![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4bc2eq6 | GIF version |
Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.) |
Ref | Expression |
---|---|
4bc2eq6 | ⊢ (4C2) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8362 | . . . . 5 ⊢ 0 ∈ ℤ | |
2 | 4z 8381 | . . . . 5 ⊢ 4 ∈ ℤ | |
3 | 2z 8379 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | 1, 2, 3 | 3pm3.2i 1116 | . . . 4 ⊢ (0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) |
5 | 0le2 8129 | . . . . 5 ⊢ 0 ≤ 2 | |
6 | 2re 8109 | . . . . . 6 ⊢ 2 ∈ ℝ | |
7 | 4re 8116 | . . . . . 6 ⊢ 4 ∈ ℝ | |
8 | 2lt4 8205 | . . . . . 6 ⊢ 2 < 4 | |
9 | 6, 7, 8 | ltleii 7213 | . . . . 5 ⊢ 2 ≤ 4 |
10 | 5, 9 | pm3.2i 266 | . . . 4 ⊢ (0 ≤ 2 ∧ 2 ≤ 4) |
11 | elfz4 9038 | . . . 4 ⊢ (((0 ∈ ℤ ∧ 4 ∈ ℤ ∧ 2 ∈ ℤ) ∧ (0 ≤ 2 ∧ 2 ≤ 4)) → 2 ∈ (0...4)) | |
12 | 4, 10, 11 | mp2an 416 | . . 3 ⊢ 2 ∈ (0...4) |
13 | bcval2 9677 | . . 3 ⊢ (2 ∈ (0...4) → (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2)))) | |
14 | 12, 13 | ax-mp 7 | . 2 ⊢ (4C2) = ((!‘4) / ((!‘(4 − 2)) · (!‘2))) |
15 | 3nn0 8306 | . . . . . 6 ⊢ 3 ∈ ℕ0 | |
16 | facp1 9657 | . . . . . 6 ⊢ (3 ∈ ℕ0 → (!‘(3 + 1)) = ((!‘3) · (3 + 1))) | |
17 | 15, 16 | ax-mp 7 | . . . . 5 ⊢ (!‘(3 + 1)) = ((!‘3) · (3 + 1)) |
18 | df-4 8100 | . . . . . 6 ⊢ 4 = (3 + 1) | |
19 | 18 | fveq2i 5201 | . . . . 5 ⊢ (!‘4) = (!‘(3 + 1)) |
20 | 18 | oveq2i 5543 | . . . . 5 ⊢ ((!‘3) · 4) = ((!‘3) · (3 + 1)) |
21 | 17, 19, 20 | 3eqtr4i 2111 | . . . 4 ⊢ (!‘4) = ((!‘3) · 4) |
22 | 4cn 8117 | . . . . . . . . 9 ⊢ 4 ∈ ℂ | |
23 | 2cn 8110 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
24 | 2p2e4 8159 | . . . . . . . . 9 ⊢ (2 + 2) = 4 | |
25 | 22, 23, 23, 24 | subaddrii 7397 | . . . . . . . 8 ⊢ (4 − 2) = 2 |
26 | 25 | fveq2i 5201 | . . . . . . 7 ⊢ (!‘(4 − 2)) = (!‘2) |
27 | fac2 9658 | . . . . . . 7 ⊢ (!‘2) = 2 | |
28 | 26, 27 | eqtri 2101 | . . . . . 6 ⊢ (!‘(4 − 2)) = 2 |
29 | 28, 27 | oveq12i 5544 | . . . . 5 ⊢ ((!‘(4 − 2)) · (!‘2)) = (2 · 2) |
30 | 2t2e4 8186 | . . . . 5 ⊢ (2 · 2) = 4 | |
31 | 29, 30 | eqtri 2101 | . . . 4 ⊢ ((!‘(4 − 2)) · (!‘2)) = 4 |
32 | 21, 31 | oveq12i 5544 | . . 3 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = (((!‘3) · 4) / 4) |
33 | faccl 9662 | . . . . . . 7 ⊢ (3 ∈ ℕ0 → (!‘3) ∈ ℕ) | |
34 | 15, 33 | ax-mp 7 | . . . . . 6 ⊢ (!‘3) ∈ ℕ |
35 | 34 | nncni 8049 | . . . . 5 ⊢ (!‘3) ∈ ℂ |
36 | 4ap0 8138 | . . . . 5 ⊢ 4 # 0 | |
37 | 35, 22, 36 | divcanap4i 7847 | . . . 4 ⊢ (((!‘3) · 4) / 4) = (!‘3) |
38 | fac3 9659 | . . . 4 ⊢ (!‘3) = 6 | |
39 | 37, 38 | eqtri 2101 | . . 3 ⊢ (((!‘3) · 4) / 4) = 6 |
40 | 32, 39 | eqtri 2101 | . 2 ⊢ ((!‘4) / ((!‘(4 − 2)) · (!‘2))) = 6 |
41 | 14, 40 | eqtri 2101 | 1 ⊢ (4C2) = 6 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 0cc0 6981 1c1 6982 + caddc 6984 · cmul 6986 ≤ cle 7154 − cmin 7279 / cdiv 7760 ℕcn 8039 2c2 8089 3c3 8090 4c4 8091 6c6 8093 ℕ0cn0 8288 ℤcz 8351 ...cfz 9029 !cfa 9652 Ccbc 9674 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-3 8099 df-4 8100 df-5 8101 df-6 8102 df-n0 8289 df-z 8352 df-uz 8620 df-q 8705 df-fz 9030 df-iseq 9432 df-fac 9653 df-bc 9675 |
This theorem is referenced by: ex-bc 10566 |
Copyright terms: Public domain | W3C validator |