ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfzo0difsn GIF version

Theorem modfzo0difsn 9397
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Distinct variable groups:   𝑖,𝐽   𝑖,𝐾   𝑖,𝑁

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3094 . . . 4 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁))
2 elfzoelz 9157 . . . 4 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ)
31, 2syl 14 . . 3 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℤ)
4 elfzoelz 9157 . . 3 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
5 zdcle 8424 . . . 4 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → DECID 𝐾𝐽)
6 exmiddc 777 . . . 4 (DECID 𝐾𝐽 → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
75, 6syl 14 . . 3 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
83, 4, 7syl2anr 284 . 2 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ∨ ¬ 𝐾𝐽))
9 zleloe 8398 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
103, 4, 9syl2anr 284 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
11 elfzo0 9191 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
12 elfzo0 9191 . . . . . . . . . . . . . . . 16 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
13 nn0cn 8298 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1413adantr 270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℂ)
1514adantl 271 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℂ)
16 nn0cn 8298 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
17163ad2ant1 959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
1817adantr 270 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℂ)
19 nncn 8047 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
20193ad2ant2 960 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2120adantr 270 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℂ)
2215, 18, 21subadd23d 7441 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) = (𝐾 + (𝑁𝐽)))
23 simpl 107 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
24 nn0z 8371 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
25 nnz 8370 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
26 znnsub 8402 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2724, 25, 26syl2an 283 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2827biimp3a 1276 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℕ)
29 nn0nnaddcl 8319 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝑁𝐽) ∈ ℕ) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
3023, 28, 29syl2anr 284 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
3122, 30eqeltrd 2155 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
3231adantr 270 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
33 simp2 939 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
3433adantr 270 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℕ)
3534adantr 270 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ)
36 nn0re 8297 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3736adantr 270 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℝ)
3837adantl 271 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
39 nn0re 8297 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
40393ad2ant1 959 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
4140adantr 270 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
4238, 41sublt0d 7670 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) < 0 ↔ 𝐾 < 𝐽))
4342bicomd 139 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾𝐽) < 0))
4443biimpa 290 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾𝐽) < 0)
45 resubcl 7372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
4637, 40, 45syl2anr 284 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾𝐽) ∈ ℝ)
47 nnre 8046 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
48473ad2ant2 960 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
4948adantr 270 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
5046, 49jca 300 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
5150adantr 270 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
52 ltaddnegr 7529 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5351, 52syl 14 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5444, 53mpbid 145 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) < 𝑁)
55 elfzo1 9199 . . . . . . . . . . . . . . . . . 18 (((𝐾𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾𝐽) + 𝑁) < 𝑁))
5632, 35, 54, 55syl3anbrc 1122 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
5756exp31 356 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5812, 57sylbi 119 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5958com12 30 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
60593adant2 957 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6111, 60sylbi 119 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
621, 61syl 14 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6362impcom 123 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁)))
6463impcom 123 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
65 oveq1 5539 . . . . . . . . . . . 12 (𝑖 = ((𝐾𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾𝐽) + 𝑁) + 𝐽))
662zcnd 8470 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ)
6766adantr 270 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐾 ∈ ℂ)
6816adantr 270 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℂ)
6968adantl 271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐽 ∈ ℂ)
7019adantl 271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
7170adantl 271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
7267, 69, 713jca 1118 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7372ex 113 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
741, 73syl 14 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7574com12 30 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
76753adant3 958 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7712, 76sylbi 119 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7877imp 122 . . . . . . . . . . . . . 14 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7978adantl 271 . . . . . . . . . . . . 13 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
80 nppcan 7330 . . . . . . . . . . . . 13 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8179, 80syl 14 . . . . . . . . . . . 12 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8265, 81sylan9eqr 2135 . . . . . . . . . . 11 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁))
8382oveq1d 5547 . . . . . . . . . 10 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁))
8483eqeq2d 2092 . . . . . . . . 9 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁)))
8511biimpi 118 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8685a1d 22 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
871, 86syl 14 . . . . . . . . . . . 12 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
8887impcom 123 . . . . . . . . . . 11 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8988adantl 271 . . . . . . . . . 10 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
90 addmodidr 9375 . . . . . . . . . . 11 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾)
9190eqcomd 2086 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9289, 91syl 14 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9364, 84, 92rspcedvd 2708 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
9493ex 113 . . . . . . 7 (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
95 eldifsn 3517 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽))
96 eqneqall 2255 . . . . . . . . . . . 12 (𝐾 = 𝐽 → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9796com12 30 . . . . . . . . . . 11 (𝐾𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9897adantl 271 . . . . . . . . . 10 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9995, 98sylbi 119 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10099adantl 271 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
101100com12 30 . . . . . . 7 (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10294, 101jaoi 668 . . . . . 6 ((𝐾 < 𝐽𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
103102com12 30 . . . . 5 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10410, 103sylbid 148 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
105104com12 30 . . 3 (𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
106 zltnle 8397 . . . . . . . . . 10 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
1074, 3, 106syl2an 283 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
108107bicomd 139 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽𝐽 < 𝐾))
109243ad2ant1 959 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ)
110 nn0z 8371 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
111110adantr 270 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℤ)
112 znnsub 8402 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
113109, 111, 112syl2anr 284 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
114113biimpa 290 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) ∈ ℕ)
11533adantl 271 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ)
116115adantr 270 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ)
117 nn0ge0 8313 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
1181173ad2ant1 959 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
119118adantl 271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
120 subge02 7582 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
12136, 40, 120syl2an 283 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
122119, 121mpbid 145 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) ≤ 𝐾)
12340adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
12436adantr 270 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐾 ∈ ℝ)
12548adantl 271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
126123, 124, 1253jca 1118 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
12745ancoms 264 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
1281273adant3 958 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
129 simp2 939 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈ ℝ)
130 simp3 940 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
131128, 129, 1303jca 1118 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
132126, 131syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
133 lelttr 7199 . . . . . . . . . . . . . . . . . . . . 21 (((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
134132, 133syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
135122, 134mpand 419 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 < 𝑁 → (𝐾𝐽) < 𝑁))
136135impancom 256 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾𝐽) < 𝑁))
137136imp 122 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) < 𝑁)
138137adantr 270 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) < 𝑁)
139114, 116, 1383jca 1118 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
140139exp31 356 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1411403adant2 957 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14211, 141sylbi 119 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1431, 142syl 14 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
144143com12 30 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14512, 144sylbi 119 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
146145imp 122 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
147108, 146sylbid 148 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
148147impcom 123 . . . . . 6 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
149 elfzo1 9199 . . . . . 6 ((𝐾𝐽) ∈ (1..^𝑁) ↔ ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
150148, 149sylibr 132 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾𝐽) ∈ (1..^𝑁))
151 oveq1 5539 . . . . . . . 8 (𝑖 = (𝐾𝐽) → (𝑖 + 𝐽) = ((𝐾𝐽) + 𝐽))
1521, 66syl 14 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ)
1534zcnd 8470 . . . . . . . . . 10 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
154 npcan 7317 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾𝐽) + 𝐽) = 𝐾)
155152, 153, 154syl2anr 284 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾𝐽) + 𝐽) = 𝐾)
156155adantl 271 . . . . . . . 8 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝐽) = 𝐾)
157151, 156sylan9eqr 2135 . . . . . . 7 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝑖 + 𝐽) = 𝐾)
158157oveq1d 5547 . . . . . 6 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁))
159158eqeq2d 2092 . . . . 5 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁)))
160 zmodidfzoimp 9356 . . . . . . . . 9 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1611, 160syl 14 . . . . . . . 8 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾)
162161adantl 271 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾)
163162adantl 271 . . . . . 6 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾)
164163eqcomd 2086 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁))
165150, 159, 164rspcedvd 2708 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
166165ex 113 . . 3 𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
167105, 166jaoi 668 . 2 ((𝐾𝐽 ∨ ¬ 𝐾𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
1688, 167mpcom 36 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661  DECID wdc 775  w3a 919   = wceq 1284  wcel 1433  wne 2245  wrex 2349  cdif 2970  {csn 3398   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cmin 7279  cn 8039  0cn0 8288  cz 8351  ..^cfzo 9152   mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-ico 8917  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator