MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjreim Structured version   Visualization version   Unicode version

Theorem cjreim 13900
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
Assertion
Ref Expression
cjreim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B
) ) )

Proof of Theorem cjreim
StepHypRef Expression
1 recn 10026 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 9995 . . . 4  |-  _i  e.  CC
3 recn 10026 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 10020 . . . 4  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 695 . . 3  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 cjadd 13881 . . 3  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( * `  ( A  +  (
_i  x.  B )
) )  =  ( ( * `  A
)  +  ( * `
 ( _i  x.  B ) ) ) )
71, 5, 6syl2an 494 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( ( * `
 A )  +  ( * `  (
_i  x.  B )
) ) )
8 cjre 13879 . . 3  |-  ( A  e.  RR  ->  (
* `  A )  =  A )
9 cjmul 13882 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( * `  (
_i  x.  B )
)  =  ( ( * `  _i )  x.  ( * `  B ) ) )
102, 3, 9sylancr 695 . . . 4  |-  ( B  e.  RR  ->  (
* `  ( _i  x.  B ) )  =  ( ( * `  _i )  x.  (
* `  B )
) )
11 cji 13899 . . . . . 6  |-  ( * `
 _i )  = 
-u _i
1211a1i 11 . . . . 5  |-  ( B  e.  RR  ->  (
* `  _i )  =  -u _i )
13 cjre 13879 . . . . 5  |-  ( B  e.  RR  ->  (
* `  B )  =  B )
1412, 13oveq12d 6668 . . . 4  |-  ( B  e.  RR  ->  (
( * `  _i )  x.  ( * `  B ) )  =  ( -u _i  x.  B ) )
15 mulneg1 10466 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  =  -u ( _i  x.  B
) )
162, 3, 15sylancr 695 . . . 4  |-  ( B  e.  RR  ->  ( -u _i  x.  B )  =  -u ( _i  x.  B ) )
1710, 14, 163eqtrd 2660 . . 3  |-  ( B  e.  RR  ->  (
* `  ( _i  x.  B ) )  = 
-u ( _i  x.  B ) )
188, 17oveqan12d 6669 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( * `  A )  +  ( * `  ( _i  x.  B ) ) )  =  ( A  +  -u ( _i  x.  B ) ) )
19 negsub 10329 . . 3  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  -u ( _i  x.  B
) )  =  ( A  -  ( _i  x.  B ) ) )
201, 5, 19syl2an 494 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  -u ( _i  x.  B
) )  =  ( A  -  ( _i  x.  B ) ) )
217, 18, 203eqtrd 2660 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267   *ccj 13836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841
This theorem is referenced by:  cjreim2  13901  dipcj  27569  lnophmlem2  28876
  Copyright terms: Public domain W3C validator