Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg47 Structured version   Visualization version   Unicode version

Theorem cdlemg47 36024
Description: Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
cdlemg46.b  |-  B  =  ( Base `  K
)
cdlemg46.h  |-  H  =  ( LHyp `  K
)
cdlemg46.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg46.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg47  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Distinct variable groups:    h, F    h, H    h, K    R, h    T, h    h, W
Allowed substitution hints:    B( h)    G( h)

Proof of Theorem cdlemg47
StepHypRef Expression
1 simp11 1091 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2l 1087 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  h  e.  T )
3 simp12 1092 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  F  e.  T )
4 cdlemg46.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
5 cdlemg46.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrnco 36007 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T  /\  F  e.  T
)  ->  ( h  o.  F )  e.  T
)
71, 2, 3, 6syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  F )  e.  T )
8 simp13 1093 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  G  e.  T )
9 simp3 1063 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )
10 cdlemg46.b . . . . . . . . . 10  |-  B  =  ( Base `  K
)
11 cdlemg46.r . . . . . . . . . 10  |-  R  =  ( ( trL `  K
) `  W )
1210, 4, 5, 11cdlemg46 36023 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  h  e.  T )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F ) ) )  ->  ( R `  ( h  o.  F
) )  =/=  ( R `  F )
)
131, 3, 2, 9, 12syl121anc 1331 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  F
) )
14 simp2r 1088 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  F )  =  ( R `  G ) )
1513, 14neeqtrd 2863 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  ( h  o.  F ) )  =/=  ( R `  G
) )
164, 5, 11cdlemg44 36021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( h  o.  F )  e.  T  /\  G  e.  T )  /\  ( R `  ( h  o.  F ) )  =/=  ( R `  G
) )  ->  (
( h  o.  F
)  o.  G )  =  ( G  o.  ( h  o.  F
) ) )
171, 7, 8, 15, 16syl121anc 1331 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( G  o.  ( h  o.  F
) ) )
18 coass 5654 . . . . . 6  |-  ( ( G  o.  h )  o.  F )  =  ( G  o.  (
h  o.  F ) )
1917, 18syl6eqr 2674 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( ( G  o.  h )  o.  F ) )
20 simp33 1099 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  h )  =/=  ( R `  F
) )
2120, 14neeqtrd 2863 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( R `  h )  =/=  ( R `  G
) )
224, 5, 11cdlemg44 36021 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( h  e.  T  /\  G  e.  T )  /\  ( R `  h )  =/=  ( R `  G
) )  ->  (
h  o.  G )  =  ( G  o.  h ) )
231, 2, 8, 21, 22syl121anc 1331 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  G )  =  ( G  o.  h ) )
2423coeq1d 5283 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  G
)  o.  F )  =  ( ( G  o.  h )  o.  F ) )
2519, 24eqtr4d 2659 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( h  o.  F
)  o.  G )  =  ( ( h  o.  G )  o.  F ) )
26 coass 5654 . . . 4  |-  ( ( h  o.  F )  o.  G )  =  ( h  o.  ( F  o.  G )
)
27 coass 5654 . . . 4  |-  ( ( h  o.  G )  o.  F )  =  ( h  o.  ( G  o.  F )
)
2825, 26, 273eqtr3g 2679 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
h  o.  ( F  o.  G ) )  =  ( h  o.  ( G  o.  F
) ) )
2928coeq2d 5284 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( `' h  o.  ( h  o.  ( G  o.  F ) ) ) )
30 coass 5654 . . . 4  |-  ( ( `' h  o.  h
)  o.  ( F  o.  G ) )  =  ( `' h  o.  ( h  o.  ( F  o.  G )
) )
3110, 4, 5ltrn1o 35410 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  h  e.  T
)  ->  h : B
-1-1-onto-> B )
321, 2, 31syl2anc 693 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  h : B -1-1-onto-> B )
33 f1ococnv1 6165 . . . . . 6  |-  ( h : B -1-1-onto-> B  ->  ( `' h  o.  h )  =  (  _I  |`  B ) )
3432, 33syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  h
)  =  (  _I  |`  B ) )
3534coeq1d 5283 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( `' h  o.  h )  o.  ( F  o.  G )
)  =  ( (  _I  |`  B )  o.  ( F  o.  G
) ) )
3630, 35syl5eqr 2670 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( (  _I  |`  B )  o.  ( F  o.  G
) ) )
374, 5ltrnco 36007 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( F  o.  G )  e.  T
)
381, 3, 8, 37syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  e.  T )
3910, 4, 5ltrn1o 35410 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  o.  G )  e.  T
)  ->  ( F  o.  G ) : B -1-1-onto-> B
)
401, 38, 39syl2anc 693 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G ) : B -1-1-onto-> B )
41 f1of 6137 . . . 4  |-  ( ( F  o.  G ) : B -1-1-onto-> B  ->  ( F  o.  G ) : B --> B )
42 fcoi2 6079 . . . 4  |-  ( ( F  o.  G ) : B --> B  -> 
( (  _I  |`  B )  o.  ( F  o.  G ) )  =  ( F  o.  G
) )
4340, 41, 423syl 18 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
(  _I  |`  B )  o.  ( F  o.  G ) )  =  ( F  o.  G
) )
4436, 43eqtrd 2656 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( F  o.  G ) ) )  =  ( F  o.  G ) )
45 coass 5654 . . . 4  |-  ( ( `' h  o.  h
)  o.  ( G  o.  F ) )  =  ( `' h  o.  ( h  o.  ( G  o.  F )
) )
4634coeq1d 5283 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
( `' h  o.  h )  o.  ( G  o.  F )
)  =  ( (  _I  |`  B )  o.  ( G  o.  F
) ) )
4745, 46syl5eqr 2670 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( G  o.  F ) ) )  =  ( (  _I  |`  B )  o.  ( G  o.  F
) ) )
484, 5ltrnco 36007 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  F  e.  T
)  ->  ( G  o.  F )  e.  T
)
491, 8, 3, 48syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( G  o.  F )  e.  T )
5010, 4, 5ltrn1o 35410 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  F )  e.  T
)  ->  ( G  o.  F ) : B -1-1-onto-> B
)
511, 49, 50syl2anc 693 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( G  o.  F ) : B -1-1-onto-> B )
52 f1of 6137 . . . 4  |-  ( ( G  o.  F ) : B -1-1-onto-> B  ->  ( G  o.  F ) : B --> B )
53 fcoi2 6079 . . . 4  |-  ( ( G  o.  F ) : B --> B  -> 
( (  _I  |`  B )  o.  ( G  o.  F ) )  =  ( G  o.  F
) )
5451, 52, 533syl 18 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  (
(  _I  |`  B )  o.  ( G  o.  F ) )  =  ( G  o.  F
) )
5547, 54eqtrd 2656 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( `' h  o.  (
h  o.  ( G  o.  F ) ) )  =  ( G  o.  F ) )
5629, 44, 553eqtr3d 2664 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
h  e.  T  /\  ( R `  F )  =  ( R `  G ) )  /\  ( F  =/=  (  _I  |`  B )  /\  h  =/=  (  _I  |`  B )  /\  ( R `  h )  =/=  ( R `  F )
) )  ->  ( F  o.  G )  =  ( G  o.  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    _I cid 5023   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888   Basecbs 15857   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-undef 7399  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-llines 34784  df-lplanes 34785  df-lvols 34786  df-lines 34787  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  cdlemg48  36025
  Copyright terms: Public domain W3C validator