ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsexp GIF version

Theorem prmdvdsexp 10527
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))

Proof of Theorem prmdvdsexp
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5540 . . . . . . 7 (𝑚 = 1 → (𝐴𝑚) = (𝐴↑1))
21breq2d 3797 . . . . . 6 (𝑚 = 1 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑1)))
32bibi1d 231 . . . . 5 (𝑚 = 1 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴)))
43imbi2d 228 . . . 4 (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))))
5 oveq2 5540 . . . . . . 7 (𝑚 = 𝑘 → (𝐴𝑚) = (𝐴𝑘))
65breq2d 3797 . . . . . 6 (𝑚 = 𝑘 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑘)))
76bibi1d 231 . . . . 5 (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)))
87imbi2d 228 . . . 4 (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴))))
9 oveq2 5540 . . . . . . 7 (𝑚 = (𝑘 + 1) → (𝐴𝑚) = (𝐴↑(𝑘 + 1)))
109breq2d 3797 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1))))
1110bibi1d 231 . . . . 5 (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
1211imbi2d 228 . . . 4 (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
13 oveq2 5540 . . . . . . 7 (𝑚 = 𝑁 → (𝐴𝑚) = (𝐴𝑁))
1413breq2d 3797 . . . . . 6 (𝑚 = 𝑁 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑁)))
1514bibi1d 231 . . . . 5 (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
1615imbi2d 228 . . . 4 (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))))
17 zcn 8356 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1817adantl 271 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918exp1d 9600 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴)
2019breq2d 3797 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))
21 nnnn0 8295 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
22 expp1 9483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2318, 21, 22syl2an 283 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2423breq2d 3797 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴𝑘) · 𝐴)))
25 simpll 495 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
26 simpr 108 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
27 zexpcl 9491 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
2826, 21, 27syl2an 283 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℤ)
29 simplr 496 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 euclemma 10525 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3125, 28, 29, 30syl3anc 1169 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3224, 31bitrd 186 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
33 orbi1 738 . . . . . . . . 9 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ (𝑃𝐴𝑃𝐴)))
34 oridm 706 . . . . . . . . 9 ((𝑃𝐴𝑃𝐴) ↔ 𝑃𝐴)
3533, 34syl6bb 194 . . . . . . . 8 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ 𝑃𝐴))
3635bibi2d 230 . . . . . . 7 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3732, 36syl5ibcom 153 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3837expcom 114 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
3938a2d 26 . . . 4 (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
404, 8, 12, 16, 20, 39nnind 8055 . . 3 (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
4140impcom 123 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
42413impa 1133 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  1c1 6982   + caddc 6984   · cmul 6986  cn 8039  0cn0 8288  cz 8351  cexp 9475  cdvds 10195  cprime 10489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245  df-sup 6397  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-q 8705  df-rp 8735  df-fz 9030  df-fzo 9153  df-fl 9274  df-mod 9325  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-dvds 10196  df-gcd 10339  df-prm 10490
This theorem is referenced by:  prmdvdsexpb  10528  rpexp  10532
  Copyright terms: Public domain W3C validator