Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc2nc Structured version   Visualization version   Unicode version

Theorem ftc2nc 33494
Description: Choice-free proof of ftc2 23807. (Contributed by Brendan Leahy, 19-Jun-2018.)
Hypotheses
Ref Expression
ftc2nc.a  |-  ( ph  ->  A  e.  RR )
ftc2nc.b  |-  ( ph  ->  B  e.  RR )
ftc2nc.le  |-  ( ph  ->  A  <_  B )
ftc2nc.c  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
ftc2nc.i  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
ftc2nc.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
Assertion
Ref Expression
ftc2nc  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Distinct variable groups:    t, A    t, B    t, F    ph, t

Proof of Theorem ftc2nc
Dummy variables  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ftc2nc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
21rexrd 10089 . . . . . 6  |-  ( ph  ->  A  e.  RR* )
3 ftc2nc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
43rexrd 10089 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
5 ftc2nc.le . . . . . 6  |-  ( ph  ->  A  <_  B )
6 ubicc2 12289 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
72, 4, 5, 6syl3anc 1326 . . . . 5  |-  ( ph  ->  B  e.  ( A [,] B ) )
8 fvex 6201 . . . . . 6  |-  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) `  A )  e.  _V
98fvconst2 6469 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( ( A [,] B )  X.  {
( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
) } ) `  B )  =  ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) )
107, 9syl 17 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) )
11 eqid 2622 . . . . . . . 8  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
1211subcn 22669 . . . . . . . . 9  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1312a1i 11 . . . . . . . 8  |-  ( ph  ->  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
14 eqid 2622 . . . . . . . . 9  |-  ( x  e.  ( A [,] B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( x  e.  ( A [,] B
)  |->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t )
15 ssid 3624 . . . . . . . . . 10  |-  ( A (,) B )  C_  ( A (,) B )
1615a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  ( A (,) B ) )
17 ioossre 12235 . . . . . . . . . 10  |-  ( A (,) B )  C_  RR
1817a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( A (,) B
)  C_  RR )
19 ftc2nc.i . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  e.  L^1 )
20 ftc2nc.c . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
)  e.  ( ( A (,) B )
-cn-> CC ) )
21 cncff 22696 . . . . . . . . . 10  |-  ( ( RR  _D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( RR  _D  F ) : ( A (,) B ) --> CC )
2220, 21syl 17 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
23 ioof 12271 . . . . . . . . . . . . 13  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
24 ffun 6048 . . . . . . . . . . . . 13  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
2523, 24ax-mp 5 . . . . . . . . . . . 12  |-  Fun  (,)
26 fvelima 6248 . . . . . . . . . . . 12  |-  ( ( Fun  (,)  /\  s  e.  ( (,) " (
( A [,] B
)  X.  ( A [,] B ) ) ) )  ->  E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s )
2725, 26mpan 706 . . . . . . . . . . 11  |-  ( s  e.  ( (,) " (
( A [,] B
)  X.  ( A [,] B ) ) )  ->  E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s )
28 1st2nd2 7205 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
2928fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( (,) `  x )  =  ( (,) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. ) )
30 df-ov 6653 . . . . . . . . . . . . . . . 16  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  =  ( (,) `  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
3129, 30syl6eqr 2674 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( (,) `  x )  =  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )
3231eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  (
( (,) `  x
)  =  s  <->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  =  s ) )
3332adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( (,) `  x )  =  s  <->  ( ( 1st `  x ) (,) ( 2nd `  x ) )  =  s ) )
342, 4jca 554 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
3534adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( A  e.  RR*  /\  B  e. 
RR* ) )
36 xp1st 7198 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( 1st `  x )  e.  ( A [,] B
) )
37 elicc1 12219 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 1st `  x
)  e.  ( A [,] B )  <->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
) )
382, 4, 37syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 1st `  x
)  e.  ( A [,] B )  <->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
) )
3938biimpa 501 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( 1st `  x )  e.  ( A [,] B ) )  ->  ( ( 1st `  x )  e. 
RR*  /\  A  <_  ( 1st `  x )  /\  ( 1st `  x
)  <_  B )
)
4039simp2d 1074 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( 1st `  x )  e.  ( A [,] B ) )  ->  A  <_  ( 1st `  x ) )
4136, 40sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  A  <_  ( 1st `  x ) )
42 xp2nd 7199 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ( A [,] B )  X.  ( A [,] B
) )  ->  ( 2nd `  x )  e.  ( A [,] B
) )
43 iccleub 12229 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  ( 2nd `  x )  e.  ( A [,] B ) )  ->  ( 2nd `  x )  <_  B
)
44433expa 1265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( 2nd `  x
)  e.  ( A [,] B ) )  ->  ( 2nd `  x
)  <_  B )
4534, 42, 44syl2an 494 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( 2nd `  x )  <_  B
)
46 ioossioo 12265 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  ( 1st `  x )  /\  ( 2nd `  x )  <_  B ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
C_  ( A (,) B ) )
4735, 41, 45, 46syl12anc 1324 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  ( A (,) B ) )
4847sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  t  e.  ( A (,) B ) )
4922ffvelrnda 6359 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  CC )
5049adantlr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  CC )
5148, 50syldan 487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( ( RR 
_D  F ) `  t )  e.  CC )
52 ioombl 23333 . . . . . . . . . . . . . . . . . 18  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  e.  dom  vol
5352a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( 1st `  x ) (,) ( 2nd `  x
) )  e.  dom  vol )
54 fvexd 6203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
5522feqmptd 6249 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( RR  _D  F
)  =  ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) ) )
5655, 19eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( t  e.  ( A (,) B ) 
|->  ( ( RR  _D  F ) `  t
) )  e.  L^1 )
5756adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
5847, 53, 54, 57iblss 23571 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
)  e.  L^1 )
59 ax-resscn 9993 . . . . . . . . . . . . . . . . . . . . 21  |-  RR  C_  CC
60 ssid 3624 . . . . . . . . . . . . . . . . . . . . 21  |-  CC  C_  CC
61 cncfss 22702 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( RR  C_  CC  /\  CC  C_  CC )  ->  ( CC -cn-> RR )  C_  ( CC -cn-> CC ) )
6259, 60, 61mp2an 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( CC
-cn-> RR )  C_  ( CC -cn-> CC )
63 abscncf 22704 . . . . . . . . . . . . . . . . . . . 20  |-  abs  e.  ( CC -cn-> RR )
6462, 63sselii 3600 . . . . . . . . . . . . . . . . . . 19  |-  abs  e.  ( CC -cn-> CC )
6564a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  abs  e.  ( CC -cn-> CC ) )
6655reseq1d 5395 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( RR  _D  F )  |`  (
( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ) )
6766adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( ( t  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 t ) )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ) )
6847resmptd 5452 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( (
t  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  t )
)  |`  ( ( 1st `  x ) (,) ( 2nd `  x ) ) )  =  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( RR  _D  F ) `  t
) ) )
6967, 68eqtrd 2656 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  =  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
) )
7020adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( RR  _D  F )  e.  ( ( A (,) B
) -cn-> CC ) )
71 rescncf 22700 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  C_  ( A (,) B )  ->  ( ( RR 
_D  F )  e.  ( ( A (,) B ) -cn-> CC )  ->  ( ( RR 
_D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x
) ) -cn-> CC ) ) )
7247, 70, 71sylc 65 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( RR  _D  F )  |`  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x
) ) -cn-> CC ) )
7369, 72eqeltrrd 2702 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( RR  _D  F
) `  t )
)  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
7465, 73cncfmpt1f 22716 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
75 cnmbf 23426 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  e. 
dom  vol  /\  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( abs `  (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )  ->  (
t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  ( abs `  ( ( RR  _D  F ) `  t
) ) )  e. MblFn
)
7652, 74, 75sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e. MblFn )
7751, 58itgcl 23550 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
7877cjcld 13936 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( * `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  e.  CC )
79 ioossre 12235 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  RR
8079, 59sstri 3612 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1st `  x ) (,) ( 2nd `  x
) )  C_  CC
81 cncfmptc 22714 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  e.  CC  /\  ( ( 1st `  x
) (,) ( 2nd `  x ) )  C_  CC  /\  CC  C_  CC )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
8280, 60, 81mp3an23 1416 . . . . . . . . . . . . . . . . . . 19  |-  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  e.  CC  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
8378, 82syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t ) )  e.  ( ( ( 1st `  x ) (,) ( 2nd `  x ) )
-cn-> CC ) )
84 nfcv 2764 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ s
( ( RR  _D  F ) `  t
)
85 nfcsb1v 3549 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ t [_ s  /  t ]_ ( ( RR  _D  F ) `  t
)
86 csbeq1a 3542 . . . . . . . . . . . . . . . . . . . 20  |-  ( t  =  s  ->  (
( RR  _D  F
) `  t )  =  [_ s  /  t ]_ ( ( RR  _D  F ) `  t
) )
8784, 85, 86cbvmpt 4749 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( RR  _D  F ) `  t
) )  =  ( s  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
)
8887, 73syl5eqelr 2706 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
)  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
8983, 88mulcncf 23215 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )
90 cnmbf 23426 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  e. 
dom  vol  /\  ( s  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) 
|->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e.  ( ( ( 1st `  x
) (,) ( 2nd `  x ) ) -cn-> CC ) )  ->  (
s  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e. MblFn )
9152, 89, 90sylancr 695 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( s  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( ( * `  S. ( ( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t )  x.  [_ s  /  t ]_ (
( RR  _D  F
) `  t )
) )  e. MblFn )
9251, 58, 76, 91itgabsnc 33479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  <_  S. ( ( 1st `  x ) (,) ( 2nd `  x
) ) ( abs `  ( ( RR  _D  F ) `  t
) )  _d t )
9351abscld 14175 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( abs `  (
( RR  _D  F
) `  t )
)  e.  RR )
94 fvexd 6203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  ( ( RR 
_D  F ) `  t )  e.  _V )
9594, 58, 76iblabsnc 33474 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  |->  ( abs `  ( ( RR  _D  F ) `
 t ) ) )  e.  L^1 )
9651absge0d 14183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  /\  t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) )  ->  0  <_  ( abs `  ( ( RR 
_D  F ) `  t ) ) )
9793, 95, 96itgposval 23562 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( abs `  ( ( RR  _D  F ) `
 t ) )  _d t  =  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) ) ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) )
9892, 97breqtrd 4679 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  <_  ( S.2 `  (
t  e.  RR  |->  if ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
99 itgeq1 23539 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  S. (
( 1st `  x
) (,) ( 2nd `  x ) ) ( ( RR  _D  F
) `  t )  _d t  =  S. s ( ( RR 
_D  F ) `  t )  _d t )
10099fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x ) ) ( ( RR  _D  F ) `  t
)  _d t )  =  ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t ) )
101 eleq2 2690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) )  <->  t  e.  s ) )
102101ifbid 4108 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  if (
t  e.  ( ( 1st `  x ) (,) ( 2nd `  x
) ) ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 )  =  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `  t
) ) ,  0 ) )
103102mpteq2dv 4745 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) )  =  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )
104103fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x
) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )  =  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
105100, 104breq12d 4666 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( ( abs `  S. ( ( 1st `  x ) (,) ( 2nd `  x
) ) ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  ( ( 1st `  x ) (,) ( 2nd `  x ) ) ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) )  <->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
10698, 105syl5ibcom 235 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( (
( 1st `  x
) (,) ( 2nd `  x ) )  =  s  ->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
10733, 106sylbid 230 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( ( (,) `  x )  =  s  ->  ( abs `  S. s ( ( RR  _D  F ) `
 t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  ( ( RR  _D  F ) `
 t ) ) ,  0 ) ) ) ) )
108107rexlimdva 3031 . . . . . . . . . . 11  |-  ( ph  ->  ( E. x  e.  ( ( A [,] B )  X.  ( A [,] B ) ) ( (,) `  x
)  =  s  -> 
( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) ) )
10927, 108syl5 34 . . . . . . . . . 10  |-  ( ph  ->  ( s  e.  ( (,) " ( ( A [,] B )  X.  ( A [,] B ) ) )  ->  ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) ) )
110109ralrimiv 2965 . . . . . . . . 9  |-  ( ph  ->  A. s  e.  ( (,) " ( ( A [,] B )  X.  ( A [,] B ) ) ) ( abs `  S. s ( ( RR 
_D  F ) `  t )  _d t )  <_  ( S.2 `  ( t  e.  RR  |->  if ( t  e.  s ,  ( abs `  (
( RR  _D  F
) `  t )
) ,  0 ) ) ) )
11114, 1, 3, 5, 16, 18, 19, 22, 110ftc1anc 33493 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t )  e.  ( ( A [,] B
) -cn-> CC ) )
112 ftc2nc.f . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> CC ) )
113 cncff 22696 . . . . . . . . . . 11  |-  ( F  e.  ( ( A [,] B ) -cn-> CC )  ->  F :
( A [,] B
) --> CC )
114112, 113syl 17 . . . . . . . . . 10  |-  ( ph  ->  F : ( A [,] B ) --> CC )
115114feqmptd 6249 . . . . . . . . 9  |-  ( ph  ->  F  =  ( x  e.  ( A [,] B )  |->  ( F `
 x ) ) )
116115, 112eqeltrrd 2702 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( F `  x
) )  e.  ( ( A [,] B
) -cn-> CC ) )
11711, 13, 111, 116cncfmpt2f 22717 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  e.  ( ( A [,] B
) -cn-> CC ) )
11859a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  C_  CC )
119 iccssre 12255 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
1201, 3, 119syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( A [,] B
)  C_  RR )
121 fvexd 6203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) x
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
1223adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR )
123122rexrd 10089 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  B  e.  RR* )
124 elicc2 12238 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
1251, 3, 124syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( x  e.  ( A [,] B )  <-> 
( x  e.  RR  /\  A  <_  x  /\  x  <_  B ) ) )
126125biimpa 501 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( x  e.  RR  /\  A  <_  x  /\  x  <_  B
) )
127126simp3d 1075 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  x  <_  B )
128 iooss2 12211 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR*  /\  x  <_  B )  ->  ( A (,) x )  C_  ( A (,) B ) )
129123, 127, 128syl2anc 693 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  C_  ( A (,) B ) )
130 ioombl 23333 . . . . . . . . . . . . . 14  |-  ( A (,) x )  e. 
dom  vol
131130a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( A (,) x )  e.  dom  vol )
132 fvexd 6203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( A [,] B
) )  /\  t  e.  ( A (,) B
) )  ->  (
( RR  _D  F
) `  t )  e.  _V )
13356adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) B
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
134129, 131, 132, 133iblss 23571 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( t  e.  ( A (,) x
)  |->  ( ( RR 
_D  F ) `  t ) )  e.  L^1 )
135121, 134itgcl 23550 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
136114ffvelrnda 6359 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  CC )
137135, 136subcld 10392 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) )  e.  CC )
13811tgioo2 22606 . . . . . . . . . 10  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
139 iccntr 22624 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
1401, 3, 139syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
141118, 120, 137, 138, 11, 140dvmptntr 23734 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) ) )
142 reelprrecn 10028 . . . . . . . . . . 11  |-  RR  e.  { RR ,  CC }
143142a1i 11 . . . . . . . . . 10  |-  ( ph  ->  RR  e.  { RR ,  CC } )
144 ioossicc 12259 . . . . . . . . . . . 12  |-  ( A (,) B )  C_  ( A [,] B )
145144sseli 3599 . . . . . . . . . . 11  |-  ( x  e.  ( A (,) B )  ->  x  e.  ( A [,] B
) )
146145, 135sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  e.  CC )
14722ffvelrnda 6359 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
14814, 1, 3, 5, 20, 19ftc1cnnc 33484 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  F ) )
149118, 120, 135, 138, 11, 140dvmptntr 23734 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t ) ) )
15022feqmptd 6249 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 x ) ) )
151148, 149, 1503eqtr3d 2664 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
152145, 136sylan2 491 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( F `  x )  e.  CC )
153115oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( x  e.  ( A [,] B
)  |->  ( F `  x ) ) ) )
154118, 120, 136, 138, 11, 140dvmptntr 23734 . . . . . . . . . . 11  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( F `  x ) ) )  =  ( RR  _D  ( x  e.  ( A (,) B )  |->  ( F `
 x ) ) ) )
155153, 150, 1543eqtr3rd 2665 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( F `  x ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  x )
) )
156143, 146, 147, 151, 152, 147, 155dvmptsub 23730 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A (,) B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  ( ( ( RR  _D  F ) `  x
)  -  ( ( RR  _D  F ) `
 x ) ) ) )
157147subidd 10380 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  F
) `  x )  -  ( ( RR 
_D  F ) `  x ) )  =  0 )
158157mpteq2dva 4744 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( A (,) B ) 
|->  ( ( ( RR 
_D  F ) `  x )  -  (
( RR  _D  F
) `  x )
) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
159141, 156, 1583eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( x  e.  ( A (,) B )  |->  0 ) )
160 fconstmpt 5163 . . . . . . . 8  |-  ( ( A (,) B )  X.  { 0 } )  =  ( x  e.  ( A (,) B )  |->  0 )
161159, 160syl6eqr 2674 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
x  e.  ( A [,] B )  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 x ) ) ) )  =  ( ( A (,) B
)  X.  { 0 } ) )
1621, 3, 117, 161dveq0 23763 . . . . . 6  |-  ( ph  ->  ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) )  =  ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) )
163162fveq1d 6193 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( ( ( A [,] B
)  X.  { ( ( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
) } ) `  B ) )
164 oveq2 6658 . . . . . . . . 9  |-  ( x  =  B  ->  ( A (,) x )  =  ( A (,) B
) )
165 itgeq1 23539 . . . . . . . . 9  |-  ( ( A (,) x )  =  ( A (,) B )  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
166164, 165syl 17 . . . . . . . 8  |-  ( x  =  B  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t )
167 fveq2 6191 . . . . . . . 8  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
168166, 167oveq12d 6668 . . . . . . 7  |-  ( x  =  B  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
) )
169 eqid 2622 . . . . . . 7  |-  ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) )  =  ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) )
170 ovex 6678 . . . . . . 7  |-  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) )  e. 
_V
171168, 169, 170fvmpt 6282 . . . . . 6  |-  ( B  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
1727, 171syl 17 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  B
)  =  ( S. ( A (,) B
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  B ) ) )
173163, 172eqtr3d 2658 . . . 4  |-  ( ph  ->  ( ( ( A [,] B )  X. 
{ ( ( x  e.  ( A [,] B )  |->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) ) ) `
 A ) } ) `  B )  =  ( S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  B ) ) )
174 lbicc2 12288 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
1752, 4, 5, 174syl3anc 1326 . . . . 5  |-  ( ph  ->  A  e.  ( A [,] B ) )
176 oveq2 6658 . . . . . . . . . . 11  |-  ( x  =  A  ->  ( A (,) x )  =  ( A (,) A
) )
177 iooid 12203 . . . . . . . . . . 11  |-  ( A (,) A )  =  (/)
178176, 177syl6eq 2672 . . . . . . . . . 10  |-  ( x  =  A  ->  ( A (,) x )  =  (/) )
179 itgeq1 23539 . . . . . . . . . 10  |-  ( ( A (,) x )  =  (/)  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
180178, 179syl 17 . . . . . . . . 9  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  S. (/) ( ( RR 
_D  F ) `  t )  _d t )
181 itg0 23546 . . . . . . . . 9  |-  S. (/) ( ( RR  _D  F ) `  t
)  _d t  =  0
182180, 181syl6eq 2672 . . . . . . . 8  |-  ( x  =  A  ->  S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  =  0 )
183 fveq2 6191 . . . . . . . 8  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
184182, 183oveq12d 6668 . . . . . . 7  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  =  ( 0  -  ( F `  A )
) )
185 df-neg 10269 . . . . . . 7  |-  -u ( F `  A )  =  ( 0  -  ( F `  A
) )
186184, 185syl6eqr 2674 . . . . . 6  |-  ( x  =  A  ->  ( S. ( A (,) x
) ( ( RR 
_D  F ) `  t )  _d t  -  ( F `  x ) )  = 
-u ( F `  A ) )
187 negex 10279 . . . . . 6  |-  -u ( F `  A )  e.  _V
188186, 169, 187fvmpt 6282 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( x  e.  ( A [,] B ) 
|->  ( S. ( A (,) x ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  x )
) ) `  A
)  =  -u ( F `  A )
)
189175, 188syl 17 . . . 4  |-  ( ph  ->  ( ( x  e.  ( A [,] B
)  |->  ( S. ( A (,) x ) ( ( RR  _D  F ) `  t
)  _d t  -  ( F `  x ) ) ) `  A
)  =  -u ( F `  A )
)
19010, 173, 1893eqtr3d 2664 . . 3  |-  ( ph  ->  ( S. ( A (,) B ) ( ( RR  _D  F
) `  t )  _d t  -  ( F `  B )
)  =  -u ( F `  A )
)
191190oveq2d 6666 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  ( ( F `  B )  +  -u ( F `  A ) ) )
192114, 7ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  B
)  e.  CC )
193 fvexd 6203 . . . 4  |-  ( (
ph  /\  t  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  t )  e.  _V )
194193, 56itgcl 23550 . . 3  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  e.  CC )
195192, 194pncan3d 10395 . 2  |-  ( ph  ->  ( ( F `  B )  +  ( S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  -  ( F `
 B ) ) )  =  S. ( A (,) B ) ( ( RR  _D  F ) `  t
)  _d t )
196114, 175ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  A
)  e.  CC )
197192, 196negsubd 10398 . 2  |-  ( ph  ->  ( ( F `  B )  +  -u ( F `  A ) )  =  ( ( F `  B )  -  ( F `  A ) ) )
198191, 195, 1973eqtr3d 2664 1  |-  ( ph  ->  S. ( A (,) B ) ( ( RR  _D  F ) `
 t )  _d t  =  ( ( F `  B )  -  ( F `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200   [_csb 3533    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   RR*cxr 10073    <_ cle 10075    - cmin 10266   -ucneg 10267   (,)cioo 12175   [,]cicc 12178   *ccj 13836   abscabs 13974   TopOpenctopn 16082   topGenctg 16098  ℂfldccnfld 19746   intcnt 20821    Cn ccn 21028    tX ctx 21363   -cn->ccncf 22679   volcvol 23232  MblFncmbf 23383   S.2citg2 23385   L^1cibl 23386   S.citg 23387    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-ofr 6898  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-omul 7565  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-rlim 14220  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-ovol 23233  df-vol 23234  df-mbf 23388  df-itg1 23389  df-itg2 23390  df-ibl 23391  df-itg 23392  df-0p 23437  df-limc 23630  df-dv 23631
This theorem is referenced by:  areacirc  33505
  Copyright terms: Public domain W3C validator