : 01099 (const TargetRegisterClass*)&ARM::GPRRegClass); 01100 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 01101 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 01102 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01103 TII.get(Opc), Res) 01104 .addReg(SrcReg).addImm(1)); 01105 SrcReg = Res; 01106 } // Fallthrough here. 01107 case MVT::i8: 01108 if (isThumb2) { 01109 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 01110 StrOpc = ARM::t2STRBi8; 01111 else 01112 StrOpc = ARM::t2STRBi12; 01113 } else { 01114 StrOpc = ARM::STRBi12; 01115 } 01116 break; 01117 case MVT::i16: 01118 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 01119 return false; 01120 01121 if (isThumb2) { 01122 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 01123 StrOpc = ARM::t2STRHi8; 01124 else 01125 StrOpc = ARM::t2STRHi12; 01126 } else { 01127 StrOpc = ARM::STRH; 01128 useAM3 = true; 01129 } 01130 break; 01131 case MVT::i32: 01132 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 01133 return false; 01134 01135 if (isThumb2) { 01136 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 01137 StrOpc = ARM::t2STRi8; 01138 else 01139 StrOpc = ARM::t2STRi12; 01140 } else { 01141 StrOpc = ARM::STRi12; 01142 } 01143 break; 01144 case MVT::f32: 01145 if (!Subtarget->hasVFP2()) return false; 01146 // Unaligned stores need special handling. Floats require word-alignment. 01147 if (Alignment && Alignment < 4) { 01148 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 01149 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01150 TII.get(ARM::VMOVRS), MoveReg) 01151 .addReg(SrcReg)); 01152 SrcReg = MoveReg; 01153 VT = MVT::i32; 01154 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 01155 } else { 01156 StrOpc = ARM::VSTRS; 01157 } 01158 break; 01159 case MVT::f64: 01160 if (!Subtarget->hasVFP2()) return false; 01161 // FIXME: Unaligned stores need special handling. Doublewords require 01162 // word-alignment. 01163 if (Alignment && Alignment < 4) 01164 return false; 01165 01166 StrOpc = ARM::VSTRD; 01167 break; 01168 } 01169 // Simplify this down to something we can handle. 01170 ARMSimplifyAddress(Addr, VT, useAM3); 01171 01172 // Create the base instruction, then add the operands. 01173 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 01174 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01175 TII.get(StrOpc)) 01176 .addReg(SrcReg); 01177 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 01178 return true; 01179 } 01180 01181 bool ARMFastISel::SelectStore(const Instruction *I) { 01182 Value *Op0 = I->getOperand(0); 01183 unsigned SrcReg = 0; 01184 01185 // Atomic stores need special handling. 01186 if (cast<StoreInst>(I)->isAtomic()) 01187 return false; 01188 01189 // Verify we have a legal type before going any further. 01190 MVT VT; 01191 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 01192 return false; 01193 01194 // Get the value to be stored into a register. 01195 SrcReg = getRegForValue(Op0); 01196 if (SrcReg == 0) return false; 01197 01198 // See if we can handle this address. 01199 Address Addr; 01200 if (!ARMComputeAddress(I->getOperand(1), Addr)) 01201 return false; 01202 01203 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 01204 return false; 01205 return true; 01206 } 01207 01208 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 01209 switch (Pred) { 01210 // Needs two compares... 01211 case CmpInst::FCMP_ONE: 01212 case CmpInst::FCMP_UEQ: 01213 default: 01214 // AL is our "false" for now. The other two need more compares. 01215 return ARMCC::AL; 01216 case CmpInst::ICMP_EQ: 01217 case CmpInst::FCMP_OEQ: 01218 return ARMCC::EQ; 01219 case CmpInst::ICMP_SGT: 01220 case CmpInst::FCMP_OGT: 01221 return ARMCC::GT; 01222 case CmpInst::ICMP_SGE: 01223 case CmpInst::FCMP_OGE: 01224 return ARMCC::GE; 01225 case CmpInst::ICMP_UGT: 01226 case CmpInst::FCMP_UGT: 01227 return ARMCC::HI; 01228 case CmpInst::FCMP_OLT: 01229 return ARMCC::MI; 01230 case CmpInst::ICMP_ULE: 01231 case CmpInst::FCMP_OLE: 01232 return ARMCC::LS; 01233 case CmpInst::FCMP_ORD: 01234 return ARMCC::VC; 01235 case CmpInst::FCMP_UNO: 01236 return ARMCC::VS; 01237 case CmpInst::FCMP_UGE: 01238 return ARMCC::PL; 01239 case CmpInst::ICMP_SLT: 01240 case CmpInst::FCMP_ULT: 01241 return ARMCC::LT; 01242 case CmpInst::ICMP_SLE: 01243 case CmpInst::FCMP_ULE: 01244 return ARMCC::LE; 01245 case CmpInst::FCMP_UNE: 01246 case CmpInst::ICMP_NE: 01247 return ARMCC::NE; 01248 case CmpInst::ICMP_UGE: 01249 return ARMCC::HS; 01250 case CmpInst::ICMP_ULT: 01251 return ARMCC::LO; 01252 } 01253 } 01254 01255 bool ARMFastISel::SelectBranch(const Instruction *I) { 01256 const BranchInst *BI = cast<BranchInst>(I); 01257 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 01258 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 01259 01260 // Simple branch support. 01261 01262 // If we can, avoid recomputing the compare - redoing it could lead to wonky 01263 // behavior. 01264 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 01265 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 01266 01267 // Get the compare predicate. 01268 // Try to take advantage of fallthrough opportunities. 01269 CmpInst::Predicate Predicate = CI->getPredicate(); 01270 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 01271 std::swap(TBB, FBB); 01272 Predicate = CmpInst::getInversePredicate(Predicate); 01273 } 01274 01275 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 01276 01277 // We may not handle every CC for now. 01278 if (ARMPred == ARMCC::AL) return false; 01279 01280 // Emit the compare. 01281 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 01282 return false; 01283 01284 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 01285 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 01286 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 01287 fastEmitBranch(FBB, DbgLoc); 01288 FuncInfo.MBB->addSuccessor(TBB); 01289 return true; 01290 } 01291 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 01292 MVT SourceVT; 01293 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 01294 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 01295 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 01296 unsigned OpReg = getRegForValue(TI->getOperand(0)); 01297 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 01298 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01299 TII.get(TstOpc)) 01300 .addReg(OpReg).addImm(1)); 01301 01302 unsigned CCMode = ARMCC::NE; 01303 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 01304 std::swap(TBB, FBB); 01305 CCMode = ARMCC::EQ; 01306 } 01307 01308 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 01309 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 01310 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 01311 01312 fastEmitBranch(FBB, DbgLoc); 01313 FuncInfo.MBB->addSuccessor(TBB); 01314 return true; 01315 } 01316 } else if (const ConstantInt *CI = 01317 dyn_cast<ConstantInt>(BI->getCondition())) { 01318 uint64_t Imm = CI->getZExtValue(); 01319 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 01320 fastEmitBranch(Target, DbgLoc); 01321 return true; 01322 } 01323 01324 unsigned CmpReg = getRegForValue(BI->getCondition()); 01325 if (CmpReg == 0) return false; 01326 01327 // We've been divorced from our compare! Our block was split, and 01328 // now our compare lives in a predecessor block. We musn't 01329 // re-compare here, as the children of the compare aren't guaranteed 01330 // live across the block boundary (we *could* check for this). 01331 // Regardless, the compare has been done in the predecessor block, 01332 // and it left a value for us in a virtual register. Ergo, we test 01333 // the one-bit value left in the virtual register. 01334 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 01335 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 01336 AddOptionalDefs( 01337 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 01338 .addReg(CmpReg) 01339 .addImm(1)); 01340 01341 unsigned CCMode = ARMCC::NE; 01342 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 01343 std::swap(TBB, FBB); 01344 CCMode = ARMCC::EQ; 01345 } 01346 01347 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 01348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 01349 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 01350 fastEmitBranch(FBB, DbgLoc); 01351 FuncInfo.MBB->addSuccessor(TBB); 01352 return true; 01353 } 01354 01355 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 01356 unsigned AddrReg = getRegForValue(I->getOperand(0)); 01357 if (AddrReg == 0) return false; 01358 01359 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 01360 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01361 TII.get(Opc)).addReg(AddrReg)); 01362 01363 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 01364 for (unsigned i = 0, e = IB->getNumSuccessors(); i != e; ++i) 01365 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[IB->getSuccessor(i)]); 01366 01367 return true; 01368 } 01369 01370 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 01371 bool isZExt) { 01372 Type *Ty = Src1Value->getType(); 01373 EVT SrcEVT = TLI.getValueType(Ty, true); 01374 if (!SrcEVT.isSimple()) return false; 01375 MVT SrcVT = SrcEVT.getSimpleVT(); 01376 01377 bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); 01378 if (isFloat && !Subtarget->hasVFP2()) 01379 return false; 01380 01381 // Check to see if the 2nd operand is a constant that we can encode directly 01382 // in the compare. 01383 int Imm = 0; 01384 bool UseImm = false; 01385 bool isNegativeImm = false; 01386 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 01387 // Thus, Src1Value may be a ConstantInt, but we're missing it. 01388 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 01389 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 01390 SrcVT == MVT::i1) { 01391 const APInt &CIVal = ConstInt->getValue(); 01392 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 01393 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 01394 // then a cmn, because there is no way to represent 2147483648 as a 01395 // signed 32-bit int. 01396 if (Imm < 0 && Imm != (int)0x80000000) { 01397 isNegativeImm = true; 01398 Imm = -Imm; 01399 } 01400 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 01401 (ARM_AM::getSOImmVal(Imm) != -1); 01402 } 01403 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 01404 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 01405 if (ConstFP->isZero() && !ConstFP->isNegative()) 01406 UseImm = true; 01407 } 01408 01409 unsigned CmpOpc; 01410 bool isICmp = true; 01411 bool needsExt = false; 01412 switch (SrcVT.SimpleTy) { 01413 default: return false; 01414 // TODO: Verify compares. 01415 case MVT::f32: 01416 isICmp = false; 01417 CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; 01418 break; 01419 case MVT::f64: 01420 isICmp = false; 01421 CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; 01422 break; 01423 case MVT::i1: 01424 case MVT::i8: 01425 case MVT::i16: 01426 needsExt = true; 01427 // Intentional fall-through. 01428 case MVT::i32: 01429 if (isThumb2) { 01430 if (!UseImm) 01431 CmpOpc = ARM::t2CMPrr; 01432 else 01433 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 01434 } else { 01435 if (!UseImm) 01436 CmpOpc = ARM::CMPrr; 01437 else 01438 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 01439 } 01440 break; 01441 } 01442 01443 unsigned SrcReg1 = getRegForValue(Src1Value); 01444 if (SrcReg1 == 0) return false; 01445 01446 unsigned SrcReg2 = 0; 01447 if (!UseImm) { 01448 SrcReg2 = getRegForValue(Src2Value); 01449 if (SrcReg2 == 0) return false; 01450 } 01451 01452 // We have i1, i8, or i16, we need to either zero extend or sign extend. 01453 if (needsExt) { 01454 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 01455 if (SrcReg1 == 0) return false; 01456 if (!UseImm) { 01457 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 01458 if (SrcReg2 == 0) return false; 01459 } 01460 } 01461 01462 const MCInstrDesc &II = TII.get(CmpOpc); 01463 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 01464 if (!UseImm) { 01465 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 01466 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 01467 .addReg(SrcReg1).addReg(SrcReg2)); 01468 } else { 01469 MachineInstrBuilder MIB; 01470 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 01471 .addReg(SrcReg1); 01472 01473 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 01474 if (isICmp) 01475 MIB.addImm(Imm); 01476 AddOptionalDefs(MIB); 01477 } 01478 01479 // For floating point we need to move the result to a comparison register 01480 // that we can then use for branches. 01481 if (Ty->isFloatTy() || Ty->isDoubleTy()) 01482 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01483 TII.get(ARM::FMSTAT))); 01484 return true; 01485 } 01486 01487 bool ARMFastISel::SelectCmp(const Instruction *I) { 01488 const CmpInst *CI = cast<CmpInst>(I); 01489 01490 // Get the compare predicate. 01491 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 01492 01493 // We may not handle every CC for now. 01494 if (ARMPred == ARMCC::AL) return false; 01495 01496 // Emit the compare. 01497 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 01498 return false; 01499 01500 // Now set a register based on the comparison. Explicitly set the predicates 01501 // here. 01502 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 01503 const TargetRegisterClass *RC = isThumb2 ? 01504 (const TargetRegisterClass*)&ARM::rGPRRegClass : 01505 (const TargetRegisterClass*)&ARM::GPRRegClass; 01506 unsigned DestReg = createResultReg(RC); 01507 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 01508 unsigned ZeroReg = fastMaterializeConstant(Zero); 01509 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 01510 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 01511 .addReg(ZeroReg).addImm(1) 01512 .addImm(ARMPred).addReg(ARM::CPSR); 01513 01514 updateValueMap(I, DestReg); 01515 return true; 01516 } 01517 01518 bool ARMFastISel::SelectFPExt(const Instruction *I) { 01519 // Make sure we have VFP and that we're extending float to double. 01520 if (!Subtarget->hasVFP2()) return false; 01521 01522 Value *V = I->getOperand(0); 01523 if (!I->getType()->isDoubleTy() || 01524 !V->getType()->isFloatTy()) return false; 01525 01526 unsigned Op = getRegForValue(V); 01527 if (Op == 0) return false; 01528 01529 unsigned Result = createResultReg(&ARM::DPRRegClass); 01530 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01531 TII.get(ARM::VCVTDS), Result) 01532 .addReg(Op)); 01533 updateValueMap(I, Result); 01534 return true; 01535 } 01536 01537 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 01538 // Make sure we have VFP and that we're truncating double to float. 01539 if (!Subtarget->hasVFP2()) return false; 01540 01541 Value *V = I->getOperand(0); 01542 if (!(I->getType()->isFloatTy() && 01543 V->getType()->isDoubleTy())) return false; 01544 01545 unsigned Op = getRegForValue(V); 01546 if (Op == 0) return false; 01547 01548 unsigned Result = createResultReg(&ARM::SPRRegClass); 01549 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01550 TII.get(ARM::VCVTSD), Result) 01551 .addReg(Op)); 01552 updateValueMap(I, Result); 01553 return true; 01554 } 01555 01556 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 01557 // Make sure we have VFP. 01558 if (!Subtarget->hasVFP2()) return false; 01559 01560 MVT DstVT; 01561 Type *Ty = I->getType(); 01562 if (!isTypeLegal(Ty, DstVT)) 01563 return false; 01564 01565 Value *Src = I->getOperand(0); 01566 EVT SrcEVT = TLI.getValueType(Src->getType(), true); 01567 if (!SrcEVT.isSimple()) 01568 return false; 01569 MVT SrcVT = SrcEVT.getSimpleVT(); 01570 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 01571 return false; 01572 01573 unsigned SrcReg = getRegForValue(Src); 01574 if (SrcReg == 0) return false; 01575 01576 // Handle sign-extension. 01577 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 01578 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 01579 /*isZExt*/!isSigned); 01580 if (SrcReg == 0) return false; 01581 } 01582 01583 // The conversion routine works on fp-reg to fp-reg and the operand above 01584 // was an integer, move it to the fp registers if possible. 01585 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 01586 if (FP == 0) return false; 01587 01588 unsigned Opc; 01589 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 01590 else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 01591 else return false; 01592 01593 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 01594 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01595 TII.get(Opc), ResultReg).addReg(FP)); 01596 updateValueMap(I, ResultReg); 01597 return true; 01598 } 01599 01600 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 01601 // Make sure we have VFP. 01602 if (!Subtarget->hasVFP2()) return false; 01603 01604 MVT DstVT; 01605 Type *RetTy = I->getType(); 01606 if (!isTypeLegal(RetTy, DstVT)) 01607 return false; 01608 01609 unsigned Op = getRegForValue(I->getOperand(0)); 01610 if (Op == 0) return false; 01611 01612 unsigned Opc; 01613 Type *OpTy = I->getOperand(0)->getType(); 01614 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 01615 else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 01616 else return false; 01617 01618 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 01619 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 01620 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01621 TII.get(Opc), ResultReg).addReg(Op)); 01622 01623 // This result needs to be in an integer register, but the conversion only 01624 // takes place in fp-regs. 01625 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 01626 if (IntReg == 0) return false; 01627 01628 updateValueMap(I, IntReg); 01629 return true; 01630 } 01631 01632 bool ARMFastISel::SelectSelect(const Instruction *I) { 01633 MVT VT; 01634 if (!isTypeLegal(I->getType(), VT)) 01635 return false; 01636 01637 // Things need to be register sized for register moves. 01638 if (VT != MVT::i32) return false; 01639 01640 unsigned CondReg = getRegForValue(I->getOperand(0)); 01641 if (CondReg == 0) return false; 01642 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 01643 if (Op1Reg == 0) return false; 01644 01645 // Check to see if we can use an immediate in the conditional move. 01646 int Imm = 0; 01647 bool UseImm = false; 01648 bool isNegativeImm = false; 01649 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 01650 assert (VT == MVT::i32 && "Expecting an i32."); 01651 Imm = (int)ConstInt->getValue().getZExtValue(); 01652 if (Imm < 0) { 01653 isNegativeImm = true; 01654 Imm = ~Imm; 01655 } 01656 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 01657 (ARM_AM::getSOImmVal(Imm) != -1); 01658 } 01659 01660 unsigned Op2Reg = 0; 01661 if (!UseImm) { 01662 Op2Reg = getRegForValue(I->getOperand(2)); 01663 if (Op2Reg == 0) return false; 01664 } 01665 01666 unsigned CmpOpc = isThumb2 ? ARM::t2CMPri : ARM::CMPri; 01667 CondReg = constrainOperandRegClass(TII.get(CmpOpc), CondReg, 0); 01668 AddOptionalDefs( 01669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CmpOpc)) 01670 .addReg(CondReg) 01671 .addImm(0)); 01672 01673 unsigned MovCCOpc; 01674 const TargetRegisterClass *RC; 01675 if (!UseImm) { 01676 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 01677 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 01678 } else { 01679 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 01680 if (!isNegativeImm) 01681 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 01682 else 01683 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 01684 } 01685 unsigned ResultReg = createResultReg(RC); 01686 if (!UseImm) { 01687 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 01688 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 01689 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 01690 ResultReg) 01691 .addReg(Op2Reg) 01692 .addReg(Op1Reg) 01693 .addImm(ARMCC::NE) 01694 .addReg(ARM::CPSR); 01695 } else { 01696 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 01697 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 01698 ResultReg) 01699 .addReg(Op1Reg) 01700 .addImm(Imm) 01701 .addImm(ARMCC::EQ) 01702 .addReg(ARM::CPSR); 01703 } 01704 updateValueMap(I, ResultReg); 01705 return true; 01706 } 01707 01708 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 01709 MVT VT; 01710 Type *Ty = I->getType(); 01711 if (!isTypeLegal(Ty, VT)) 01712 return false; 01713 01714 // If we have integer div support we should have selected this automagically. 01715 // In case we have a real miss go ahead and return false and we'll pick 01716 // it up later. 01717 if (Subtarget->hasDivide()) return false; 01718 01719 // Otherwise emit a libcall. 01720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 01721 if (VT == MVT::i8) 01722 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 01723 else if (VT == MVT::i16) 01724 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 01725 else if (VT == MVT::i32) 01726 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 01727 else if (VT == MVT::i64) 01728 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 01729 else if (VT == MVT::i128) 01730 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 01731 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 01732 01733 return ARMEmitLibcall(I, LC); 01734 } 01735 01736 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 01737 MVT VT; 01738 Type *Ty = I->getType(); 01739 if (!isTypeLegal(Ty, VT)) 01740 return false; 01741 01742 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 01743 if (VT == MVT::i8) 01744 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 01745 else if (VT == MVT::i16) 01746 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 01747 else if (VT == MVT::i32) 01748 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 01749 else if (VT == MVT::i64) 01750 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 01751 else if (VT == MVT::i128) 01752 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 01753 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 01754 01755 return ARMEmitLibcall(I, LC); 01756 } 01757 01758 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 01759 EVT DestVT = TLI.getValueType(I->getType(), true); 01760 01761 // We can get here in the case when we have a binary operation on a non-legal 01762 // type and the target independent selector doesn't know how to handle it. 01763 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 01764 return false; 01765 01766 unsigned Opc; 01767 switch (ISDOpcode) { 01768 default: return false; 01769 case ISD::ADD: 01770 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 01771 break; 01772 case ISD::OR: 01773 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 01774 break; 01775 case ISD::SUB: 01776 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 01777 break; 01778 } 01779 01780 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 01781 if (SrcReg1 == 0) return false; 01782 01783 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 01784 // in the instruction, rather then materializing the value in a register. 01785 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 01786 if (SrcReg2 == 0) return false; 01787 01788 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 01789 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 01790 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 01791 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01792 TII.get(Opc), ResultReg) 01793 .addReg(SrcReg1).addReg(SrcReg2)); 01794 updateValueMap(I, ResultReg); 01795 return true; 01796 } 01797 01798 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 01799 EVT FPVT = TLI.getValueType(I->getType(), true); 01800 if (!FPVT.isSimple()) return false; 01801 MVT VT = FPVT.getSimpleVT(); 01802 01803 // We can get here in the case when we want to use NEON for our fp 01804 // operations, but can't figure out how to. Just use the vfp instructions 01805 // if we have them. 01806 // FIXME: It'd be nice to use NEON instructions. 01807 Type *Ty = I->getType(); 01808 bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); 01809 if (isFloat && !Subtarget->hasVFP2()) 01810 return false; 01811 01812 unsigned Opc; 01813 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 01814 switch (ISDOpcode) { 01815 default: return false; 01816 case ISD::FADD: 01817 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 01818 break; 01819 case ISD::FSUB: 01820 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 01821 break; 01822 case ISD::FMUL: 01823 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 01824 break; 01825 } 01826 unsigned Op1 = getRegForValue(I->getOperand(0)); 01827 if (Op1 == 0) return false; 01828 01829 unsigned Op2 = getRegForValue(I->getOperand(1)); 01830 if (Op2 == 0) return false; 01831 01832 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 01833 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01834 TII.get(Opc), ResultReg) 01835 .addReg(Op1).addReg(Op2)); 01836 updateValueMap(I, ResultReg); 01837 return true; 01838 } 01839 01840 // Call Handling Code 01841 01842 // This is largely taken directly from CCAssignFnForNode 01843 // TODO: We may not support all of this. 01844 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 01845 bool Return, 01846 bool isVarArg) { 01847 switch (CC) { 01848 default: 01849 llvm_unreachable("Unsupported calling convention"); 01850 case CallingConv::Fast: 01851 if (Subtarget->hasVFP2() && !isVarArg) { 01852 if (!Subtarget->isAAPCS_ABI()) 01853 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 01854 // For AAPCS ABI targets, just use VFP variant of the calling convention. 01855 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 01856 } 01857 // Fallthrough 01858 case CallingConv::C: 01859 // Use target triple & subtarget features to do actual dispatch. 01860 if (Subtarget->isAAPCS_ABI()) { 01861 if (Subtarget->hasVFP2() && 01862 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 01863 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 01864 else 01865 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 01866 } else 01867 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 01868 case CallingConv::ARM_AAPCS_VFP: 01869 if (!isVarArg) 01870 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 01871 // Fall through to soft float variant, variadic functions don't 01872 // use hard floating point ABI. 01873 case CallingConv::ARM_AAPCS: 01874 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 01875 case CallingConv::ARM_APCS: 01876 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 01877 case CallingConv::GHC: 01878 if (Return) 01879 llvm_unreachable("Can't return in GHC call convention"); 01880 else 01881 return CC_ARM_APCS_GHC; 01882 } 01883 } 01884 01885 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 01886 SmallVectorImpl<unsigned> &ArgRegs, 01887 SmallVectorImpl<MVT> &ArgVTs, 01888 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 01889 SmallVectorImpl<unsigned> &RegArgs, 01890 CallingConv::ID CC, 01891 unsigned &NumBytes, 01892 bool isVarArg) { 01893 SmallVector<CCValAssign, 16> ArgLocs; 01894 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 01895 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 01896 CCAssignFnForCall(CC, false, isVarArg)); 01897 01898 // Check that we can handle all of the arguments. If we can't, then bail out 01899 // now before we add code to the MBB. 01900 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 01901 CCValAssign &VA = ArgLocs[i]; 01902 MVT ArgVT = ArgVTs[VA.getValNo()]; 01903 01904 // We don't handle NEON/vector parameters yet. 01905 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 01906 return false; 01907 01908 // Now copy/store arg to correct locations. 01909 if (VA.isRegLoc() && !VA.needsCustom()) { 01910 continue; 01911 } else if (VA.needsCustom()) { 01912 // TODO: We need custom lowering for vector (v2f64) args. 01913 if (VA.getLocVT() != MVT::f64 || 01914 // TODO: Only handle register args for now. 01915 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 01916 return false; 01917 } else { 01918 switch (ArgVT.SimpleTy) { 01919 default: 01920 return false; 01921 case MVT::i1: 01922 case MVT::i8: 01923 case MVT::i16: 01924 case MVT::i32: 01925 break; 01926 case MVT::f32: 01927 if (!Subtarget->hasVFP2()) 01928 return false; 01929 break; 01930 case MVT::f64: 01931 if (!Subtarget->hasVFP2()) 01932 return false; 01933 break; 01934 } 01935 } 01936 } 01937 01938 // At the point, we are able to handle the call's arguments in fast isel. 01939 01940 // Get a count of how many bytes are to be pushed on the stack. 01941 NumBytes = CCInfo.getNextStackOffset(); 01942 01943 // Issue CALLSEQ_START 01944 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 01945 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01946 TII.get(AdjStackDown)) 01947 .addImm(NumBytes)); 01948 01949 // Process the args. 01950 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 01951 CCValAssign &VA = ArgLocs[i]; 01952 const Value *ArgVal = Args[VA.getValNo()]; 01953 unsigned Arg = ArgRegs[VA.getValNo()]; 01954 MVT ArgVT = ArgVTs[VA.getValNo()]; 01955 01956 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 01957 "We don't handle NEON/vector parameters yet."); 01958 01959 // Handle arg promotion, etc. 01960 switch (VA.getLocInfo()) { 01961 case CCValAssign::Full: break; 01962 case CCValAssign::SExt: { 01963 MVT DestVT = VA.getLocVT(); 01964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 01965 assert (Arg != 0 && "Failed to emit a sext"); 01966 ArgVT = DestVT; 01967 break; 01968 } 01969 case CCValAssign::AExt: 01970 // Intentional fall-through. Handle AExt and ZExt. 01971 case CCValAssign::ZExt: { 01972 MVT DestVT = VA.getLocVT(); 01973 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 01974 assert (Arg != 0 && "Failed to emit a zext"); 01975 ArgVT = DestVT; 01976 break; 01977 } 01978 case CCValAssign::BCvt: { 01979 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 01980 /*TODO: Kill=*/false); 01981 assert(BC != 0 && "Failed to emit a bitcast!"); 01982 Arg = BC; 01983 ArgVT = VA.getLocVT(); 01984 break; 01985 } 01986 default: llvm_unreachable("Unknown arg promotion!"); 01987 } 01988 01989 // Now copy/store arg to correct locations. 01990 if (VA.isRegLoc() && !VA.needsCustom()) { 01991 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 01992 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 01993 RegArgs.push_back(VA.getLocReg()); 01994 } else if (VA.needsCustom()) { 01995 // TODO: We need custom lowering for vector (v2f64) args. 01996 assert(VA.getLocVT() == MVT::f64 && 01997 "Custom lowering for v2f64 args not available"); 01998 01999 CCValAssign &NextVA = ArgLocs[++i]; 02000 02001 assert(VA.isRegLoc() && NextVA.isRegLoc() && 02002 "We only handle register args!"); 02003 02004 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02005 TII.get(ARM::VMOVRRD), VA.getLocReg()) 02006 .addReg(NextVA.getLocReg(), RegState::Define) 02007 .addReg(Arg)); 02008 RegArgs.push_back(VA.getLocReg()); 02009 RegArgs.push_back(NextVA.getLocReg()); 02010 } else { 02011 assert(VA.isMemLoc()); 02012 // Need to store on the stack. 02013 02014 // Don't emit stores for undef values. 02015 if (isa<UndefValue>(ArgVal)) 02016 continue; 02017 02018 Address Addr; 02019 Addr.BaseType = Address::RegBase; 02020 Addr.Base.Reg = ARM::SP; 02021 Addr.Offset = VA.getLocMemOffset(); 02022 02023 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 02024 assert(EmitRet && "Could not emit a store for argument!"); 02025 } 02026 } 02027 02028 return true; 02029 } 02030 02031 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, 02032 const Instruction *I, CallingConv::ID CC, 02033 unsigned &NumBytes, bool isVarArg) { 02034 // Issue CALLSEQ_END 02035 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 02036 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02037 TII.get(AdjStackUp)) 02038 .addImm(NumBytes).addImm(0)); 02039 02040 // Now the return value. 02041 if (RetVT != MVT::isVoid) { 02042 SmallVector<CCValAssign, 16> RVLocs; 02043 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 02044 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 02045 02046 // Copy all of the result registers out of their specified physreg. 02047 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 02048 // For this move we copy into two registers and then move into the 02049 // double fp reg we want. 02050 MVT DestVT = RVLocs[0].getValVT(); 02051 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 02052 unsigned ResultReg = createResultReg(DstRC); 02053 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02054 TII.get(ARM::VMOVDRR), ResultReg) 02055 .addReg(RVLocs[0].getLocReg()) 02056 .addReg(RVLocs[1].getLocReg())); 02057 02058 UsedRegs.push_back(RVLocs[0].getLocReg()); 02059 UsedRegs.push_back(RVLocs[1].getLocReg()); 02060 02061 // Finally update the result. 02062 updateValueMap(I, ResultReg); 02063 } else { 02064 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 02065 MVT CopyVT = RVLocs[0].getValVT(); 02066 02067 // Special handling for extended integers. 02068 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 02069 CopyVT = MVT::i32; 02070 02071 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 02072 02073 unsigned ResultReg = createResultReg(DstRC); 02074 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02075 TII.get(TargetOpcode::COPY), 02076 ResultReg).addReg(RVLocs[0].getLocReg()); 02077 UsedRegs.push_back(RVLocs[0].getLocReg()); 02078 02079 // Finally update the result. 02080 updateValueMap(I, ResultReg); 02081 } 02082 } 02083 02084 return true; 02085 } 02086 02087 bool ARMFastISel::SelectRet(const Instruction *I) { 02088 const ReturnInst *Ret = cast<ReturnInst>(I); 02089 const Function &F = *I->getParent()->getParent(); 02090 02091 if (!FuncInfo.CanLowerReturn) 02092 return false; 02093 02094 // Build a list of return value registers. 02095 SmallVector<unsigned, 4> RetRegs; 02096 02097 CallingConv::ID CC = F.getCallingConv(); 02098 if (Ret->getNumOperands() > 0) { 02099 SmallVector<ISD::OutputArg, 4> Outs; 02100 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); 02101 02102 // Analyze operands of the call, assigning locations to each operand. 02103 SmallVector<CCValAssign, 16> ValLocs; 02104 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 02105 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 02106 F.isVarArg())); 02107 02108 const Value *RV = Ret->getOperand(0); 02109 unsigned Reg = getRegForValue(RV); 02110 if (Reg == 0) 02111 return false; 02112 02113 // Only handle a single return value for now. 02114 if (ValLocs.size() != 1) 02115 return false; 02116 02117 CCValAssign &VA = ValLocs[0]; 02118 02119 // Don't bother handling odd stuff for now. 02120 if (VA.getLocInfo() != CCValAssign::Full) 02121 return false; 02122 // Only handle register returns for now. 02123 if (!VA.isRegLoc()) 02124 return false; 02125 02126 unsigned SrcReg = Reg + VA.getValNo(); 02127 EVT RVEVT = TLI.getValueType(RV->getType()); 02128 if (!RVEVT.isSimple()) return false; 02129 MVT RVVT = RVEVT.getSimpleVT(); 02130 MVT DestVT = VA.getValVT(); 02131 // Special handling for extended integers. 02132 if (RVVT != DestVT) { 02133 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 02134 return false; 02135 02136 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 02137 02138 // Perform extension if flagged as either zext or sext. Otherwise, do 02139 // nothing. 02140 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 02141 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 02142 if (SrcReg == 0) return false; 02143 } 02144 } 02145 02146 // Make the copy. 02147 unsigned DstReg = VA.getLocReg(); 02148 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 02149 // Avoid a cross-class copy. This is very unlikely. 02150 if (!SrcRC->contains(DstReg)) 02151 return false; 02152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02153 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 02154 02155 // Add register to return instruction. 02156 RetRegs.push_back(VA.getLocReg()); 02157 } 02158 02159 unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; 02160 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02161 TII.get(RetOpc)); 02162 AddOptionalDefs(MIB); 02163 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) 02164 MIB.addReg(RetRegs[i], RegState::Implicit); 02165 return true; 02166 } 02167 02168 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 02169 if (UseReg) 02170 return isThumb2 ? ARM::tBLXr : ARM::BLX; 02171 else 02172 return isThumb2 ? ARM::tBL : ARM::BL; 02173 } 02174 02175 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 02176 // Manually compute the global's type to avoid building it when unnecessary. 02177 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 02178 EVT LCREVT = TLI.getValueType(GVTy); 02179 if (!LCREVT.isSimple()) return 0; 02180 02181 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 02182 GlobalValue::ExternalLinkage, nullptr, 02183 Name); 02184 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 02185 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 02186 } 02187 02188 // A quick function that will emit a call for a named libcall in F with the 02189 // vector of passed arguments for the Instruction in I. We can assume that we 02190 // can emit a call for any libcall we can produce. This is an abridged version 02191 // of the full call infrastructure since we won't need to worry about things 02192 // like computed function pointers or strange arguments at call sites. 02193 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 02194 // with X86. 02195 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 02196 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 02197 02198 // Handle *simple* calls for now. 02199 Type *RetTy = I->getType(); 02200 MVT RetVT; 02201 if (RetTy->isVoidTy()) 02202 RetVT = MVT::isVoid; 02203 else if (!isTypeLegal(RetTy, RetVT)) 02204 return false; 02205 02206 // Can't handle non-double multi-reg retvals. 02207 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 02208 SmallVector<CCValAssign, 16> RVLocs; 02209 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 02210 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 02211 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 02212 return false; 02213 } 02214 02215 // Set up the argument vectors. 02216 SmallVector<Value*, 8> Args; 02217 SmallVector<unsigned, 8> ArgRegs; 02218 SmallVector<MVT, 8> ArgVTs; 02219 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 02220 Args.reserve(I->getNumOperands()); 02221 ArgRegs.reserve(I->getNumOperands()); 02222 ArgVTs.reserve(I->getNumOperands()); 02223 ArgFlags.reserve(I->getNumOperands()); 02224 for (unsigned i = 0; i < I->getNumOperands(); ++i) { 02225 Value *Op = I->getOperand(i); 02226 unsigned Arg = getRegForValue(Op); 02227 if (Arg == 0) return false; 02228 02229 Type *ArgTy = Op->getType(); 02230 MVT ArgVT; 02231 if (!isTypeLegal(ArgTy, ArgVT)) return false; 02232 02233 ISD::ArgFlagsTy Flags; 02234 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 02235 Flags.setOrigAlign(OriginalAlignment); 02236 02237 Args.push_back(Op); 02238 ArgRegs.push_back(Arg); 02239 ArgVTs.push_back(ArgVT); 02240 ArgFlags.push_back(Flags); 02241 } 02242 02243 // Handle the arguments now that we've gotten them. 02244 SmallVector<unsigned, 4> RegArgs; 02245 unsigned NumBytes; 02246 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 02247 RegArgs, CC, NumBytes, false)) 02248 return false; 02249 02250 unsigned CalleeReg = 0; 02251 if (EnableARMLongCalls) { 02252 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 02253 if (CalleeReg == 0) return false; 02254 } 02255 02256 // Issue the call. 02257 unsigned CallOpc = ARMSelectCallOp(EnableARMLongCalls); 02258 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 02259 DbgLoc, TII.get(CallOpc)); 02260 // BL / BLX don't take a predicate, but tBL / tBLX do. 02261 if (isThumb2) 02262 AddDefaultPred(MIB); 02263 if (EnableARMLongCalls) 02264 MIB.addReg(CalleeReg); 02265 else 02266 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 02267 02268 // Add implicit physical register uses to the call. 02269 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 02270 MIB.addReg(RegArgs[i], RegState::Implicit); 02271 02272 // Add a register mask with the call-preserved registers. 02273 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 02274 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 02275 02276 // Finish off the call including any return values. 02277 SmallVector<unsigned, 4> UsedRegs; 02278 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 02279 02280 // Set all unused physreg defs as dead. 02281 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 02282 02283 return true; 02284 } 02285 02286 bool ARMFastISel::SelectCall(const Instruction *I, 02287 const char *IntrMemName = nullptr) { 02288 const CallInst *CI = cast<CallInst>(I); 02289 const Value *Callee = CI->getCalledValue(); 02290 02291 // Can't handle inline asm. 02292 if (isa<InlineAsm>(Callee)) return false; 02293 02294 // Allow SelectionDAG isel to handle tail calls. 02295 if (CI->isTailCall()) return false; 02296 02297 // Check the calling convention. 02298 ImmutableCallSite CS(CI); 02299 CallingConv::ID CC = CS.getCallingConv(); 02300 02301 // TODO: Avoid some calling conventions? 02302 02303 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 02304 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 02305 bool isVarArg = FTy->isVarArg(); 02306 02307 // Handle *simple* calls for now. 02308 Type *RetTy = I->getType(); 02309 MVT RetVT; 02310 if (RetTy->isVoidTy()) 02311 RetVT = MVT::isVoid; 02312 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 02313 RetVT != MVT::i8 && RetVT != MVT::i1) 02314 return false; 02315 02316 // Can't handle non-double multi-reg retvals. 02317 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 02318 RetVT != MVT::i16 && RetVT != MVT::i32) { 02319 SmallVector<CCValAssign, 16> RVLocs; 02320 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 02321 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 02322 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 02323 return false; 02324 } 02325 02326 // Set up the argument vectors. 02327 SmallVector<Value*, 8> Args; 02328 SmallVector<unsigned, 8> ArgRegs; 02329 SmallVector<MVT, 8> ArgVTs; 02330 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 02331 unsigned arg_size = CS.arg_size(); 02332 Args.reserve(arg_size); 02333 ArgRegs.reserve(arg_size); 02334 ArgVTs.reserve(arg_size); 02335 ArgFlags.reserve(arg_size); 02336 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 02337 i != e; ++i) { 02338 // If we're lowering a memory intrinsic instead of a regular call, skip the 02339 // last two arguments, which shouldn't be passed to the underlying function. 02340 if (IntrMemName && e-i <= 2) 02341 break; 02342 02343 ISD::ArgFlagsTy Flags; 02344 unsigned AttrInd = i - CS.arg_begin() + 1; 02345 if (CS.paramHasAttr(AttrInd, Attribute::SExt)) 02346 Flags.setSExt(); 02347 if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) 02348 Flags.setZExt(); 02349 02350 // FIXME: Only handle *easy* calls for now. 02351 if (CS.paramHasAttr(AttrInd, Attribute::InReg) || 02352 CS.paramHasAttr(AttrInd, Attribute::StructRet) || 02353 CS.paramHasAttr(AttrInd, Attribute::Nest) || 02354 CS.paramHasAttr(AttrInd, Attribute::ByVal)) 02355 return false; 02356 02357 Type *ArgTy = (*i)->getType(); 02358 MVT ArgVT; 02359 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 02360 ArgVT != MVT::i1) 02361 return false; 02362 02363 unsigned Arg = getRegForValue(*i); 02364 if (Arg == 0) 02365 return false; 02366 02367 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 02368 Flags.setOrigAlign(OriginalAlignment); 02369 02370 Args.push_back(*i); 02371 ArgRegs.push_back(Arg); 02372 ArgVTs.push_back(ArgVT); 02373 ArgFlags.push_back(Flags); 02374 } 02375 02376 // Handle the arguments now that we've gotten them. 02377 SmallVector<unsigned, 4> RegArgs; 02378 unsigned NumBytes; 02379 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 02380 RegArgs, CC, NumBytes, isVarArg)) 02381 return false; 02382 02383 bool UseReg = false; 02384 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 02385 if (!GV || EnableARMLongCalls) UseReg = true; 02386 02387 unsigned CalleeReg = 0; 02388 if (UseReg) { 02389 if (IntrMemName) 02390 CalleeReg = getLibcallReg(IntrMemName); 02391 else 02392 CalleeReg = getRegForValue(Callee); 02393 02394 if (CalleeReg == 0) return false; 02395 } 02396 02397 // Issue the call. 02398 unsigned CallOpc = ARMSelectCallOp(UseReg); 02399 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 02400 DbgLoc, TII.get(CallOpc)); 02401 02402 unsigned char OpFlags = 0; 02403 02404 // Add MO_PLT for global address or external symbol in the PIC relocation 02405 // model. 02406 if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) 02407 OpFlags = ARMII::MO_PLT; 02408 02409 // ARM calls don't take a predicate, but tBL / tBLX do. 02410 if(isThumb2) 02411 AddDefaultPred(MIB); 02412 if (UseReg) 02413 MIB.addReg(CalleeReg); 02414 else if (!IntrMemName) 02415 MIB.addGlobalAddress(GV, 0, OpFlags); 02416 else 02417 MIB.addExternalSymbol(IntrMemName, OpFlags); 02418 02419 // Add implicit physical register uses to the call. 02420 for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) 02421 MIB.addReg(RegArgs[i], RegState::Implicit); 02422 02423 // Add a register mask with the call-preserved registers. 02424 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 02425 MIB.addRegMask(TRI.getCallPreservedMask(CC)); 02426 02427 // Finish off the call including any return values. 02428 SmallVector<unsigned, 4> UsedRegs; 02429 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 02430 return false; 02431 02432 // Set all unused physreg defs as dead. 02433 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 02434 02435 return true; 02436 } 02437 02438 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 02439 return Len <= 16; 02440 } 02441 02442 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 02443 uint64_t Len, unsigned Alignment) { 02444 // Make sure we don't bloat code by inlining very large memcpy's. 02445 if (!ARMIsMemCpySmall(Len)) 02446 return false; 02447 02448 while (Len) { 02449 MVT VT; 02450 if (!Alignment || Alignment >= 4) { 02451 if (Len >= 4) 02452 VT = MVT::i32; 02453 else if (Len >= 2) 02454 VT = MVT::i16; 02455 else { 02456 assert (Len == 1 && "Expected a length of 1!"); 02457 VT = MVT::i8; 02458 } 02459 } else { 02460 // Bound based on alignment. 02461 if (Len >= 2 && Alignment == 2) 02462 VT = MVT::i16; 02463 else { 02464 VT = MVT::i8; 02465 } 02466 } 02467 02468 bool RV; 02469 unsigned ResultReg; 02470 RV = ARMEmitLoad(VT, ResultReg, Src); 02471 assert (RV == true && "Should be able to handle this load."); 02472 RV = ARMEmitStore(VT, ResultReg, Dest); 02473 assert (RV == true && "Should be able to handle this store."); 02474 (void)RV; 02475 02476 unsigned Size = VT.getSizeInBits()/8; 02477 Len -= Size; 02478 Dest.Offset += Size; 02479 Src.Offset += Size; 02480 } 02481 02482 return true; 02483 } 02484 02485 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 02486 // FIXME: Handle more intrinsics. 02487 switch (I.getIntrinsicID()) { 02488 default: return false; 02489 case Intrinsic::frameaddress: { 02490 MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); 02491 MFI->setFrameAddressIsTaken(true); 02492 02493 unsigned LdrOpc; 02494 const TargetRegisterClass *RC; 02495 if (isThumb2) { 02496 LdrOpc = ARM::t2LDRi12; 02497 RC = (const TargetRegisterClass*)&ARM::tGPRRegClass; 02498 } else { 02499 LdrOpc = ARM::LDRi12; 02500 RC = (const TargetRegisterClass*)&ARM::GPRRegClass; 02501 } 02502 02503 const ARMBaseRegisterInfo *RegInfo = 02504 static_cast<const ARMBaseRegisterInfo *>( 02505 TM.getSubtargetImpl()->getRegisterInfo()); 02506 unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 02507 unsigned SrcReg = FramePtr; 02508 02509 // Recursively load frame address 02510 // ldr r0 [fp] 02511 // ldr r0 [r0] 02512 // ldr r0 [r0] 02513 // ... 02514 unsigned DestReg; 02515 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 02516 while (Depth--) { 02517 DestReg = createResultReg(RC); 02518 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02519 TII.get(LdrOpc), DestReg) 02520 .addReg(SrcReg).addImm(0)); 02521 SrcReg = DestReg; 02522 } 02523 updateValueMap(&I, SrcReg); 02524 return true; 02525 } 02526 case Intrinsic::memcpy: 02527 case Intrinsic::memmove: { 02528 const MemTransferInst &MTI = cast<MemTransferInst>(I); 02529 // Don't handle volatile. 02530 if (MTI.isVolatile()) 02531 return false; 02532 02533 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 02534 // we would emit dead code because we don't currently handle memmoves. 02535 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 02536 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 02537 // Small memcpy's are common enough that we want to do them without a call 02538 // if possible. 02539 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 02540 if (ARMIsMemCpySmall(Len)) { 02541 Address Dest, Src; 02542 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 02543 !ARMComputeAddress(MTI.getRawSource(), Src)) 02544 return false; 02545 unsigned Alignment = MTI.getAlignment(); 02546 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 02547 return true; 02548 } 02549 } 02550 02551 if (!MTI.getLength()->getType()->isIntegerTy(32)) 02552 return false; 02553 02554 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 02555 return false; 02556 02557 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 02558 return SelectCall(&I, IntrMemName); 02559 } 02560 case Intrinsic::memset: { 02561 const MemSetInst &MSI = cast<MemSetInst>(I); 02562 // Don't handle volatile. 02563 if (MSI.isVolatile()) 02564 return false; 02565 02566 if (!MSI.getLength()->getType()->isIntegerTy(32)) 02567 return false; 02568 02569 if (MSI.getDestAddressSpace() > 255) 02570 return false; 02571 02572 return SelectCall(&I, "memset"); 02573 } 02574 case Intrinsic::trap: { 02575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( 02576 Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); 02577 return true; 02578 } 02579 } 02580 } 02581 02582 bool ARMFastISel::SelectTrunc(const Instruction *I) { 02583 // The high bits for a type smaller than the register size are assumed to be 02584 // undefined. 02585 Value *Op = I->getOperand(0); 02586 02587 EVT SrcVT, DestVT; 02588 SrcVT = TLI.getValueType(Op->getType(), true); 02589 DestVT = TLI.getValueType(I->getType(), true); 02590 02591 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 02592 return false; 02593 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 02594 return false; 02595 02596 unsigned SrcReg = getRegForValue(Op); 02597 if (!SrcReg) return false; 02598 02599 // Because the high bits are undefined, a truncate doesn't generate 02600 // any code. 02601 updateValueMap(I, SrcReg); 02602 return true; 02603 } 02604 02605 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 02606 bool isZExt) { 02607 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 02608 return 0; 02609 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 02610 return 0; 02611 02612 // Table of which combinations can be emitted as a single instruction, 02613 // and which will require two. 02614 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 02615 // ARM Thumb 02616 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 02617 // ext: s z s z s z s z 02618 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 02619 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 02620 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 02621 }; 02622 02623 // Target registers for: 02624 // - For ARM can never be PC. 02625 // - For 16-bit Thumb are restricted to lower 8 registers. 02626 // - For 32-bit Thumb are restricted to non-SP and non-PC. 02627 static const TargetRegisterClass *RCTbl[2][2] = { 02628 // Instructions: Two Single 02629 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 02630 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 02631 }; 02632 02633 // Table governing the instruction(s) to be emitted. 02634 static const struct InstructionTable { 02635 uint32_t Opc : 16; 02636 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 02637 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 02638 uint32_t Imm : 8; // All instructions have either a shift or a mask. 02639 } IT[2][2][3][2] = { 02640 { // Two instructions (first is left shift, second is in this table). 02641 { // ARM Opc S Shift Imm 02642 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 02643 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 02644 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 02645 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 02646 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 02647 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 02648 }, 02649 { // Thumb Opc S Shift Imm 02650 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 02651 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 02652 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 02653 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 02654 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 02655 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 02656 } 02657 }, 02658 { // Single instruction. 02659 { // ARM Opc S Shift Imm 02660 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 02661 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 02662 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 02663 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 02664 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 02665 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 02666 }, 02667 { // Thumb Opc S Shift Imm 02668 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 02669 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 02670 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 02671 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 02672 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 02673 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 02674 } 02675 } 02676 }; 02677 02678 unsigned SrcBits = SrcVT.getSizeInBits(); 02679 unsigned DestBits = DestVT.getSizeInBits(); 02680 (void) DestBits; 02681 assert((SrcBits < DestBits) && "can only extend to larger types"); 02682 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 02683 "other sizes unimplemented"); 02684 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 02685 "other sizes unimplemented"); 02686 02687 bool hasV6Ops = Subtarget->hasV6Ops(); 02688 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 02689 assert((Bitness < 3) && "sanity-check table bounds"); 02690 02691 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 02692 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 02693 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 02694 unsigned Opc = ITP->Opc; 02695 assert(ARM::KILL != Opc && "Invalid table entry"); 02696 unsigned hasS = ITP->hasS; 02697 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 02698 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 02699 "only MOVsi has shift operand addressing mode"); 02700 unsigned Imm = ITP->Imm; 02701 02702 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 02703 bool setsCPSR = &ARM::tGPRRegClass == RC; 02704 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 02705 unsigned ResultReg; 02706 // MOVsi encodes shift and immediate in shift operand addressing mode. 02707 // The following condition has the same value when emitting two 02708 // instruction sequences: both are shifts. 02709 bool ImmIsSO = (Shift != ARM_AM::no_shift); 02710 02711 // Either one or two instructions are emitted. 02712 // They're always of the form: 02713 // dst = in OP imm 02714 // CPSR is set only by 16-bit Thumb instructions. 02715 // Predicate, if any, is AL. 02716 // S bit, if available, is always 0. 02717 // When two are emitted the first's result will feed as the second's input, 02718 // that value is then dead. 02719 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 02720 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 02721 ResultReg = createResultReg(RC); 02722 bool isLsl = (0 == Instr) && !isSingleInstr; 02723 unsigned Opcode = isLsl ? LSLOpc : Opc; 02724 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 02725 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 02726 bool isKill = 1 == Instr; 02727 MachineInstrBuilder MIB = BuildMI( 02728 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 02729 if (setsCPSR) 02730 MIB.addReg(ARM::CPSR, RegState::Define); 02731 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 02732 AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); 02733 if (hasS) 02734 AddDefaultCC(MIB); 02735 // Second instruction consumes the first's result. 02736 SrcReg = ResultReg; 02737 } 02738 02739 return ResultReg; 02740 } 02741 02742 bool ARMFastISel::SelectIntExt(const Instruction *I) { 02743 // On ARM, in general, integer casts don't involve legal types; this code 02744 // handles promotable integers. 02745 Type *DestTy = I->getType(); 02746 Value *Src = I->getOperand(0); 02747 Type *SrcTy = Src->getType(); 02748 02749 bool isZExt = isa<ZExtInst>(I); 02750 unsigned SrcReg = getRegForValue(Src); 02751 if (!SrcReg) return false; 02752 02753 EVT SrcEVT, DestEVT; 02754 SrcEVT = TLI.getValueType(SrcTy, true); 02755 DestEVT = TLI.getValueType(DestTy, true); 02756 if (!SrcEVT.isSimple()) return false; 02757 if (!DestEVT.isSimple()) return false; 02758 02759 MVT SrcVT = SrcEVT.getSimpleVT(); 02760 MVT DestVT = DestEVT.getSimpleVT(); 02761 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 02762 if (ResultReg == 0) return false; 02763 updateValueMap(I, ResultReg); 02764 return true; 02765 } 02766 02767 bool ARMFastISel::SelectShift(const Instruction *I, 02768 ARM_AM::ShiftOpc ShiftTy) { 02769 // We handle thumb2 mode by target independent selector 02770 // or SelectionDAG ISel. 02771 if (isThumb2) 02772 return false; 02773 02774 // Only handle i32 now. 02775 EVT DestVT = TLI.getValueType(I->getType(), true); 02776 if (DestVT != MVT::i32) 02777 return false; 02778 02779 unsigned Opc = ARM::MOVsr; 02780 unsigned ShiftImm; 02781 Value *Src2Value = I->getOperand(1); 02782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 02783 ShiftImm = CI->getZExtValue(); 02784 02785 // Fall back to selection DAG isel if the shift amount 02786 // is zero or greater than the width of the value type. 02787 if (ShiftImm == 0 || ShiftImm >=32) 02788 return false; 02789 02790 Opc = ARM::MOVsi; 02791 } 02792 02793 Value *Src1Value = I->getOperand(0); 02794 unsigned Reg1 = getRegForValue(Src1Value); 02795 if (Reg1 == 0) return false; 02796 02797 unsigned Reg2 = 0; 02798 if (Opc == ARM::MOVsr) { 02799 Reg2 = getRegForValue(Src2Value); 02800 if (Reg2 == 0) return false; 02801 } 02802 02803 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 02804 if(ResultReg == 0) return false; 02805 02806 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02807 TII.get(Opc), ResultReg) 02808 .addReg(Reg1); 02809 02810 if (Opc == ARM::MOVsi) 02811 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 02812 else if (Opc == ARM::MOVsr) { 02813 MIB.addReg(Reg2); 02814 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 02815 } 02816 02817 AddOptionalDefs(MIB); 02818 updateValueMap(I, ResultReg); 02819 return true; 02820 } 02821 02822 // TODO: SoftFP support. 02823 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 02824 02825 switch (I->getOpcode()) { 02826 case Instruction::Load: 02827 return SelectLoad(I); 02828 case Instruction::Store: 02829 return SelectStore(I); 02830 case Instruction::Br: 02831 return SelectBranch(I); 02832 case Instruction::IndirectBr: 02833 return SelectIndirectBr(I); 02834 case Instruction::ICmp: 02835 case Instruction::FCmp: 02836 return SelectCmp(I); 02837 case Instruction::FPExt: 02838 return SelectFPExt(I); 02839 case Instruction::FPTrunc: 02840 return SelectFPTrunc(I); 02841 case Instruction::SIToFP: 02842 return SelectIToFP(I, /*isSigned*/ true); 02843 case Instruction::UIToFP: 02844 return SelectIToFP(I, /*isSigned*/ false); 02845 case Instruction::FPToSI: 02846 return SelectFPToI(I, /*isSigned*/ true); 02847 case Instruction::FPToUI: 02848 return SelectFPToI(I, /*isSigned*/ false); 02849 case Instruction::Add: 02850 return SelectBinaryIntOp(I, ISD::ADD); 02851 case Instruction::Or: 02852 return SelectBinaryIntOp(I, ISD::OR); 02853 case Instruction::Sub: 02854 return SelectBinaryIntOp(I, ISD::SUB); 02855 case Instruction::FAdd: 02856 return SelectBinaryFPOp(I, ISD::FADD); 02857 case Instruction::FSub: 02858 return SelectBinaryFPOp(I, ISD::FSUB); 02859 case Instruction::FMul: 02860 return SelectBinaryFPOp(I, ISD::FMUL); 02861 case Instruction::SDiv: 02862 return SelectDiv(I, /*isSigned*/ true); 02863 case Instruction::UDiv: 02864 return SelectDiv(I, /*isSigned*/ false); 02865 case Instruction::SRem: 02866 return SelectRem(I, /*isSigned*/ true); 02867 case Instruction::URem: 02868 return SelectRem(I, /*isSigned*/ false); 02869 case Instruction::Call: 02870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 02871 return SelectIntrinsicCall(*II); 02872 return SelectCall(I); 02873 case Instruction::Select: 02874 return SelectSelect(I); 02875 case Instruction::Ret: 02876 return SelectRet(I); 02877 case Instruction::Trunc: 02878 return SelectTrunc(I); 02879 case Instruction::ZExt: 02880 case Instruction::SExt: 02881 return SelectIntExt(I); 02882 case Instruction::Shl: 02883 return SelectShift(I, ARM_AM::lsl); 02884 case Instruction::LShr: 02885 return SelectShift(I, ARM_AM::lsr); 02886 case Instruction::AShr: 02887 return SelectShift(I, ARM_AM::asr); 02888 default: break; 02889 } 02890 return false; 02891 } 02892 02893 namespace { 02894 // This table describes sign- and zero-extend instructions which can be 02895 // folded into a preceding load. All of these extends have an immediate 02896 // (sometimes a mask and sometimes a shift) that's applied after 02897 // extension. 02898 const struct FoldableLoadExtendsStruct { 02899 uint16_t Opc[2]; // ARM, Thumb. 02900 uint8_t ExpectedImm; 02901 uint8_t isZExt : 1; 02902 uint8_t ExpectedVT : 7; 02903 } FoldableLoadExtends[] = { 02904 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 02905 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 02906 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 02907 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 02908 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 02909 }; 02910 } 02911 02912 /// \brief The specified machine instr operand is a vreg, and that 02913 /// vreg is being provided by the specified load instruction. If possible, 02914 /// try to fold the load as an operand to the instruction, returning true if 02915 /// successful. 02916 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 02917 const LoadInst *LI) { 02918 // Verify we have a legal type before going any further. 02919 MVT VT; 02920 if (!isLoadTypeLegal(LI->getType(), VT)) 02921 return false; 02922 02923 // Combine load followed by zero- or sign-extend. 02924 // ldrb r1, [r0] ldrb r1, [r0] 02925 // uxtb r2, r1 => 02926 // mov r3, r2 mov r3, r1 02927 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 02928 return false; 02929 const uint64_t Imm = MI->getOperand(2).getImm(); 02930 02931 bool Found = false; 02932 bool isZExt; 02933 for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); 02934 i != e; ++i) { 02935 if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && 02936 (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && 02937 MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { 02938 Found = true; 02939 isZExt = FoldableLoadExtends[i].isZExt; 02940 } 02941 } 02942 if (!Found) return false; 02943 02944 // See if we can handle this address. 02945 Address Addr; 02946 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 02947 02948 unsigned ResultReg = MI->getOperand(0).getReg(); 02949 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 02950 return false; 02951 MI->eraseFromParent(); 02952 return true; 02953 } 02954 02955 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, 02956 unsigned Align, MVT VT) { 02957 bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); 02958 ARMConstantPoolConstant *CPV = 02959 ARMConstantPoolConstant::Create(GV, UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT); 02960 unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); 02961 02962 unsigned Opc; 02963 unsigned DestReg1 = createResultReg(TLI.getRegClassFor(VT)); 02964 // Load value. 02965 if (isThumb2) { 02966 DestReg1 = constrainOperandRegClass(TII.get(ARM::t2LDRpci), DestReg1, 0); 02967 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 02968 TII.get(ARM::t2LDRpci), DestReg1) 02969 .addConstantPoolIndex(Idx)); 02970 Opc = UseGOTOFF ? ARM::t2ADDrr : ARM::t2LDRs; 02971 } else { 02972 // The extra immediate is for addrmode2. 02973 DestReg1 = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg1, 0); 02974 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 02975 DbgLoc, TII.get(ARM::LDRcp), DestReg1) 02976 .addConstantPoolIndex(Idx).addImm(0)); 02977 Opc = UseGOTOFF ? ARM::ADDrr : ARM::LDRrs; 02978 } 02979 02980 unsigned GlobalBaseReg = AFI->getGlobalBaseReg(); 02981 if (GlobalBaseReg == 0) { 02982 GlobalBaseReg = MRI.createVirtualRegister(TLI.getRegClassFor(VT)); 02983 AFI->setGlobalBaseReg(GlobalBaseReg); 02984 } 02985 02986 unsigned DestReg2 = createResultReg(TLI.getRegClassFor(VT)); 02987 DestReg2 = constrainOperandRegClass(TII.get(Opc), DestReg2, 0); 02988 DestReg1 = constrainOperandRegClass(TII.get(Opc), DestReg1, 1); 02989 GlobalBaseReg = constrainOperandRegClass(TII.get(Opc), GlobalBaseReg, 2); 02990 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 02991 DbgLoc, TII.get(Opc), DestReg2) 02992 .addReg(DestReg1) 02993 .addReg(GlobalBaseReg); 02994 if (!UseGOTOFF) 02995 MIB.addImm(0); 02996 AddOptionalDefs(MIB); 02997 02998 return DestReg2; 02999 } 03000 03001 bool ARMFastISel::fastLowerArguments() { 03002 if (!FuncInfo.CanLowerReturn) 03003 return false; 03004 03005 const Function *F = FuncInfo.Fn; 03006 if (F->isVarArg()) 03007 return false; 03008 03009 CallingConv::ID CC = F->getCallingConv(); 03010 switch (CC) { 03011 default: 03012 return false; 03013 case CallingConv::Fast: 03014 case CallingConv::C: 03015 case CallingConv::ARM_AAPCS_VFP: 03016 case CallingConv::ARM_AAPCS: 03017 case CallingConv::ARM_APCS: 03018 break; 03019 } 03020 03021 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 03022 // which are passed in r0 - r3. 03023 unsigned Idx = 1; 03024 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 03025 I != E; ++I, ++Idx) { 03026 if (Idx > 4) 03027 return false; 03028 03029 if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || 03030 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || 03031 F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) 03032 return false; 03033 03034 Type *ArgTy = I->getType(); 03035 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 03036 return false; 03037 03038 EVT ArgVT = TLI.getValueType(ArgTy); 03039 if (!ArgVT.isSimple()) return false; 03040 switch (ArgVT.getSimpleVT().SimpleTy) { 03041 case MVT::i8: 03042 case MVT::i16: 03043 case MVT::i32: 03044 break; 03045 default: 03046 return false; 03047 } 03048 } 03049 03050 03051 static const uint16_t GPRArgRegs[] = { 03052 ARM::R0, ARM::R1, ARM::R2, ARM::R3 03053 }; 03054 03055 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 03056 Idx = 0; 03057 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); 03058 I != E; ++I, ++Idx) { 03059 unsigned SrcReg = GPRArgRegs[Idx]; 03060 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 03061 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 03062 // Without this, EmitLiveInCopies may eliminate the livein if its only 03063 // use is a bitcast (which isn't turned into an instruction). 03064 unsigned ResultReg = createResultReg(RC); 03065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 03066 TII.get(TargetOpcode::COPY), 03067 ResultReg).addReg(DstReg, getKillRegState(true)); 03068 updateValueMap(I, ResultReg); 03069 } 03070 03071 return true; 03072 } 03073 03074 namespace llvm { 03075 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 03076 const TargetLibraryInfo *libInfo) { 03077 const TargetMachine &TM = funcInfo.MF->getTarget(); 03078 03079 const ARMSubtarget *Subtarget = &TM.getSubtarget<ARMSubtarget>(); 03080 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl. 03081 bool UseFastISel = false; 03082 UseFastISel |= Subtarget->isTargetMachO() && !Subtarget->isThumb1Only(); 03083 UseFastISel |= Subtarget->isTargetLinux() && !Subtarget->isThumb(); 03084 UseFastISel |= Subtarget->isTargetNaCl() && !Subtarget->isThumb(); 03085 03086 if (UseFastISel) { 03087 // iOS always has a FP for backtracking, force other targets 03088 // to keep their FP when doing FastISel. The emitted code is 03089 // currently superior, and in cases like test-suite's lencod 03090 // FastISel isn't quite correct when FP is eliminated. 03091 TM.Options.NoFramePointerElim = true; 03092 return new ARMFastISel(funcInfo, libInfo); 03093 } 03094 return nullptr; 03095 } 03096 }