MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axdc2 Structured version   Visualization version   Unicode version

Theorem axdc2 9271
Description: An apparent strengthening of ax-dc 9268 (but derived from it) which shows that there is a denumerable sequence  g for any function that maps elements of a set  A to nonempty subsets of 
A such that  g (
x  +  1 )  e.  F ( g ( x ) ) for all  x  e.  om. The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013.)
Hypothesis
Ref Expression
axdc2.1  |-  A  e. 
_V
Assertion
Ref Expression
axdc2  |-  ( ( A  =/=  (/)  /\  F : A --> ( ~P A  \  { (/) } ) )  ->  E. g ( g : om --> A  /\  A. k  e.  om  (
g `  suc  k )  e.  ( F `  ( g `  k
) ) ) )
Distinct variable groups:    A, g,
k    g, F, k

Proof of Theorem axdc2
Dummy variables  h  s  t  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axdc2.1 . 2  |-  A  e. 
_V
2 eleq1 2689 . . . . 5  |-  ( s  =  x  ->  (
s  e.  A  <->  x  e.  A ) )
32adantr 481 . . . 4  |-  ( ( s  =  x  /\  t  =  y )  ->  ( s  e.  A  <->  x  e.  A ) )
4 fveq2 6191 . . . . . 6  |-  ( s  =  x  ->  ( F `  s )  =  ( F `  x ) )
54eleq2d 2687 . . . . 5  |-  ( s  =  x  ->  (
t  e.  ( F `
 s )  <->  t  e.  ( F `  x ) ) )
6 eleq1 2689 . . . . 5  |-  ( t  =  y  ->  (
t  e.  ( F `
 x )  <->  y  e.  ( F `  x ) ) )
75, 6sylan9bb 736 . . . 4  |-  ( ( s  =  x  /\  t  =  y )  ->  ( t  e.  ( F `  s )  <-> 
y  e.  ( F `
 x ) ) )
83, 7anbi12d 747 . . 3  |-  ( ( s  =  x  /\  t  =  y )  ->  ( ( s  e.  A  /\  t  e.  ( F `  s
) )  <->  ( x  e.  A  /\  y  e.  ( F `  x
) ) ) )
98cbvopabv 4722 . 2  |-  { <. s ,  t >.  |  ( s  e.  A  /\  t  e.  ( F `  s ) ) }  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
10 fveq2 6191 . . 3  |-  ( n  =  x  ->  (
h `  n )  =  ( h `  x ) )
1110cbvmptv 4750 . 2  |-  ( n  e.  om  |->  ( h `
 n ) )  =  ( x  e. 
om  |->  ( h `  x ) )
121, 9, 11axdc2lem 9270 1  |-  ( ( A  =/=  (/)  /\  F : A --> ( ~P A  \  { (/) } ) )  ->  E. g ( g : om --> A  /\  A. k  e.  om  (
g `  suc  k )  e.  ( F `  ( g `  k
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    \ cdif 3571   (/)c0 3915   ~Pcpw 4158   {csn 4177   {copab 4712    |-> cmpt 4729   suc csuc 5725   -->wf 5884   ` cfv 5888   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-dc 9268
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-om 7066  df-1o 7560
This theorem is referenced by:  axdc3lem4  9275
  Copyright terms: Public domain W3C validator