MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfii Structured version   Visualization version   Unicode version

Theorem cmpfii 21212
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
cmpfii  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
)  /\  -.  (/)  e.  ( fi `  X ) )  ->  |^| X  =/=  (/) )

Proof of Theorem cmpfii
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . 5  |-  ( Clsd `  J )  e.  _V
21elpw2 4828 . . . 4  |-  ( X  e.  ~P ( Clsd `  J )  <->  X  C_  ( Clsd `  J ) )
32biimpri 218 . . 3  |-  ( X 
C_  ( Clsd `  J
)  ->  X  e.  ~P ( Clsd `  J
) )
4 cmptop 21198 . . . . 5  |-  ( J  e.  Comp  ->  J  e. 
Top )
5 cmpfi 21211 . . . . 5  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
64, 5syl 17 . . . 4  |-  ( J  e.  Comp  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
76ibi 256 . . 3  |-  ( J  e.  Comp  ->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) )
8 fveq2 6191 . . . . . . 7  |-  ( x  =  X  ->  ( fi `  x )  =  ( fi `  X
) )
98eleq2d 2687 . . . . . 6  |-  ( x  =  X  ->  ( (/) 
e.  ( fi `  x )  <->  (/)  e.  ( fi `  X ) ) )
109notbid 308 . . . . 5  |-  ( x  =  X  ->  ( -.  (/)  e.  ( fi
`  x )  <->  -.  (/)  e.  ( fi `  X ) ) )
11 inteq 4478 . . . . . 6  |-  ( x  =  X  ->  |^| x  =  |^| X )
1211neeq1d 2853 . . . . 5  |-  ( x  =  X  ->  ( |^| x  =/=  (/)  <->  |^| X  =/=  (/) ) )
1310, 12imbi12d 334 . . . 4  |-  ( x  =  X  ->  (
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  ( -.  (/) 
e.  ( fi `  X )  ->  |^| X  =/=  (/) ) ) )
1413rspcva 3307 . . 3  |-  ( ( X  e.  ~P ( Clsd `  J )  /\  A. x  e.  ~P  ( Clsd `  J ) ( -.  (/)  e.  ( fi
`  x )  ->  |^| x  =/=  (/) ) )  ->  ( -.  (/)  e.  ( fi `  X )  ->  |^| X  =/=  (/) ) )
153, 7, 14syl2anr 495 . 2  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
) )  ->  ( -.  (/)  e.  ( fi
`  X )  ->  |^| X  =/=  (/) ) )
16153impia 1261 1  |-  ( ( J  e.  Comp  /\  X  C_  ( Clsd `  J
)  /\  -.  (/)  e.  ( fi `  X ) )  ->  |^| X  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475   ` cfv 5888   ficfi 8316   Topctop 20698   Clsdccld 20820   Compccmp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-top 20699  df-cld 20823  df-cmp 21190
This theorem is referenced by:  fclscmpi  21833  cmpfiiin  37260
  Copyright terms: Public domain W3C validator