ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqfeq2 GIF version

Theorem iseqfeq2 9449
Description: Equality of sequences. (Contributed by Jim Kingdon, 3-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq2.1 (𝜑𝐾 ∈ (ℤ𝑀))
iseqfveq2.2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))
iseqfveq2.s (𝜑𝑆𝑉)
iseqfveq2.f ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqfveq2.g ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
iseqfveq2.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqfeq2.4 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
iseqfeq2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺, 𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝐹   𝑘,𝐺,𝑥,𝑦   𝑘,𝐾,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦   𝑘,𝑀,𝑥,𝑦   + ,𝑘,𝑥,𝑦   𝑆,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑘)

Proof of Theorem iseqfeq2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iseqfveq2.1 . . . . 5 (𝜑𝐾 ∈ (ℤ𝑀))
2 eluzel2 8624 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . . 4 (𝜑𝑀 ∈ ℤ)
4 iseqfveq2.s . . . 4 (𝜑𝑆𝑉)
5 iseqfveq2.f . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6 iseqfveq2.pl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
73, 4, 5, 6iseqfn 9441 . . 3 (𝜑 → seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀))
8 uzss 8639 . . . 4 (𝐾 ∈ (ℤ𝑀) → (ℤ𝐾) ⊆ (ℤ𝑀))
91, 8syl 14 . . 3 (𝜑 → (ℤ𝐾) ⊆ (ℤ𝑀))
10 fnssres 5032 . . 3 ((seq𝑀( + , 𝐹, 𝑆) Fn (ℤ𝑀) ∧ (ℤ𝐾) ⊆ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
117, 9, 10syl2anc 403 . 2 (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) Fn (ℤ𝐾))
12 eluzelz 8628 . . . 4 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
131, 12syl 14 . . 3 (𝜑𝐾 ∈ ℤ)
14 iseqfveq2.g . . 3 ((𝜑𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
1513, 4, 14, 6iseqfn 9441 . 2 (𝜑 → seq𝐾( + , 𝐺, 𝑆) Fn (ℤ𝐾))
16 fvres 5219 . . . 4 (𝑧 ∈ (ℤ𝐾) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑧))
1716adantl 271 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾))‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑧))
181adantr 270 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝐾 ∈ (ℤ𝑀))
19 iseqfveq2.2 . . . . 5 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))
2019adantr 270 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘𝐾) = (𝐺𝐾))
214adantr 270 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑆𝑉)
225adantlr 460 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
2314adantlr 460 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (ℤ𝐾)) → (𝐺𝑥) ∈ 𝑆)
246adantlr 460 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
25 simpr 108 . . . 4 ((𝜑𝑧 ∈ (ℤ𝐾)) → 𝑧 ∈ (ℤ𝐾))
26 elfzuz 9041 . . . . . 6 (𝑘 ∈ ((𝐾 + 1)...𝑧) → 𝑘 ∈ (ℤ‘(𝐾 + 1)))
27 iseqfeq2.4 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝐾 + 1))) → (𝐹𝑘) = (𝐺𝑘))
2826, 27sylan2 280 . . . . 5 ((𝜑𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
2928adantlr 460 . . . 4 (((𝜑𝑧 ∈ (ℤ𝐾)) ∧ 𝑘 ∈ ((𝐾 + 1)...𝑧)) → (𝐹𝑘) = (𝐺𝑘))
3018, 20, 21, 22, 23, 24, 25, 29iseqfveq2 9448 . . 3 ((𝜑𝑧 ∈ (ℤ𝐾)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))
3117, 30eqtrd 2113 . 2 ((𝜑𝑧 ∈ (ℤ𝐾)) → ((seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾))‘𝑧) = (seq𝐾( + , 𝐺, 𝑆)‘𝑧))
3211, 15, 31eqfnfvd 5289 1 (𝜑 → (seq𝑀( + , 𝐹, 𝑆) ↾ (ℤ𝐾)) = seq𝐾( + , 𝐺, 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wss 2973  cres 4365   Fn wfn 4917  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  ...cfz 9029  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-iseq 9432
This theorem is referenced by:  iseqid  9467
  Copyright terms: Public domain W3C validator