| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1423 | Structured version Visualization version Unicode version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1423.1 |
|
| bnj1423.2 |
|
| bnj1423.3 |
|
| bnj1423.4 |
|
| bnj1423.5 |
|
| bnj1423.6 |
|
| bnj1423.7 |
|
| bnj1423.8 |
|
| bnj1423.9 |
|
| bnj1423.10 |
|
| bnj1423.11 |
|
| bnj1423.12 |
|
| bnj1423.13 |
|
| bnj1423.14 |
|
| bnj1423.15 |
|
| bnj1423.16 |
|
| Ref | Expression |
|---|---|
| bnj1423 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1423.1 |
. . . 4
| |
| 2 | bnj1423.2 |
. . . 4
| |
| 3 | bnj1423.3 |
. . . 4
| |
| 4 | bnj1423.4 |
. . . 4
| |
| 5 | bnj1423.5 |
. . . 4
| |
| 6 | bnj1423.6 |
. . . 4
| |
| 7 | bnj1423.7 |
. . . 4
| |
| 8 | bnj1423.8 |
. . . 4
| |
| 9 | bnj1423.9 |
. . . 4
| |
| 10 | bnj1423.10 |
. . . 4
| |
| 11 | bnj1423.11 |
. . . 4
| |
| 12 | bnj1423.12 |
. . . 4
| |
| 13 | bnj1423.13 |
. . . 4
| |
| 14 | bnj1423.14 |
. . . 4
| |
| 15 | bnj1423.15 |
. . . 4
| |
| 16 | bnj1423.16 |
. . . 4
| |
| 17 | biid 251 |
. . . 4
| |
| 18 | biid 251 |
. . . 4
| |
| 19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | bnj1442 31117 |
. . 3
|
| 20 | biid 251 |
. . . 4
| |
| 21 | biid 251 |
. . . 4
| |
| 22 | biid 251 |
. . . 4
| |
| 23 | biid 251 |
. . . 4
| |
| 24 | eqid 2622 |
. . . 4
| |
| 25 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24 | bnj1450 31118 |
. . 3
|
| 26 | 14 | bnj1424 30909 |
. . . 4
|
| 27 | 26 | adantl 482 |
. . 3
|
| 28 | 19, 25, 27 | mpjaodan 827 |
. 2
|
| 29 | 28 | ralrimiva 2966 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-om 7066 df-1o 7560 df-bnj17 30753 df-bnj14 30755 df-bnj13 30757 df-bnj15 30759 df-bnj18 30761 |
| This theorem is referenced by: bnj1312 31126 |
| Copyright terms: Public domain | W3C validator |