![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > climconst | GIF version |
Description: An (eventually) constant sequence converges to its value. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climconst.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climconst.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climconst.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climconst.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
climconst.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
Ref | Expression |
---|---|
climconst | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climconst.2 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | uzid 8633 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ≥‘𝑀)) | |
3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
4 | climconst.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
5 | 3, 4 | syl6eleqr 2172 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ 𝑍) |
6 | 5 | adantr 270 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑀 ∈ 𝑍) |
7 | climconst.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 7 | subidd 7407 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 − 𝐴) = 0) |
9 | 8 | fveq2d 5202 | . . . . . . . 8 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = (abs‘0)) |
10 | abs0 9944 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
11 | 9, 10 | syl6eq 2129 | . . . . . . 7 ⊢ (𝜑 → (abs‘(𝐴 − 𝐴)) = 0) |
12 | 11 | adantr 270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) = 0) |
13 | rpgt0 8745 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ+ → 0 < 𝑥) | |
14 | 13 | adantl 271 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 < 𝑥) |
15 | 12, 14 | eqbrtrd 3805 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (abs‘(𝐴 − 𝐴)) < 𝑥) |
16 | 15 | ralrimivw 2435 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) |
17 | fveq2 5198 | . . . . . . 7 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = (ℤ≥‘𝑀)) | |
18 | 17, 4 | syl6eqr 2131 | . . . . . 6 ⊢ (𝑗 = 𝑀 → (ℤ≥‘𝑗) = 𝑍) |
19 | 18 | raleqdv 2555 | . . . . 5 ⊢ (𝑗 = 𝑀 → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥 ↔ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥)) |
20 | 19 | rspcev 2701 | . . . 4 ⊢ ((𝑀 ∈ 𝑍 ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐴 − 𝐴)) < 𝑥) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
21 | 6, 16, 20 | syl2anc 403 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
22 | 21 | ralrimiva 2434 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥) |
23 | climconst.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
24 | climconst.5 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
25 | 7 | adantr 270 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
26 | 4, 1, 23, 24, 7, 25 | clim2c 10123 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐴 − 𝐴)) < 𝑥)) |
27 | 22, 26 | mpbird 165 | 1 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 ℂcc 6979 0cc0 6981 < clt 7153 − cmin 7279 ℤcz 8351 ℤ≥cuz 8619 ℝ+crp 8734 abscabs 9883 ⇝ cli 10117 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-mulrcl 7075 ax-addcom 7076 ax-mulcom 7077 ax-addass 7078 ax-mulass 7079 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-1rid 7083 ax-0id 7084 ax-rnegex 7085 ax-precex 7086 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 ax-pre-mulgt0 7093 ax-pre-mulext 7094 |
This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rmo 2356 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-po 4051 df-iso 4052 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-1st 5787 df-2nd 5788 df-recs 5943 df-frec 6001 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-reap 7675 df-ap 7682 df-div 7761 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-uz 8620 df-rp 8735 df-iseq 9432 df-iexp 9476 df-cj 9729 df-rsqrt 9884 df-abs 9885 df-clim 10118 |
This theorem is referenced by: climconst2 10130 |
Copyright terms: Public domain | W3C validator |