| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > normlem9 | Structured version Visualization version Unicode version | ||
| Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| normlem8.1 |
|
| normlem8.2 |
|
| normlem8.3 |
|
| normlem8.4 |
|
| Ref | Expression |
|---|---|
| normlem9 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem8.1 |
. . . 4
| |
| 2 | normlem8.2 |
. . . 4
| |
| 3 | 1, 2 | hvsubvali 27877 |
. . 3
|
| 4 | normlem8.3 |
. . . 4
| |
| 5 | normlem8.4 |
. . . 4
| |
| 6 | 4, 5 | hvsubvali 27877 |
. . 3
|
| 7 | 3, 6 | oveq12i 6662 |
. 2
|
| 8 | neg1cn 11124 |
. . . 4
| |
| 9 | 8, 2 | hvmulcli 27871 |
. . 3
|
| 10 | 8, 5 | hvmulcli 27871 |
. . 3
|
| 11 | 1, 9, 4, 10 | normlem8 27974 |
. 2
|
| 12 | ax-his3 27941 |
. . . . . . 7
| |
| 13 | 8, 2, 10, 12 | mp3an 1424 |
. . . . . 6
|
| 14 | his5 27943 |
. . . . . . . 8
| |
| 15 | 8, 2, 5, 14 | mp3an 1424 |
. . . . . . 7
|
| 16 | 15 | oveq2i 6661 |
. . . . . 6
|
| 17 | neg1rr 11125 |
. . . . . . . . . . 11
| |
| 18 | cjre 13879 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | ax-mp 5 |
. . . . . . . . . 10
|
| 20 | 19 | oveq2i 6661 |
. . . . . . . . 9
|
| 21 | ax-1cn 9994 |
. . . . . . . . . 10
| |
| 22 | 21, 21 | mul2negi 10478 |
. . . . . . . . 9
|
| 23 | 21 | mulid2i 10043 |
. . . . . . . . 9
|
| 24 | 20, 22, 23 | 3eqtri 2648 |
. . . . . . . 8
|
| 25 | 24 | oveq1i 6660 |
. . . . . . 7
|
| 26 | 8 | cjcli 13909 |
. . . . . . . 8
|
| 27 | 2, 5 | hicli 27938 |
. . . . . . . 8
|
| 28 | 8, 26, 27 | mulassi 10049 |
. . . . . . 7
|
| 29 | 27 | mulid2i 10043 |
. . . . . . 7
|
| 30 | 25, 28, 29 | 3eqtr3i 2652 |
. . . . . 6
|
| 31 | 13, 16, 30 | 3eqtri 2648 |
. . . . 5
|
| 32 | 31 | oveq2i 6661 |
. . . 4
|
| 33 | his5 27943 |
. . . . . . . 8
| |
| 34 | 8, 1, 5, 33 | mp3an 1424 |
. . . . . . 7
|
| 35 | 19 | oveq1i 6660 |
. . . . . . 7
|
| 36 | 1, 5 | hicli 27938 |
. . . . . . . 8
|
| 37 | 36 | mulm1i 10475 |
. . . . . . 7
|
| 38 | 34, 35, 37 | 3eqtri 2648 |
. . . . . 6
|
| 39 | ax-his3 27941 |
. . . . . . . 8
| |
| 40 | 8, 2, 4, 39 | mp3an 1424 |
. . . . . . 7
|
| 41 | 2, 4 | hicli 27938 |
. . . . . . . 8
|
| 42 | 41 | mulm1i 10475 |
. . . . . . 7
|
| 43 | 40, 42 | eqtri 2644 |
. . . . . 6
|
| 44 | 38, 43 | oveq12i 6662 |
. . . . 5
|
| 45 | 36, 41 | negdii 10365 |
. . . . 5
|
| 46 | 44, 45 | eqtr4i 2647 |
. . . 4
|
| 47 | 32, 46 | oveq12i 6662 |
. . 3
|
| 48 | 1, 4 | hicli 27938 |
. . . . 5
|
| 49 | 48, 27 | addcli 10044 |
. . . 4
|
| 50 | 36, 41 | addcli 10044 |
. . . 4
|
| 51 | 49, 50 | negsubi 10359 |
. . 3
|
| 52 | 47, 51 | eqtri 2644 |
. 2
|
| 53 | 7, 11, 52 | 3eqtri 2648 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-hfvadd 27857 ax-hfvmul 27862 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-2 11079 df-cj 13839 df-re 13840 df-im 13841 df-hvsub 27828 |
| This theorem is referenced by: bcseqi 27977 normlem9at 27978 normpari 28011 polid2i 28014 |
| Copyright terms: Public domain | W3C validator |