HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cdjreui Structured version   Visualization version   Unicode version

Theorem cdjreui 29291
Description: A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdjreu.1  |-  A  e.  SH
cdjreu.2  |-  B  e.  SH
Assertion
Ref Expression
cdjreui  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y

Proof of Theorem cdjreui
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdjreu.1 . . . . 5  |-  A  e.  SH
2 cdjreu.2 . . . . 5  |-  B  e.  SH
31, 2shseli 28175 . . . 4  |-  ( C  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
43biimpi 206 . . 3  |-  ( C  e.  ( A  +H  B )  ->  E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y
) )
5 reeanv 3107 . . . . 5  |-  ( E. y  e.  B  E. w  e.  B  ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  <->  ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) ) )
6 eqtr2 2642 . . . . . . 7  |-  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  -> 
( x  +h  y
)  =  ( z  +h  w ) )
71sheli 28071 . . . . . . . . . . . 12  |-  ( x  e.  A  ->  x  e.  ~H )
82sheli 28071 . . . . . . . . . . . 12  |-  ( y  e.  B  ->  y  e.  ~H )
97, 8anim12i 590 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( x  e.  ~H  /\  y  e.  ~H )
)
101sheli 28071 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  z  e.  ~H )
112sheli 28071 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  w  e.  ~H )
1210, 11anim12i 590 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  w  e.  B )  ->  ( z  e.  ~H  /\  w  e.  ~H )
)
13 hvaddsub4 27935 . . . . . . . . . . 11  |-  ( ( ( x  e.  ~H  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
149, 12, 13syl2an 494 . . . . . . . . . 10  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ( z  e.  A  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1514an4s 869 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  +h  y )  =  ( z  +h  w )  <-> 
( x  -h  z
)  =  ( w  -h  y ) ) )
1615adantll 750 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  <->  ( x  -h  z )  =  ( w  -h  y ) ) )
17 shsubcl 28077 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  SH  /\  w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
182, 17mp3an1 1411 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  B  /\  y  e.  B )  ->  ( w  -h  y
)  e.  B )
1918ancoms 469 . . . . . . . . . . . . . 14  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( w  -h  y
)  e.  B )
20 eleq1 2689 . . . . . . . . . . . . . 14  |-  ( ( x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  B  <->  ( w  -h  y )  e.  B
) )
2119, 20syl5ibrcom 237 . . . . . . . . . . . . 13  |-  ( ( y  e.  B  /\  w  e.  B )  ->  ( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
2221adantl 482 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( x  -h  z )  e.  B
) )
23 shsubcl 28077 . . . . . . . . . . . . . 14  |-  ( ( A  e.  SH  /\  x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
241, 23mp3an1 1411 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( x  -h  z
)  e.  A )
2524adantr 481 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( x  -h  z
)  e.  A )
2622, 25jctild 566 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  /\  z  e.  A
)  /\  ( y  e.  B  /\  w  e.  B ) )  -> 
( ( x  -h  z )  =  ( w  -h  y )  ->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) ) )
2726adantll 750 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B ) ) )
28 elin 3796 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  ( A  i^i  B )  <->  ( ( x  -h  z )  e.  A  /\  ( x  -h  z )  e.  B ) )
29 eleq2 2690 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  0H  ->  (
( x  -h  z
)  e.  ( A  i^i  B )  <->  ( x  -h  z )  e.  0H ) )
3028, 29syl5bbr 274 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  0H  ->  (
( ( x  -h  z )  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3130ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
( x  -h  z
)  e.  A  /\  ( x  -h  z
)  e.  B )  <-> 
( x  -h  z
)  e.  0H ) )
3227, 31sylibd 229 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  (
x  -h  z )  e.  0H ) )
33 elch0 28111 . . . . . . . . . . . 12  |-  ( ( x  -h  z )  e.  0H  <->  ( x  -h  z )  =  0h )
34 hvsubeq0 27925 . . . . . . . . . . . 12  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  =  0h  <->  x  =  z ) )
3533, 34syl5bb 272 . . . . . . . . . . 11  |-  ( ( x  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
367, 10, 35syl2an 494 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  z  e.  A )  ->  ( ( x  -h  z )  e.  0H  <->  x  =  z ) )
3736ad2antlr 763 . . . . . . . . 9  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  e.  0H  <->  x  =  z ) )
3832, 37sylibd 229 . . . . . . . 8  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  -h  z )  =  ( w  -h  y )  ->  x  =  z ) )
3916, 38sylbid 230 . . . . . . 7  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( (
x  +h  y )  =  ( z  +h  w )  ->  x  =  z ) )
406, 39syl5 34 . . . . . 6  |-  ( ( ( ( A  i^i  B )  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  /\  (
y  e.  B  /\  w  e.  B )
)  ->  ( ( C  =  ( x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z )
)
4140rexlimdvva 3038 . . . . 5  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  ( E. y  e.  B  E. w  e.  B  ( C  =  (
x  +h  y )  /\  C  =  ( z  +h  w ) )  ->  x  =  z ) )
425, 41syl5bir 233 . . . 4  |-  ( ( ( A  i^i  B
)  =  0H  /\  ( x  e.  A  /\  z  e.  A
) )  ->  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) )
4342ralrimivva 2971 . . 3  |-  ( ( A  i^i  B )  =  0H  ->  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
)
444, 43anim12i 590 . 2  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  -> 
( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  ( ( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z )
) )
45 oveq1 6657 . . . . . 6  |-  ( x  =  z  ->  (
x  +h  y )  =  ( z  +h  y ) )
4645eqeq2d 2632 . . . . 5  |-  ( x  =  z  ->  ( C  =  ( x  +h  y )  <->  C  =  ( z  +h  y
) ) )
4746rexbidv 3052 . . . 4  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. y  e.  B  C  =  ( z  +h  y
) ) )
48 oveq2 6658 . . . . . 6  |-  ( y  =  w  ->  (
z  +h  y )  =  ( z  +h  w ) )
4948eqeq2d 2632 . . . . 5  |-  ( y  =  w  ->  ( C  =  ( z  +h  y )  <->  C  =  ( z  +h  w
) ) )
5049cbvrexv 3172 . . . 4  |-  ( E. y  e.  B  C  =  ( z  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) )
5147, 50syl6bb 276 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  C  =  ( x  +h  y )  <->  E. w  e.  B  C  =  ( z  +h  w
) ) )
5251reu4 3400 . 2  |-  ( E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  <->  ( E. x  e.  A  E. y  e.  B  C  =  ( x  +h  y )  /\  A. x  e.  A  A. z  e.  A  (
( E. y  e.  B  C  =  ( x  +h  y )  /\  E. w  e.  B  C  =  ( z  +h  w ) )  ->  x  =  z ) ) )
5344, 52sylibr 224 1  |-  ( ( C  e.  ( A  +H  B )  /\  ( A  i^i  B )  =  0H )  ->  E! x  e.  A  E. y  e.  B  C  =  ( x  +h  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   E!wreu 2914    i^i cin 3573  (class class class)co 6650   ~Hchil 27776    +h cva 27777   0hc0v 27781    -h cmv 27782   SHcsh 27785    +H cph 27788   0Hc0h 27792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-ch0 28110  df-shs 28167
This theorem is referenced by:  cdj3lem2  29294
  Copyright terms: Public domain W3C validator