HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem9 Structured version   Visualization version   Unicode version

Theorem normlem9 27975
Description: Lemma used to derive properties of norm. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem8.1  |-  A  e. 
~H
normlem8.2  |-  B  e. 
~H
normlem8.3  |-  C  e. 
~H
normlem8.4  |-  D  e. 
~H
Assertion
Ref Expression
normlem9  |-  ( ( A  -h  B ) 
.ih  ( C  -h  D ) )  =  ( ( ( A 
.ih  C )  +  ( B  .ih  D
) )  -  (
( A  .ih  D
)  +  ( B 
.ih  C ) ) )

Proof of Theorem normlem9
StepHypRef Expression
1 normlem8.1 . . . 4  |-  A  e. 
~H
2 normlem8.2 . . . 4  |-  B  e. 
~H
31, 2hvsubvali 27877 . . 3  |-  ( A  -h  B )  =  ( A  +h  ( -u 1  .h  B ) )
4 normlem8.3 . . . 4  |-  C  e. 
~H
5 normlem8.4 . . . 4  |-  D  e. 
~H
64, 5hvsubvali 27877 . . 3  |-  ( C  -h  D )  =  ( C  +h  ( -u 1  .h  D ) )
73, 6oveq12i 6662 . 2  |-  ( ( A  -h  B ) 
.ih  ( C  -h  D ) )  =  ( ( A  +h  ( -u 1  .h  B
) )  .ih  ( C  +h  ( -u 1  .h  D ) ) )
8 neg1cn 11124 . . . 4  |-  -u 1  e.  CC
98, 2hvmulcli 27871 . . 3  |-  ( -u
1  .h  B )  e.  ~H
108, 5hvmulcli 27871 . . 3  |-  ( -u
1  .h  D )  e.  ~H
111, 9, 4, 10normlem8 27974 . 2  |-  ( ( A  +h  ( -u
1  .h  B ) )  .ih  ( C  +h  ( -u 1  .h  D ) ) )  =  ( ( ( A  .ih  C )  +  ( ( -u
1  .h  B ) 
.ih  ( -u 1  .h  D ) ) )  +  ( ( A 
.ih  ( -u 1  .h  D ) )  +  ( ( -u 1  .h  B )  .ih  C
) ) )
12 ax-his3 27941 . . . . . . 7  |-  ( (
-u 1  e.  CC  /\  B  e.  ~H  /\  ( -u 1  .h  D
)  e.  ~H )  ->  ( ( -u 1  .h  B )  .ih  ( -u 1  .h  D ) )  =  ( -u
1  x.  ( B 
.ih  ( -u 1  .h  D ) ) ) )
138, 2, 10, 12mp3an 1424 . . . . . 6  |-  ( (
-u 1  .h  B
)  .ih  ( -u 1  .h  D ) )  =  ( -u 1  x.  ( B  .ih  ( -u 1  .h  D ) ) )
14 his5 27943 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  B  e.  ~H  /\  D  e.  ~H )  ->  ( B  .ih  ( -u 1  .h  D ) )  =  ( ( * `  -u 1
)  x.  ( B 
.ih  D ) ) )
158, 2, 5, 14mp3an 1424 . . . . . . 7  |-  ( B 
.ih  ( -u 1  .h  D ) )  =  ( ( * `  -u 1 )  x.  ( B  .ih  D ) )
1615oveq2i 6661 . . . . . 6  |-  ( -u
1  x.  ( B 
.ih  ( -u 1  .h  D ) ) )  =  ( -u 1  x.  ( ( * `  -u 1 )  x.  ( B  .ih  D ) ) )
17 neg1rr 11125 . . . . . . . . . . 11  |-  -u 1  e.  RR
18 cjre 13879 . . . . . . . . . . 11  |-  ( -u
1  e.  RR  ->  ( * `  -u 1
)  =  -u 1
)
1917, 18ax-mp 5 . . . . . . . . . 10  |-  ( * `
 -u 1 )  = 
-u 1
2019oveq2i 6661 . . . . . . . . 9  |-  ( -u
1  x.  ( * `
 -u 1 ) )  =  ( -u 1  x.  -u 1 )
21 ax-1cn 9994 . . . . . . . . . 10  |-  1  e.  CC
2221, 21mul2negi 10478 . . . . . . . . 9  |-  ( -u
1  x.  -u 1
)  =  ( 1  x.  1 )
2321mulid2i 10043 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
2420, 22, 233eqtri 2648 . . . . . . . 8  |-  ( -u
1  x.  ( * `
 -u 1 ) )  =  1
2524oveq1i 6660 . . . . . . 7  |-  ( (
-u 1  x.  (
* `  -u 1 ) )  x.  ( B 
.ih  D ) )  =  ( 1  x.  ( B  .ih  D
) )
268cjcli 13909 . . . . . . . 8  |-  ( * `
 -u 1 )  e.  CC
272, 5hicli 27938 . . . . . . . 8  |-  ( B 
.ih  D )  e.  CC
288, 26, 27mulassi 10049 . . . . . . 7  |-  ( (
-u 1  x.  (
* `  -u 1 ) )  x.  ( B 
.ih  D ) )  =  ( -u 1  x.  ( ( * `  -u 1 )  x.  ( B  .ih  D ) ) )
2927mulid2i 10043 . . . . . . 7  |-  ( 1  x.  ( B  .ih  D ) )  =  ( B  .ih  D )
3025, 28, 293eqtr3i 2652 . . . . . 6  |-  ( -u
1  x.  ( ( * `  -u 1
)  x.  ( B 
.ih  D ) ) )  =  ( B 
.ih  D )
3113, 16, 303eqtri 2648 . . . . 5  |-  ( (
-u 1  .h  B
)  .ih  ( -u 1  .h  D ) )  =  ( B  .ih  D
)
3231oveq2i 6661 . . . 4  |-  ( ( A  .ih  C )  +  ( ( -u
1  .h  B ) 
.ih  ( -u 1  .h  D ) ) )  =  ( ( A 
.ih  C )  +  ( B  .ih  D
) )
33 his5 27943 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  A  e.  ~H  /\  D  e.  ~H )  ->  ( A  .ih  ( -u 1  .h  D ) )  =  ( ( * `  -u 1
)  x.  ( A 
.ih  D ) ) )
348, 1, 5, 33mp3an 1424 . . . . . . 7  |-  ( A 
.ih  ( -u 1  .h  D ) )  =  ( ( * `  -u 1 )  x.  ( A  .ih  D ) )
3519oveq1i 6660 . . . . . . 7  |-  ( ( * `  -u 1
)  x.  ( A 
.ih  D ) )  =  ( -u 1  x.  ( A  .ih  D
) )
361, 5hicli 27938 . . . . . . . 8  |-  ( A 
.ih  D )  e.  CC
3736mulm1i 10475 . . . . . . 7  |-  ( -u
1  x.  ( A 
.ih  D ) )  =  -u ( A  .ih  D )
3834, 35, 373eqtri 2648 . . . . . 6  |-  ( A 
.ih  ( -u 1  .h  D ) )  = 
-u ( A  .ih  D )
39 ax-his3 27941 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( ( -u 1  .h  B )  .ih  C
)  =  ( -u
1  x.  ( B 
.ih  C ) ) )
408, 2, 4, 39mp3an 1424 . . . . . . 7  |-  ( (
-u 1  .h  B
)  .ih  C )  =  ( -u 1  x.  ( B  .ih  C
) )
412, 4hicli 27938 . . . . . . . 8  |-  ( B 
.ih  C )  e.  CC
4241mulm1i 10475 . . . . . . 7  |-  ( -u
1  x.  ( B 
.ih  C ) )  =  -u ( B  .ih  C )
4340, 42eqtri 2644 . . . . . 6  |-  ( (
-u 1  .h  B
)  .ih  C )  =  -u ( B  .ih  C )
4438, 43oveq12i 6662 . . . . 5  |-  ( ( A  .ih  ( -u
1  .h  D ) )  +  ( (
-u 1  .h  B
)  .ih  C )
)  =  ( -u ( A  .ih  D )  +  -u ( B  .ih  C ) )
4536, 41negdii 10365 . . . . 5  |-  -u (
( A  .ih  D
)  +  ( B 
.ih  C ) )  =  ( -u ( A  .ih  D )  + 
-u ( B  .ih  C ) )
4644, 45eqtr4i 2647 . . . 4  |-  ( ( A  .ih  ( -u
1  .h  D ) )  +  ( (
-u 1  .h  B
)  .ih  C )
)  =  -u (
( A  .ih  D
)  +  ( B 
.ih  C ) )
4732, 46oveq12i 6662 . . 3  |-  ( ( ( A  .ih  C
)  +  ( (
-u 1  .h  B
)  .ih  ( -u 1  .h  D ) ) )  +  ( ( A 
.ih  ( -u 1  .h  D ) )  +  ( ( -u 1  .h  B )  .ih  C
) ) )  =  ( ( ( A 
.ih  C )  +  ( B  .ih  D
) )  +  -u ( ( A  .ih  D )  +  ( B 
.ih  C ) ) )
481, 4hicli 27938 . . . . 5  |-  ( A 
.ih  C )  e.  CC
4948, 27addcli 10044 . . . 4  |-  ( ( A  .ih  C )  +  ( B  .ih  D ) )  e.  CC
5036, 41addcli 10044 . . . 4  |-  ( ( A  .ih  D )  +  ( B  .ih  C ) )  e.  CC
5149, 50negsubi 10359 . . 3  |-  ( ( ( A  .ih  C
)  +  ( B 
.ih  D ) )  +  -u ( ( A 
.ih  D )  +  ( B  .ih  C
) ) )  =  ( ( ( A 
.ih  C )  +  ( B  .ih  D
) )  -  (
( A  .ih  D
)  +  ( B 
.ih  C ) ) )
5247, 51eqtri 2644 . 2  |-  ( ( ( A  .ih  C
)  +  ( (
-u 1  .h  B
)  .ih  ( -u 1  .h  D ) ) )  +  ( ( A 
.ih  ( -u 1  .h  D ) )  +  ( ( -u 1  .h  B )  .ih  C
) ) )  =  ( ( ( A 
.ih  C )  +  ( B  .ih  D
) )  -  (
( A  .ih  D
)  +  ( B 
.ih  C ) ) )
537, 11, 523eqtri 2648 1  |-  ( ( A  -h  B ) 
.ih  ( C  -h  D ) )  =  ( ( ( A 
.ih  C )  +  ( B  .ih  D
) )  -  (
( A  .ih  D
)  +  ( B 
.ih  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836   ~Hchil 27776    +h cva 27777    .h csm 27778    .ih csp 27779    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hfvmul 27862  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828
This theorem is referenced by:  bcseqi  27977  normlem9at  27978  normpari  28011  polid2i  28014
  Copyright terms: Public domain W3C validator