ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqhomo GIF version

Theorem iseqhomo 9468
Description: Apply a homomorphism to a sequence. (Contributed by Jim Kingdon, 21-Aug-2021.)
Hypotheses
Ref Expression
iseqhomo.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqhomo.2 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
iseqhomo.s (𝜑𝑆𝑉)
iseqhomo.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqhomo.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
iseqhomo.5 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
iseqhomo.g ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
iseqhomo.qcl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
Assertion
Ref Expression
iseqhomo (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐻,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝐺   𝑥, + ,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆,𝑦   𝑦,𝐺
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iseqhomo
Dummy variables 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqhomo.3 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
2 fveq2 5198 . . . . . 6 (𝑤 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
32fveq2d 5202 . . . . 5 (𝑤 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)))
4 fveq2 5198 . . . . 5 (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
53, 4eqeq12d 2095 . . . 4 (𝑤 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
65imbi2d 228 . . 3 (𝑤 = 𝑀 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))))
7 fveq2 5198 . . . . . 6 (𝑤 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
87fveq2d 5202 . . . . 5 (𝑤 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
9 fveq2 5198 . . . . 5 (𝑤 = 𝑛 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))
108, 9eqeq12d 2095 . . . 4 (𝑤 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)))
1110imbi2d 228 . . 3 (𝑤 = 𝑛 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛))))
12 fveq2 5198 . . . . . 6 (𝑤 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
1312fveq2d 5202 . . . . 5 (𝑤 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))))
14 fveq2 5198 . . . . 5 (𝑤 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))
1513, 14eqeq12d 2095 . . . 4 (𝑤 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
1615imbi2d 228 . . 3 (𝑤 = (𝑛 + 1) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
17 fveq2 5198 . . . . . 6 (𝑤 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑤) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
1817fveq2d 5202 . . . . 5 (𝑤 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)))
19 fveq2 5198 . . . . 5 (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
2018, 19eqeq12d 2095 . . . 4 (𝑤 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
2120imbi2d 228 . . 3 (𝑤 = 𝑁 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑤)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))))
22 eluzel2 8624 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
231, 22syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
24 uzid 8633 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2523, 24syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
26 iseqhomo.5 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻‘(𝐹𝑥)) = (𝐺𝑥))
2726ralrimiva 2434 . . . . . 6 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
28 fveq2 5198 . . . . . . . . 9 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
2928fveq2d 5202 . . . . . . . 8 (𝑥 = 𝑀 → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹𝑀)))
30 fveq2 5198 . . . . . . . 8 (𝑥 = 𝑀 → (𝐺𝑥) = (𝐺𝑀))
3129, 30eqeq12d 2095 . . . . . . 7 (𝑥 = 𝑀 → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
3231rspcv 2697 . . . . . 6 (𝑀 ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥) → (𝐻‘(𝐹𝑀)) = (𝐺𝑀)))
3325, 27, 32sylc 61 . . . . 5 (𝜑 → (𝐻‘(𝐹𝑀)) = (𝐺𝑀))
34 iseqhomo.s . . . . . . 7 (𝜑𝑆𝑉)
35 iseqhomo.2 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
36 iseqhomo.1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
3723, 34, 35, 36iseq1 9442 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
3837fveq2d 5202 . . . . 5 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (𝐻‘(𝐹𝑀)))
39 iseqhomo.g . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
40 iseqhomo.qcl . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
4123, 34, 39, 40iseq1 9442 . . . . 5 (𝜑 → (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀) = (𝐺𝑀))
4233, 38, 413eqtr4d 2123 . . . 4 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀))
4342a1i 9 . . 3 (𝑀 ∈ ℤ → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑀)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑀)))
44 oveq1 5539 . . . . . 6 ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
45 simpr 108 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ (ℤ𝑀))
4634adantr 270 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑆𝑉)
4735adantlr 460 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
4836adantlr 460 . . . . . . . . . 10 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
4945, 46, 47, 48iseqp1 9445 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
5049fveq2d 5202 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
51 iseqhomo.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5251ralrimivva 2443 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5352adantr 270 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)))
5445, 46, 47, 48iseqcl 9443 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆)
55 peano2uz 8671 . . . . . . . . . . . 12 (𝑛 ∈ (ℤ𝑀) → (𝑛 + 1) ∈ (ℤ𝑀))
5645, 55syl 14 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝑛 + 1) ∈ (ℤ𝑀))
5735ralrimiva 2434 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
5857adantr 270 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆)
59 fveq2 5198 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
6059eleq1d 2147 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6160rspcv 2697 . . . . . . . . . . 11 ((𝑛 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐹𝑥) ∈ 𝑆 → (𝐹‘(𝑛 + 1)) ∈ 𝑆))
6256, 58, 61sylc 61 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
63 oveq1 5539 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦))
6463fveq2d 5202 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)))
65 fveq2 5198 . . . . . . . . . . . . 13 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝐻𝑥) = (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)))
6665oveq1d 5547 . . . . . . . . . . . 12 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻𝑥)𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)))
6764, 66eqeq12d 2095 . . . . . . . . . . 11 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦))))
68 oveq2 5540 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
6968fveq2d 5202 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))))
70 fveq2 5198 . . . . . . . . . . . . 13 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻𝑦) = (𝐻‘(𝐹‘(𝑛 + 1))))
7170oveq2d 5548 . . . . . . . . . . . 12 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
7269, 71eqeq12d 2095 . . . . . . . . . . 11 (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7367, 72rspc2v 2713 . . . . . . . . . 10 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7454, 62, 73syl2anc 403 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∀𝑥𝑆𝑦𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻𝑥)𝑄(𝐻𝑦)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))))
7553, 74mpd 13 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))
7627adantr 270 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑀)) → ∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥))
7759fveq2d 5202 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1))))
78 fveq2 5198 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐺𝑥) = (𝐺‘(𝑛 + 1)))
7977, 78eqeq12d 2095 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹𝑥)) = (𝐺𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8079rspcv 2697 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑀) → (∀𝑥 ∈ (ℤ𝑀)(𝐻‘(𝐹𝑥)) = (𝐺𝑥) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))))
8156, 76, 80sylc 61 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))
8281oveq2d 5548 . . . . . . . 8 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
8350, 75, 823eqtrd 2117 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))))
8439adantlr 460 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
8540adantlr 460 . . . . . . . 8 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
8645, 46, 84, 85iseqp1 9445 . . . . . . 7 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))
8783, 86eqeq12d 2095 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))))
8844, 87syl5ibr 154 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1))))
8988expcom 114 . . . 4 (𝑛 ∈ (ℤ𝑀) → (𝜑 → ((𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
9089a2d 26 . . 3 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑛)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑛)) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺, 𝑆)‘(𝑛 + 1)))))
916, 11, 16, 21, 43, 90uzind4 8676 . 2 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁)))
921, 91mpcom 36 1 (𝜑 → (𝐻‘(seq𝑀( + , 𝐹, 𝑆)‘𝑁)) = (seq𝑀(𝑄, 𝐺, 𝑆)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432
This theorem is referenced by:  iseqdistr  9470
  Copyright terms: Public domain W3C validator