LLVM API Documentation
00001 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the TargetInstrInfo class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "llvm/Target/TargetInstrInfo.h" 00015 #include "llvm/CodeGen/MachineFrameInfo.h" 00016 #include "llvm/CodeGen/MachineInstrBuilder.h" 00017 #include "llvm/CodeGen/MachineMemOperand.h" 00018 #include "llvm/CodeGen/MachineRegisterInfo.h" 00019 #include "llvm/CodeGen/PseudoSourceValue.h" 00020 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 00021 #include "llvm/CodeGen/StackMaps.h" 00022 #include "llvm/IR/DataLayout.h" 00023 #include "llvm/MC/MCAsmInfo.h" 00024 #include "llvm/MC/MCInstrItineraries.h" 00025 #include "llvm/Support/CommandLine.h" 00026 #include "llvm/Support/ErrorHandling.h" 00027 #include "llvm/Support/raw_ostream.h" 00028 #include "llvm/Target/TargetLowering.h" 00029 #include "llvm/Target/TargetMachine.h" 00030 #include "llvm/Target/TargetRegisterInfo.h" 00031 #include <cctype> 00032 using namespace llvm; 00033 00034 static cl::opt<bool> DisableHazardRecognizer( 00035 "disable-sched-hazard", cl::Hidden, cl::init(false), 00036 cl::desc("Disable hazard detection during preRA scheduling")); 00037 00038 TargetInstrInfo::~TargetInstrInfo() { 00039 } 00040 00041 const TargetRegisterClass* 00042 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, 00043 const TargetRegisterInfo *TRI, 00044 const MachineFunction &MF) const { 00045 if (OpNum >= MCID.getNumOperands()) 00046 return nullptr; 00047 00048 short RegClass = MCID.OpInfo[OpNum].RegClass; 00049 if (MCID.OpInfo[OpNum].isLookupPtrRegClass()) 00050 return TRI->getPointerRegClass(MF, RegClass); 00051 00052 // Instructions like INSERT_SUBREG do not have fixed register classes. 00053 if (RegClass < 0) 00054 return nullptr; 00055 00056 // Otherwise just look it up normally. 00057 return TRI->getRegClass(RegClass); 00058 } 00059 00060 /// insertNoop - Insert a noop into the instruction stream at the specified 00061 /// point. 00062 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB, 00063 MachineBasicBlock::iterator MI) const { 00064 llvm_unreachable("Target didn't implement insertNoop!"); 00065 } 00066 00067 /// Measure the specified inline asm to determine an approximation of its 00068 /// length. 00069 /// Comments (which run till the next SeparatorString or newline) do not 00070 /// count as an instruction. 00071 /// Any other non-whitespace text is considered an instruction, with 00072 /// multiple instructions separated by SeparatorString or newlines. 00073 /// Variable-length instructions are not handled here; this function 00074 /// may be overloaded in the target code to do that. 00075 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str, 00076 const MCAsmInfo &MAI) const { 00077 00078 00079 // Count the number of instructions in the asm. 00080 bool atInsnStart = true; 00081 unsigned Length = 0; 00082 for (; *Str; ++Str) { 00083 if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(), 00084 strlen(MAI.getSeparatorString())) == 0) 00085 atInsnStart = true; 00086 if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) { 00087 Length += MAI.getMaxInstLength(); 00088 atInsnStart = false; 00089 } 00090 if (atInsnStart && strncmp(Str, MAI.getCommentString(), 00091 strlen(MAI.getCommentString())) == 0) 00092 atInsnStart = false; 00093 } 00094 00095 return Length; 00096 } 00097 00098 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything 00099 /// after it, replacing it with an unconditional branch to NewDest. 00100 void 00101 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail, 00102 MachineBasicBlock *NewDest) const { 00103 MachineBasicBlock *MBB = Tail->getParent(); 00104 00105 // Remove all the old successors of MBB from the CFG. 00106 while (!MBB->succ_empty()) 00107 MBB->removeSuccessor(MBB->succ_begin()); 00108 00109 // Remove all the dead instructions from the end of MBB. 00110 MBB->erase(Tail, MBB->end()); 00111 00112 // If MBB isn't immediately before MBB, insert a branch to it. 00113 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest)) 00114 InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), 00115 Tail->getDebugLoc()); 00116 MBB->addSuccessor(NewDest); 00117 } 00118 00119 // commuteInstruction - The default implementation of this method just exchanges 00120 // the two operands returned by findCommutedOpIndices. 00121 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI, 00122 bool NewMI) const { 00123 const MCInstrDesc &MCID = MI->getDesc(); 00124 bool HasDef = MCID.getNumDefs(); 00125 if (HasDef && !MI->getOperand(0).isReg()) 00126 // No idea how to commute this instruction. Target should implement its own. 00127 return nullptr; 00128 unsigned Idx1, Idx2; 00129 if (!findCommutedOpIndices(MI, Idx1, Idx2)) { 00130 assert(MI->isCommutable() && "Precondition violation: MI must be commutable."); 00131 return nullptr; 00132 } 00133 00134 assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() && 00135 "This only knows how to commute register operands so far"); 00136 unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0; 00137 unsigned Reg1 = MI->getOperand(Idx1).getReg(); 00138 unsigned Reg2 = MI->getOperand(Idx2).getReg(); 00139 unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0; 00140 unsigned SubReg1 = MI->getOperand(Idx1).getSubReg(); 00141 unsigned SubReg2 = MI->getOperand(Idx2).getSubReg(); 00142 bool Reg1IsKill = MI->getOperand(Idx1).isKill(); 00143 bool Reg2IsKill = MI->getOperand(Idx2).isKill(); 00144 // If destination is tied to either of the commuted source register, then 00145 // it must be updated. 00146 if (HasDef && Reg0 == Reg1 && 00147 MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) { 00148 Reg2IsKill = false; 00149 Reg0 = Reg2; 00150 SubReg0 = SubReg2; 00151 } else if (HasDef && Reg0 == Reg2 && 00152 MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) { 00153 Reg1IsKill = false; 00154 Reg0 = Reg1; 00155 SubReg0 = SubReg1; 00156 } 00157 00158 if (NewMI) { 00159 // Create a new instruction. 00160 MachineFunction &MF = *MI->getParent()->getParent(); 00161 MI = MF.CloneMachineInstr(MI); 00162 } 00163 00164 if (HasDef) { 00165 MI->getOperand(0).setReg(Reg0); 00166 MI->getOperand(0).setSubReg(SubReg0); 00167 } 00168 MI->getOperand(Idx2).setReg(Reg1); 00169 MI->getOperand(Idx1).setReg(Reg2); 00170 MI->getOperand(Idx2).setSubReg(SubReg1); 00171 MI->getOperand(Idx1).setSubReg(SubReg2); 00172 MI->getOperand(Idx2).setIsKill(Reg1IsKill); 00173 MI->getOperand(Idx1).setIsKill(Reg2IsKill); 00174 return MI; 00175 } 00176 00177 /// findCommutedOpIndices - If specified MI is commutable, return the two 00178 /// operand indices that would swap value. Return true if the instruction 00179 /// is not in a form which this routine understands. 00180 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI, 00181 unsigned &SrcOpIdx1, 00182 unsigned &SrcOpIdx2) const { 00183 assert(!MI->isBundle() && 00184 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles"); 00185 00186 const MCInstrDesc &MCID = MI->getDesc(); 00187 if (!MCID.isCommutable()) 00188 return false; 00189 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this 00190 // is not true, then the target must implement this. 00191 SrcOpIdx1 = MCID.getNumDefs(); 00192 SrcOpIdx2 = SrcOpIdx1 + 1; 00193 if (!MI->getOperand(SrcOpIdx1).isReg() || 00194 !MI->getOperand(SrcOpIdx2).isReg()) 00195 // No idea. 00196 return false; 00197 return true; 00198 } 00199 00200 00201 bool 00202 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const { 00203 if (!MI->isTerminator()) return false; 00204 00205 // Conditional branch is a special case. 00206 if (MI->isBranch() && !MI->isBarrier()) 00207 return true; 00208 if (!MI->isPredicable()) 00209 return true; 00210 return !isPredicated(MI); 00211 } 00212 00213 00214 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI, 00215 const SmallVectorImpl<MachineOperand> &Pred) const { 00216 bool MadeChange = false; 00217 00218 assert(!MI->isBundle() && 00219 "TargetInstrInfo::PredicateInstruction() can't handle bundles"); 00220 00221 const MCInstrDesc &MCID = MI->getDesc(); 00222 if (!MI->isPredicable()) 00223 return false; 00224 00225 for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) { 00226 if (MCID.OpInfo[i].isPredicate()) { 00227 MachineOperand &MO = MI->getOperand(i); 00228 if (MO.isReg()) { 00229 MO.setReg(Pred[j].getReg()); 00230 MadeChange = true; 00231 } else if (MO.isImm()) { 00232 MO.setImm(Pred[j].getImm()); 00233 MadeChange = true; 00234 } else if (MO.isMBB()) { 00235 MO.setMBB(Pred[j].getMBB()); 00236 MadeChange = true; 00237 } 00238 ++j; 00239 } 00240 } 00241 return MadeChange; 00242 } 00243 00244 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI, 00245 const MachineMemOperand *&MMO, 00246 int &FrameIndex) const { 00247 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 00248 oe = MI->memoperands_end(); 00249 o != oe; 00250 ++o) { 00251 if ((*o)->isLoad()) { 00252 if (const FixedStackPseudoSourceValue *Value = 00253 dyn_cast_or_null<FixedStackPseudoSourceValue>( 00254 (*o)->getPseudoValue())) { 00255 FrameIndex = Value->getFrameIndex(); 00256 MMO = *o; 00257 return true; 00258 } 00259 } 00260 } 00261 return false; 00262 } 00263 00264 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI, 00265 const MachineMemOperand *&MMO, 00266 int &FrameIndex) const { 00267 for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), 00268 oe = MI->memoperands_end(); 00269 o != oe; 00270 ++o) { 00271 if ((*o)->isStore()) { 00272 if (const FixedStackPseudoSourceValue *Value = 00273 dyn_cast_or_null<FixedStackPseudoSourceValue>( 00274 (*o)->getPseudoValue())) { 00275 FrameIndex = Value->getFrameIndex(); 00276 MMO = *o; 00277 return true; 00278 } 00279 } 00280 } 00281 return false; 00282 } 00283 00284 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC, 00285 unsigned SubIdx, unsigned &Size, 00286 unsigned &Offset, 00287 const TargetMachine *TM) const { 00288 if (!SubIdx) { 00289 Size = RC->getSize(); 00290 Offset = 0; 00291 return true; 00292 } 00293 unsigned BitSize = 00294 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxSize(SubIdx); 00295 // Convert bit size to byte size to be consistent with 00296 // MCRegisterClass::getSize(). 00297 if (BitSize % 8) 00298 return false; 00299 00300 int BitOffset = 00301 TM->getSubtargetImpl()->getRegisterInfo()->getSubRegIdxOffset(SubIdx); 00302 if (BitOffset < 0 || BitOffset % 8) 00303 return false; 00304 00305 Size = BitSize /= 8; 00306 Offset = (unsigned)BitOffset / 8; 00307 00308 assert(RC->getSize() >= (Offset + Size) && "bad subregister range"); 00309 00310 if (!TM->getSubtargetImpl()->getDataLayout()->isLittleEndian()) { 00311 Offset = RC->getSize() - (Offset + Size); 00312 } 00313 return true; 00314 } 00315 00316 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB, 00317 MachineBasicBlock::iterator I, 00318 unsigned DestReg, 00319 unsigned SubIdx, 00320 const MachineInstr *Orig, 00321 const TargetRegisterInfo &TRI) const { 00322 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig); 00323 MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI); 00324 MBB.insert(I, MI); 00325 } 00326 00327 bool 00328 TargetInstrInfo::produceSameValue(const MachineInstr *MI0, 00329 const MachineInstr *MI1, 00330 const MachineRegisterInfo *MRI) const { 00331 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 00332 } 00333 00334 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig, 00335 MachineFunction &MF) const { 00336 assert(!Orig->isNotDuplicable() && 00337 "Instruction cannot be duplicated"); 00338 return MF.CloneMachineInstr(Orig); 00339 } 00340 00341 // If the COPY instruction in MI can be folded to a stack operation, return 00342 // the register class to use. 00343 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI, 00344 unsigned FoldIdx) { 00345 assert(MI->isCopy() && "MI must be a COPY instruction"); 00346 if (MI->getNumOperands() != 2) 00347 return nullptr; 00348 assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand"); 00349 00350 const MachineOperand &FoldOp = MI->getOperand(FoldIdx); 00351 const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx); 00352 00353 if (FoldOp.getSubReg() || LiveOp.getSubReg()) 00354 return nullptr; 00355 00356 unsigned FoldReg = FoldOp.getReg(); 00357 unsigned LiveReg = LiveOp.getReg(); 00358 00359 assert(TargetRegisterInfo::isVirtualRegister(FoldReg) && 00360 "Cannot fold physregs"); 00361 00362 const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 00363 const TargetRegisterClass *RC = MRI.getRegClass(FoldReg); 00364 00365 if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg())) 00366 return RC->contains(LiveOp.getReg()) ? RC : nullptr; 00367 00368 if (RC->hasSubClassEq(MRI.getRegClass(LiveReg))) 00369 return RC; 00370 00371 // FIXME: Allow folding when register classes are memory compatible. 00372 return nullptr; 00373 } 00374 00375 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const { 00376 llvm_unreachable("Not a MachO target"); 00377 } 00378 00379 bool TargetInstrInfo:: 00380 canFoldMemoryOperand(const MachineInstr *MI, 00381 const SmallVectorImpl<unsigned> &Ops) const { 00382 return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]); 00383 } 00384 00385 static MachineInstr* foldPatchpoint(MachineFunction &MF, 00386 MachineInstr *MI, 00387 const SmallVectorImpl<unsigned> &Ops, 00388 int FrameIndex, 00389 const TargetInstrInfo &TII) { 00390 unsigned StartIdx = 0; 00391 switch (MI->getOpcode()) { 00392 case TargetOpcode::STACKMAP: 00393 StartIdx = 2; // Skip ID, nShadowBytes. 00394 break; 00395 case TargetOpcode::PATCHPOINT: { 00396 // For PatchPoint, the call args are not foldable. 00397 PatchPointOpers opers(MI); 00398 StartIdx = opers.getVarIdx(); 00399 break; 00400 } 00401 default: 00402 llvm_unreachable("unexpected stackmap opcode"); 00403 } 00404 00405 // Return false if any operands requested for folding are not foldable (not 00406 // part of the stackmap's live values). 00407 for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end(); 00408 I != E; ++I) { 00409 if (*I < StartIdx) 00410 return nullptr; 00411 } 00412 00413 MachineInstr *NewMI = 00414 MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true); 00415 MachineInstrBuilder MIB(MF, NewMI); 00416 00417 // No need to fold return, the meta data, and function arguments 00418 for (unsigned i = 0; i < StartIdx; ++i) 00419 MIB.addOperand(MI->getOperand(i)); 00420 00421 for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) { 00422 MachineOperand &MO = MI->getOperand(i); 00423 if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) { 00424 unsigned SpillSize; 00425 unsigned SpillOffset; 00426 // Compute the spill slot size and offset. 00427 const TargetRegisterClass *RC = 00428 MF.getRegInfo().getRegClass(MO.getReg()); 00429 bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, 00430 SpillOffset, &MF.getTarget()); 00431 if (!Valid) 00432 report_fatal_error("cannot spill patchpoint subregister operand"); 00433 MIB.addImm(StackMaps::IndirectMemRefOp); 00434 MIB.addImm(SpillSize); 00435 MIB.addFrameIndex(FrameIndex); 00436 MIB.addImm(SpillOffset); 00437 } 00438 else 00439 MIB.addOperand(MO); 00440 } 00441 return NewMI; 00442 } 00443 00444 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack 00445 /// slot into the specified machine instruction for the specified operand(s). 00446 /// If this is possible, a new instruction is returned with the specified 00447 /// operand folded, otherwise NULL is returned. The client is responsible for 00448 /// removing the old instruction and adding the new one in the instruction 00449 /// stream. 00450 MachineInstr* 00451 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 00452 const SmallVectorImpl<unsigned> &Ops, 00453 int FI) const { 00454 unsigned Flags = 0; 00455 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 00456 if (MI->getOperand(Ops[i]).isDef()) 00457 Flags |= MachineMemOperand::MOStore; 00458 else 00459 Flags |= MachineMemOperand::MOLoad; 00460 00461 MachineBasicBlock *MBB = MI->getParent(); 00462 assert(MBB && "foldMemoryOperand needs an inserted instruction"); 00463 MachineFunction &MF = *MBB->getParent(); 00464 00465 MachineInstr *NewMI = nullptr; 00466 00467 if (MI->getOpcode() == TargetOpcode::STACKMAP || 00468 MI->getOpcode() == TargetOpcode::PATCHPOINT) { 00469 // Fold stackmap/patchpoint. 00470 NewMI = foldPatchpoint(MF, MI, Ops, FI, *this); 00471 } else { 00472 // Ask the target to do the actual folding. 00473 NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI); 00474 } 00475 00476 if (NewMI) { 00477 NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 00478 // Add a memory operand, foldMemoryOperandImpl doesn't do that. 00479 assert((!(Flags & MachineMemOperand::MOStore) || 00480 NewMI->mayStore()) && 00481 "Folded a def to a non-store!"); 00482 assert((!(Flags & MachineMemOperand::MOLoad) || 00483 NewMI->mayLoad()) && 00484 "Folded a use to a non-load!"); 00485 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 00486 assert(MFI.getObjectOffset(FI) != -1); 00487 MachineMemOperand *MMO = 00488 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI), 00489 Flags, MFI.getObjectSize(FI), 00490 MFI.getObjectAlignment(FI)); 00491 NewMI->addMemOperand(MF, MMO); 00492 00493 // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI. 00494 return MBB->insert(MI, NewMI); 00495 } 00496 00497 // Straight COPY may fold as load/store. 00498 if (!MI->isCopy() || Ops.size() != 1) 00499 return nullptr; 00500 00501 const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]); 00502 if (!RC) 00503 return nullptr; 00504 00505 const MachineOperand &MO = MI->getOperand(1-Ops[0]); 00506 MachineBasicBlock::iterator Pos = MI; 00507 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 00508 00509 if (Flags == MachineMemOperand::MOStore) 00510 storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI); 00511 else 00512 loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI); 00513 return --Pos; 00514 } 00515 00516 /// foldMemoryOperand - Same as the previous version except it allows folding 00517 /// of any load and store from / to any address, not just from a specific 00518 /// stack slot. 00519 MachineInstr* 00520 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI, 00521 const SmallVectorImpl<unsigned> &Ops, 00522 MachineInstr* LoadMI) const { 00523 assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!"); 00524 #ifndef NDEBUG 00525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 00526 assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!"); 00527 #endif 00528 MachineBasicBlock &MBB = *MI->getParent(); 00529 MachineFunction &MF = *MBB.getParent(); 00530 00531 // Ask the target to do the actual folding. 00532 MachineInstr *NewMI = nullptr; 00533 int FrameIndex = 0; 00534 00535 if ((MI->getOpcode() == TargetOpcode::STACKMAP || 00536 MI->getOpcode() == TargetOpcode::PATCHPOINT) && 00537 isLoadFromStackSlot(LoadMI, FrameIndex)) { 00538 // Fold stackmap/patchpoint. 00539 NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this); 00540 } else { 00541 // Ask the target to do the actual folding. 00542 NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI); 00543 } 00544 00545 if (!NewMI) return nullptr; 00546 00547 NewMI = MBB.insert(MI, NewMI); 00548 00549 // Copy the memoperands from the load to the folded instruction. 00550 if (MI->memoperands_empty()) { 00551 NewMI->setMemRefs(LoadMI->memoperands_begin(), 00552 LoadMI->memoperands_end()); 00553 } 00554 else { 00555 // Handle the rare case of folding multiple loads. 00556 NewMI->setMemRefs(MI->memoperands_begin(), 00557 MI->memoperands_end()); 00558 for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(), 00559 E = LoadMI->memoperands_end(); I != E; ++I) { 00560 NewMI->addMemOperand(MF, *I); 00561 } 00562 } 00563 return NewMI; 00564 } 00565 00566 bool TargetInstrInfo:: 00567 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI, 00568 AliasAnalysis *AA) const { 00569 const MachineFunction &MF = *MI->getParent()->getParent(); 00570 const MachineRegisterInfo &MRI = MF.getRegInfo(); 00571 00572 // Remat clients assume operand 0 is the defined register. 00573 if (!MI->getNumOperands() || !MI->getOperand(0).isReg()) 00574 return false; 00575 unsigned DefReg = MI->getOperand(0).getReg(); 00576 00577 // A sub-register definition can only be rematerialized if the instruction 00578 // doesn't read the other parts of the register. Otherwise it is really a 00579 // read-modify-write operation on the full virtual register which cannot be 00580 // moved safely. 00581 if (TargetRegisterInfo::isVirtualRegister(DefReg) && 00582 MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg)) 00583 return false; 00584 00585 // A load from a fixed stack slot can be rematerialized. This may be 00586 // redundant with subsequent checks, but it's target-independent, 00587 // simple, and a common case. 00588 int FrameIdx = 0; 00589 if (isLoadFromStackSlot(MI, FrameIdx) && 00590 MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx)) 00591 return true; 00592 00593 // Avoid instructions obviously unsafe for remat. 00594 if (MI->isNotDuplicable() || MI->mayStore() || 00595 MI->hasUnmodeledSideEffects()) 00596 return false; 00597 00598 // Don't remat inline asm. We have no idea how expensive it is 00599 // even if it's side effect free. 00600 if (MI->isInlineAsm()) 00601 return false; 00602 00603 // Avoid instructions which load from potentially varying memory. 00604 if (MI->mayLoad() && !MI->isInvariantLoad(AA)) 00605 return false; 00606 00607 // If any of the registers accessed are non-constant, conservatively assume 00608 // the instruction is not rematerializable. 00609 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 00610 const MachineOperand &MO = MI->getOperand(i); 00611 if (!MO.isReg()) continue; 00612 unsigned Reg = MO.getReg(); 00613 if (Reg == 0) 00614 continue; 00615 00616 // Check for a well-behaved physical register. 00617 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 00618 if (MO.isUse()) { 00619 // If the physreg has no defs anywhere, it's just an ambient register 00620 // and we can freely move its uses. Alternatively, if it's allocatable, 00621 // it could get allocated to something with a def during allocation. 00622 if (!MRI.isConstantPhysReg(Reg, MF)) 00623 return false; 00624 } else { 00625 // A physreg def. We can't remat it. 00626 return false; 00627 } 00628 continue; 00629 } 00630 00631 // Only allow one virtual-register def. There may be multiple defs of the 00632 // same virtual register, though. 00633 if (MO.isDef() && Reg != DefReg) 00634 return false; 00635 00636 // Don't allow any virtual-register uses. Rematting an instruction with 00637 // virtual register uses would length the live ranges of the uses, which 00638 // is not necessarily a good idea, certainly not "trivial". 00639 if (MO.isUse()) 00640 return false; 00641 } 00642 00643 // Everything checked out. 00644 return true; 00645 } 00646 00647 /// isSchedulingBoundary - Test if the given instruction should be 00648 /// considered a scheduling boundary. This primarily includes labels 00649 /// and terminators. 00650 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI, 00651 const MachineBasicBlock *MBB, 00652 const MachineFunction &MF) const { 00653 // Terminators and labels can't be scheduled around. 00654 if (MI->isTerminator() || MI->isPosition()) 00655 return true; 00656 00657 // Don't attempt to schedule around any instruction that defines 00658 // a stack-oriented pointer, as it's unlikely to be profitable. This 00659 // saves compile time, because it doesn't require every single 00660 // stack slot reference to depend on the instruction that does the 00661 // modification. 00662 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 00663 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 00664 if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI)) 00665 return true; 00666 00667 return false; 00668 } 00669 00670 // Provide a global flag for disabling the PreRA hazard recognizer that targets 00671 // may choose to honor. 00672 bool TargetInstrInfo::usePreRAHazardRecognizer() const { 00673 return !DisableHazardRecognizer; 00674 } 00675 00676 // Default implementation of CreateTargetRAHazardRecognizer. 00677 ScheduleHazardRecognizer *TargetInstrInfo:: 00678 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 00679 const ScheduleDAG *DAG) const { 00680 // Dummy hazard recognizer allows all instructions to issue. 00681 return new ScheduleHazardRecognizer(); 00682 } 00683 00684 // Default implementation of CreateTargetMIHazardRecognizer. 00685 ScheduleHazardRecognizer *TargetInstrInfo:: 00686 CreateTargetMIHazardRecognizer(const InstrItineraryData *II, 00687 const ScheduleDAG *DAG) const { 00688 return (ScheduleHazardRecognizer *) 00689 new ScoreboardHazardRecognizer(II, DAG, "misched"); 00690 } 00691 00692 // Default implementation of CreateTargetPostRAHazardRecognizer. 00693 ScheduleHazardRecognizer *TargetInstrInfo:: 00694 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 00695 const ScheduleDAG *DAG) const { 00696 return (ScheduleHazardRecognizer *) 00697 new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched"); 00698 } 00699 00700 //===----------------------------------------------------------------------===// 00701 // SelectionDAG latency interface. 00702 //===----------------------------------------------------------------------===// 00703 00704 int 00705 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 00706 SDNode *DefNode, unsigned DefIdx, 00707 SDNode *UseNode, unsigned UseIdx) const { 00708 if (!ItinData || ItinData->isEmpty()) 00709 return -1; 00710 00711 if (!DefNode->isMachineOpcode()) 00712 return -1; 00713 00714 unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass(); 00715 if (!UseNode->isMachineOpcode()) 00716 return ItinData->getOperandCycle(DefClass, DefIdx); 00717 unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass(); 00718 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 00719 } 00720 00721 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 00722 SDNode *N) const { 00723 if (!ItinData || ItinData->isEmpty()) 00724 return 1; 00725 00726 if (!N->isMachineOpcode()) 00727 return 1; 00728 00729 return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass()); 00730 } 00731 00732 //===----------------------------------------------------------------------===// 00733 // MachineInstr latency interface. 00734 //===----------------------------------------------------------------------===// 00735 00736 unsigned 00737 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 00738 const MachineInstr *MI) const { 00739 if (!ItinData || ItinData->isEmpty()) 00740 return 1; 00741 00742 unsigned Class = MI->getDesc().getSchedClass(); 00743 int UOps = ItinData->Itineraries[Class].NumMicroOps; 00744 if (UOps >= 0) 00745 return UOps; 00746 00747 // The # of u-ops is dynamically determined. The specific target should 00748 // override this function to return the right number. 00749 return 1; 00750 } 00751 00752 /// Return the default expected latency for a def based on it's opcode. 00753 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel, 00754 const MachineInstr *DefMI) const { 00755 if (DefMI->isTransient()) 00756 return 0; 00757 if (DefMI->mayLoad()) 00758 return SchedModel.LoadLatency; 00759 if (isHighLatencyDef(DefMI->getOpcode())) 00760 return SchedModel.HighLatency; 00761 return 1; 00762 } 00763 00764 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const { 00765 return 0; 00766 } 00767 00768 unsigned TargetInstrInfo:: 00769 getInstrLatency(const InstrItineraryData *ItinData, 00770 const MachineInstr *MI, 00771 unsigned *PredCost) const { 00772 // Default to one cycle for no itinerary. However, an "empty" itinerary may 00773 // still have a MinLatency property, which getStageLatency checks. 00774 if (!ItinData) 00775 return MI->mayLoad() ? 2 : 1; 00776 00777 return ItinData->getStageLatency(MI->getDesc().getSchedClass()); 00778 } 00779 00780 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData, 00781 const MachineInstr *DefMI, 00782 unsigned DefIdx) const { 00783 if (!ItinData || ItinData->isEmpty()) 00784 return false; 00785 00786 unsigned DefClass = DefMI->getDesc().getSchedClass(); 00787 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 00788 return (DefCycle != -1 && DefCycle <= 1); 00789 } 00790 00791 /// Both DefMI and UseMI must be valid. By default, call directly to the 00792 /// itinerary. This may be overriden by the target. 00793 int TargetInstrInfo:: 00794 getOperandLatency(const InstrItineraryData *ItinData, 00795 const MachineInstr *DefMI, unsigned DefIdx, 00796 const MachineInstr *UseMI, unsigned UseIdx) const { 00797 unsigned DefClass = DefMI->getDesc().getSchedClass(); 00798 unsigned UseClass = UseMI->getDesc().getSchedClass(); 00799 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 00800 } 00801 00802 /// If we can determine the operand latency from the def only, without itinerary 00803 /// lookup, do so. Otherwise return -1. 00804 int TargetInstrInfo::computeDefOperandLatency( 00805 const InstrItineraryData *ItinData, 00806 const MachineInstr *DefMI) const { 00807 00808 // Let the target hook getInstrLatency handle missing itineraries. 00809 if (!ItinData) 00810 return getInstrLatency(ItinData, DefMI); 00811 00812 if(ItinData->isEmpty()) 00813 return defaultDefLatency(ItinData->SchedModel, DefMI); 00814 00815 // ...operand lookup required 00816 return -1; 00817 } 00818 00819 /// computeOperandLatency - Compute and return the latency of the given data 00820 /// dependent def and use when the operand indices are already known. UseMI may 00821 /// be NULL for an unknown use. 00822 /// 00823 /// FindMin may be set to get the minimum vs. expected latency. Minimum 00824 /// latency is used for scheduling groups, while expected latency is for 00825 /// instruction cost and critical path. 00826 /// 00827 /// Depending on the subtarget's itinerary properties, this may or may not need 00828 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or 00829 /// UseIdx to compute min latency. 00830 unsigned TargetInstrInfo:: 00831 computeOperandLatency(const InstrItineraryData *ItinData, 00832 const MachineInstr *DefMI, unsigned DefIdx, 00833 const MachineInstr *UseMI, unsigned UseIdx) const { 00834 00835 int DefLatency = computeDefOperandLatency(ItinData, DefMI); 00836 if (DefLatency >= 0) 00837 return DefLatency; 00838 00839 assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail"); 00840 00841 int OperLatency = 0; 00842 if (UseMI) 00843 OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx); 00844 else { 00845 unsigned DefClass = DefMI->getDesc().getSchedClass(); 00846 OperLatency = ItinData->getOperandCycle(DefClass, DefIdx); 00847 } 00848 if (OperLatency >= 0) 00849 return OperLatency; 00850 00851 // No operand latency was found. 00852 unsigned InstrLatency = getInstrLatency(ItinData, DefMI); 00853 00854 // Expected latency is the max of the stage latency and itinerary props. 00855 InstrLatency = std::max(InstrLatency, 00856 defaultDefLatency(ItinData->SchedModel, DefMI)); 00857 return InstrLatency; 00858 } 00859 00860 bool TargetInstrInfo::getRegSequenceInputs( 00861 const MachineInstr &MI, unsigned DefIdx, 00862 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 00863 assert((MI.isRegSequence() || 00864 MI.isRegSequenceLike()) && "Instruction do not have the proper type"); 00865 00866 if (!MI.isRegSequence()) 00867 return getRegSequenceLikeInputs(MI, DefIdx, InputRegs); 00868 00869 // We are looking at: 00870 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... 00871 assert(DefIdx == 0 && "REG_SEQUENCE only has one def"); 00872 for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx; 00873 OpIdx += 2) { 00874 const MachineOperand &MOReg = MI.getOperand(OpIdx); 00875 const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1); 00876 assert(MOSubIdx.isImm() && 00877 "One of the subindex of the reg_sequence is not an immediate"); 00878 // Record Reg:SubReg, SubIdx. 00879 InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(), 00880 (unsigned)MOSubIdx.getImm())); 00881 } 00882 return true; 00883 } 00884 00885 bool TargetInstrInfo::getExtractSubregInputs( 00886 const MachineInstr &MI, unsigned DefIdx, 00887 RegSubRegPairAndIdx &InputReg) const { 00888 assert((MI.isExtractSubreg() || 00889 MI.isExtractSubregLike()) && "Instruction do not have the proper type"); 00890 00891 if (!MI.isExtractSubreg()) 00892 return getExtractSubregLikeInputs(MI, DefIdx, InputReg); 00893 00894 // We are looking at: 00895 // Def = EXTRACT_SUBREG v0.sub1, sub0. 00896 assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def"); 00897 const MachineOperand &MOReg = MI.getOperand(1); 00898 const MachineOperand &MOSubIdx = MI.getOperand(2); 00899 assert(MOSubIdx.isImm() && 00900 "The subindex of the extract_subreg is not an immediate"); 00901 00902 InputReg.Reg = MOReg.getReg(); 00903 InputReg.SubReg = MOReg.getSubReg(); 00904 InputReg.SubIdx = (unsigned)MOSubIdx.getImm(); 00905 return true; 00906 } 00907 00908 bool TargetInstrInfo::getInsertSubregInputs( 00909 const MachineInstr &MI, unsigned DefIdx, 00910 RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const { 00911 assert((MI.isInsertSubreg() || 00912 MI.isInsertSubregLike()) && "Instruction do not have the proper type"); 00913 00914 if (!MI.isInsertSubreg()) 00915 return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg); 00916 00917 // We are looking at: 00918 // Def = INSERT_SEQUENCE v0, v1, sub0. 00919 assert(DefIdx == 0 && "INSERT_SUBREG only has one def"); 00920 const MachineOperand &MOBaseReg = MI.getOperand(1); 00921 const MachineOperand &MOInsertedReg = MI.getOperand(2); 00922 const MachineOperand &MOSubIdx = MI.getOperand(3); 00923 assert(MOSubIdx.isImm() && 00924 "One of the subindex of the reg_sequence is not an immediate"); 00925 BaseReg.Reg = MOBaseReg.getReg(); 00926 BaseReg.SubReg = MOBaseReg.getSubReg(); 00927 00928 InsertedReg.Reg = MOInsertedReg.getReg(); 00929 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 00930 InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm(); 00931 return true; 00932 }